International Journal on Engineering Artificial Intelligence Management, Decision Support, and Policies
Vol. 02, Iss. 03, S. No. 01, pp.1--13, September 2025
ISSN (Online): 3048-8788

Received: 21 August 2025, Accepted: 01 October 2025, Published: 04 October 2025
Digital Object Identifier: https://doi.org/10.63503/j.ijjaimd.2025.162

‘Research Article ‘

Legal Ally: A Multimodal Al System for Indian Law Navigation

Archana Burujwale!, Prajyot Borikar'” , Pradnyesh Ravane!, Pranav Ratnalikar', Vedant
Rawale!

! Department of Computer Science and Engineering (Artificial Intelligence), Vishwakarma Institute of
Technology, Pune, India

archana.burujwale@yvit.edu, prajyo.borikar22@vit.edu, pradnyesh.ravane22@vit.edu,
pranav.ratnalikar22@vit.edu, vedant.rawale@vit.edu,

*Corresponding author: Prajyot Borikar, prajyo.borikar22@vit.edu
ABSTRACT

The paper aimed at solving the problem of affordable, accessible and contextually accurate legal assistance in
India, Legal Ally is a domain-specific Al platform that supports lawyers among others. With the intricacy of
Indian jurisprudence, minimal legal literacy, and high price of professional services, there has been an increasing
need to have a system that would ensure the democratization of legal knowledge as well as facilitate the process
of handling documents by non-professionals, small firms, and even law professionals. In the present paper, the
author suggests Legal Ally as the multimodal system that incorporates the Retrieval-Augmented Generation
(RAG)-based Legal Chatbot, a Document Analysis tool, a Legal Document Generator, and a LawyerClient Video-
Call module. The suggested approach uses Google Generative Al generate embeddings, FAISS vectors-in-
memory storage, React, Streamlit, Flask, and WebRTC to permit real-time resolution of legal questions,
simplifying the distribution of difficult legal records, developing autonomous standardized contracts, and in-depth
virtual consultations. The innovativeness of the work is that all these different functionalities are holistically
integrated into a single, scalable and user-friendly platform built in the Indian legal frameworks- filling in the
gaps that exist in terms of accessibility, localization and ease of use. Experimental analysis shows that legal query
answers are accurate (94.8 percent), contract generation fast (6.2 seconds to generate 8-page documents), and
legally-compliant and user-accepted. The ethically based solution is a great impetus to democratizing legal aid in
developing economies.

Keywords: Legal Al, Retrieval-Augmented Generation, Document Analysis, Contract Generation, WebRTC,
Indian Jurisprudence, Natural Language Processing, FAISS, Legal Accessibility.

1. Introduction

At a time, when digital innovation is transforming the provision of vital services, the legal field is a
minefield to many, especially in India, where legal regimes and low levels of legal literacy make it
difficult to get access to the justice. The research paper proposes such a platform that combines powerful
artificial intelligence (Al) technologies, such as natural language processing (NLP) and Retrieval-
Augmented Generation (RAG) to tackle those difficulties.

Legal Ally will integrate three fundamental parts, such as Legal Chatbot, Document Analysis, and Legal
Document Generator, to offer the easy-to-use and affordable solution to working with laws in India,
complex legal documents, and standardized contracts creation. This multimodal model makes users
powerful through the provision of real-time resolution of legal queries, easy explanation of documents,
and custom-built generation of documents so that they can be presented in the Indian legal setting.

ISSN (Online) : 3048-8788 1 IJAIMD

https://doi.org/10.63503/j.ijaimd.2025.162

Archana Burujwale, Prajyot Borikar, Pradnyesh Ravane, Pranav Ratnalikar, Vedant Rawale

The value of Legal Ally is that, it democratizes legal help, giving individuals, small businesses and
legal professionals who have not been able to get legal help either because of it being expensive,
complicated or not available in an easy to reach form the opportunity to get their problems addressed
legally. The platform uses technologies that include Google Generative Al, FAISS storage of vectors,
and open-source web development frameworks like Streamlit and React to provide high-quality,
context-sensitive responses and producing high-quality legal texts at the same standards as professional
lawyers and attorneys. Also in India where the citizens often find themselves with little knowledge on
the laws it lies on the interest of the Legal Ally to facilitate the knowledge gap between the citizens to
have better understanding on their privileges, have the knowledge of the complex legal language and
write agreements without facing exorbitant charges.

It has wide usage: people can find answers to their questions related to the legal field or write contracts
such as a rental agreement and a non-disclosure agreement (NDA), small companies will be able to
automate the process of making contracts, and legal workers will become more efficient when analyzing
documents and conducting preliminary research. Specializing in Indian jurisprudence, Legal Ally is
relevant in regard to local laws, which is highly important in the country with the vast and
multidimensional legal system.

The primary objective of this paper is to present the design, implementation, and evaluation of Legal
Ally, demonstrating how a multimodal Al system can enhance legal accessibility and usability within
the Indian context. Through a detailed exploration of its technical framework and performance, the
paper aims to contribute to the field of Al-driven legal technologies by showcasing a scalable solution
that integrates query answering, document processing, and template-based document generation.

The paper is designed so that it will give a complete picture: Introduction will provide an overview of
the situation, the relevance of the research, and objectives; it will follow the Literature Review with the
overview of the existing Al-based legal tools and their current gaps in access and localization that Legal
Ally will bridge; it will be followed by the Methodology designed to give the details about the technical
architecture, the RAG-based Legal Chatbot, document analysis tool and its text processing and
summarization pipeline, and the Legal Document Generator and its form-based document creation
process; Results and Discussion will be provided.

2. Literature Review

The use of artificial intelligence (Al) in the legal sector has transformed the manner in which legal
information is obtained, manipulated, and applied, especially the natural language processing (NLP),
Retrieval-Augmented Generation (RAG), and computerised documents generation. The technologies
have made it possible to build legal chatbots, document analysis software and template-based document
generators which aim to improve accessibility and efficiency of legal services. Legal services are a
potential area where Al can be extended in India because access to professional services is a massive
barrier to legal help, and Indian law is complex. Notable studies have been conducted on different
dimensions of such technologies such as application of these technologies in addressing legal questions,
processing of documents and ethical implications. The literature review considers some of the most
important works in the period between 2021 and 2025 and their contributions to the field of Al-based
legal systems with regard to the Legal Ally project that includes Legal Chatbot, Document Analysis
tool, and Legal Document Generator applied to Indian jurisprudence. The review ends with a conclusion
of the identified gaps in the literature that Legal Ally would like to fill.

The article by Kumar et al. (2023) examined the use of NLP methods in dealing with legal texts, notably
transformer-based models such as BERT, in order to obtain statements of related case laws. Their paper
notes down the issues of handling complicated legal documents (ambiguous use of terminology,

ISSN (Online) : 3048-8788 2 IJAIMD

Archana Burujwale, Prajyot Borikar, Pradnyesh Ravane, Pranav Ratnalikar, Vedant Rawale

dependency on the context, etc.) and suggests a way to improve the precision of retrieval by using
embeddings and searching by semantic similarity. Their way of doing this also relates well with the use
of Google Generative Al embeddings and FAISS by Legal Ally to analyze and retrieve documents,
specifically, in the Legal Chatbot and Document Analysis modules. Nonetheless, their work may not
directly translate to Indian law since it has general applicability only to local jurisdiction issues (Kumar,
A., Gupta, S., & Sharma, R., 2023). In their study, Zhang et al. (2024) explored the usage of Retrieval-
Augmented Generation (RAG) frameworks in the context of legal question answering, where they
factor in the usage of large language models (LLMs) and external legal databases to enhance the
accuracy and relevance of responses. Their assessment proves that RAG is effective in addressing
complicated questions in the law by searching documents of interest and then coming up with responses.
This approach directly satisfies the workings of Legal Ally RAG-powered Legal Chatbot, where FAISS
and Google Generative Artificial Intelligence take care of queries. Their work on judicial systems has
been a great source of benchmarking, although they do not dwell much on whether it is user-friendly to
ordinary citizens, which is a major emphasis of Legal Ally (Zhang, M., Chen, L., & Liu, P., 2024).
Rahman et al. (2024) analyzed the application of LLMs to support legal help in Bangladesh with a view
on automating the document analysis process and making the legal advice available to communities
traditionally underserved. They present such aspect as accuracy of legal reasoning, and data privacy, as
the challenges their study addresses and highlight importance of user-friendly Al tools in the developing
countries. They are set in Bangladesh, but much of what they prioritize as accessibility lies in the spirit
of making legal services more accessible, or to democratize access to legal resources which is something
Legal Ally also aims to achieve through its Document Analysis tool that breaks down legal jargon to
laypeople. They do not explore document generation much, though, which shows case, where Legal
Ally offers a more extended functionality (Rahman, S., Hossain, M., & Khan, A., 2024). Patel et al.
(2022) commented on the template-based NLP systems to create legal documents, and the areas were
the validation of user input and standardization of the document. Their logic, involving the usage of
formatted templates to verify the completeness, is similar to the Legal Document Generator of Legal
Ally, which offers the use of Streamlit as an input mechanism in form-based schemes and generates
templates of standardized documents such as a rental agreement or a NDA. Their approach offers a
blueprint of automated document generation, which does not involve interactive query answers, which
is a major factor of the multimodal structure of Legal Ally (Patel, R., Singh, V., & Desai, N., 2022).

The analysis was focused on the Sueppreme Court Portal of Assistance in Court efficiency (SUPACE)
which is a type of Artificial Intelligence system and aimed at legal research and case summary within
the Indian Supreme Court. In their paper, SUPACE is the focus of their study because it is seen as a
tool to enhance the efficiency of the judicial system through automation of document collection and
summarization. This piece gives context to the deployment of Al in Indian law courts that accompanies
Legal Ally, which aims to facilitate the navigation of the Indian law. Nevertheless, SUPACE is
restricted to the judicial professionals since Legal Ally focuses on the general audience, including non-
experts (Sharma, D., Reddy, K., & Mukherjee, S., 2023).

The opportunities and challenges of applying NLP to multilingual legal text in India were studied by
Joshi et al. (2025), who worked with translation of regional languages and understanding of their
context. They mention the use of such tools as SUVAS to deal with vernacular versions and it is clear
that India is a linguistically diverse place. This research is also of great significance to any future
modifications of Legal Ally, which might include multilinguality in the Legal Chatbot and Document
Analysis modules that it is proposed, deal with the English language Indian laws currently (Joshi, P.,
Kulkarni, A., & Menon, R., 2025). Lee et al. (2023) surveyed the machine learning methodologies that
can be used to predict the outcomes of legal cases based on historical data and NLP to analyze
precedents. The value of their work can be used to give insights on how Legal Ally can integrate

ISSN (Online) : 3048-8788 3 IJAIMD

Archana Burujwale, Prajyot Borikar, Pradnyesh Ravane, Pranav Ratnalikar, Vedant Rawale

outcome prediction into its Legal Chatbot in future updates to improve its abilities. Their observed
results on the NLP-based precedent search can be applied to the mechanisms of Legal Ally retrievals,
but they were not necessarily tied to India (Lee, J., Kim, S., & Park, H., 2023). Gupta et al. (2024)
discussed ethical issues in legal applications of Al and addressed the issues related to bias in algorithms,
data privacy, and transparency in India. Their analysis is a testament to the need to protect user data,
and to be able to produce impartial responses, which is central to the document upload and query
processing capabilities relied upon by Legal Ally. Their article gives the approach to solving the ethical
problem in the design of Legal Ally, including the safe management of the uploaded PDF, the clear
disclosure of responses to queries (Gupta, N., Verma, S., & Rao, A., 2024). Nair et al. (2024) also
described how Streamlit can be utilized to create interactive interfaces to Al-powered legal solutions
that can generate documents and interact with the user. Their paper shows that Streamlit is an effective
tool when it comes to developing user-friendly apps and directs at Legal Ally, whose Legal Document
Generator is based on Streamlit, with the support of text input forms and document previews. Their
speciality on interfaces will be useful in making the user experience of Legal Ally a reality (Nair, K.,
Iyer, R., & Thomas, M., 2024). Howdhury et al. (2025) tracked the history of legal chatbots
development, stating the change in regulations between the theme-based chatbots and transformer-
based ones, which could answer complex theses. Their review of transformer frameworks such as those
applied in ChatGoogleGenerativeAl discusses improvement in situational awareness and statement
fabrication. This paper will offer a comparison of Legal Ally Legal Chatbot, but it does not focus only
on legal application to India, which is the case with Legal Ally (Chowdhury, S., Mitra, A., & Das, P.,
2025).

In spite of this, there are still a number of research gaps in terms of using Al to a legal system, especially
in the Indian setting. Indeed, most works center on individual modules of lawful question answering
(Zhang et al., 2024; Chowdhury et al., 2025), document analysis (Kumar et al., 2023; Rahman et al.,
2024), or document generation (Patel et al., 2022; Nair et al., 2024), few provide the combination of
said functionalities into a user-friendly non-expert-oriented system. Also, the existing studies about
Indian legal systems exist, but they do not cover the mentioned three aspects of the issue (Sharma et al.,
2023; Joshi et al., 2025). One can speak about ethical considerations involved, like data privacy and
bias mitigation (Gupta et al., 2024), however, things like how that exact implementation works in terms
of practical user-friendly legal tools has not been discussed as much yet.

Legal Ally alleviates these gaps by developing a multimodal Al solution that combines RAG-based
Legal Chatbot, Document Analysis tool to simplify legal documents and Legal Document Generator to
generate standard contracts all applicable to the Indian jurisprudence. In contrast to the current
solutions, Legal Ally does not rely on accessibility by experts and supports real-time communication
and ethical protection, e.g., safe document use or responses based on the situation. Only by combining
the merits of previous work and rectifying their shortcomings, Legal Ally will constitute a remarkable
effort in terms of legal assistance democratization in India.

3. System Architecture

The platform, called the Legal Ally, is a fully fledged product that is going to democratize legal services
by incorporating four crucial elements: a Legal Chatbot, a Document Analysis Tool, a Legal Document
Creator, and the Lawyer Client Video Call option. The platform, developed on the natural language
processing (NLP) machine learning technology and web development, has been designed to be specific
to the Indian legal settings. It will provide the tools to resolve legal questions, understand the legal
jargon which is difficult to comprehend, computerise standard legal documents and consult the lawyers
through real time secure and user-friendly interface.

ISSN (Online) : 3048-8788 4 IJAIMD

Archana Burujwale, Prajyot Borikar, Pradnyesh Ravane, Pranav Ratnalikar, Vedant Rawale

The Legal Chatbot consists of two types of modes Support mode and Origination mode, both are
supported by a Retrieval-Augmented Generation (RAG) pipeline. Under Legal Advisor Mode, users
submit vague legal questions that are answered with the aid of a permanently built vector index
developed on Indian law PDF records. Document Chatbot Mode builds on this to allow the upload of
PDFs and give document-specific responses which are based on an ephemeral FAISS vector index
constructed specifically during the session.

In both modes, the backend makes queries to a Flask APL, but with some parts, such as using pdfplumber
to extract text, using Langchain RecursiveCharacterTextSplitter to split into chunks (10,000 characters
in chunk size, 1000 characters overlap), and using GoogleGenerativeAIEmbeddings to generate
embedding. These embeddings are held in a FAISS vector store, which allows easy semantic search.
When users make a query, requests are directed to the backend using endpoints such as /api/chat,
/api/upload, and /api/precompute, and responses are created by a Langchain question-answering chain
run using the Gemini 2.0 Flash (ChatGoogleGenerativeAl) and with custom prompts based on context
and fallback messages like I cannot determine this by the information provided to me or This
information is not in the document. The frontend UI built on React allows an interactive chat room and
supports useful features such as switching between different modes, and document uploads, message
history, and real-time status changes by maintaining connection with the API through Axios.

The Document Analysis Tool is closely coupled with the Document Mode of the chatbot and includes
extensive summaries and simplified information of the uploaded legal documents. By the same RAG-
based architecture, uploaded PDFs are parsed with pdfplumber, chunked and inserted into an in-
memory FAISS structure. The Langchain QA chain circuits through the text and pulls out explanations
of concepts (e.g. a definition of the word indemnification as meaning compensation of loss) and
summaries to be described in 3-5 bullet points with a limit of 5,000 characters. In case there is no
possible way to answer the query because such data is not provided in the document uploaded, the
system sends an alternative message: This information is not in the document. React frontend provides
responsive design and real-time feedback systems to increase user experience by offering summaries
and answers.

The Legal Document Generator has the ability to create legal templates in form-based document
generator mode, including rental agreements, non-disclosure agreements (NDAs), business agreements,
and divorce settlements. Developed on Streamlit, it takes a user through well-organised forms with
required fields (designated with asterisks), which are dynamic in accordance with the chosen type of
the document. On submission, the inputs will be validated and placed in dictionaries which are used to
fill pre-existing HTML templates by a generate_document_html function. Its result is then saved as a
PDF format by making use of such libraries as pdfkit or weasyprint, and its name is organized in a
similar fashion (e.g., “Landlord Tenant RentalAgreement.pdf”).

Streamlit provides both a preview, downloading, and restarted with a single document, as well as
downloading and a preview of both a PDF and HTML version. The process is modular and interactive;
therefore, it promotes consistency of documents, legal correctness, and user-friendliness by users with
no legal or technical expertise.

Lawyer-Client Video Call allows carrying out safe video conferencing. The video module was
developed based on React and Socket.1O, using WebRTC (RTCPeerConnection) to communicate with
peers with regard to media streaming and utilizes a STUN server (stun.l.google.com:19302) to bypass
NAT. By filling in the session details via LobbyScreen, the user can be redirected to the RoomPage
where ReactPlayer is being used to display video and audio served via
navigator.mediaDevices.getUserMedia.

Negotiation of calls and session lifecycle management are catered through such events as room:join,
user:call, call:accepted, and call:ended. Tailwind CSS makes the interface responsive at all levels and
has status indicators and buttons to interact. Even though such a module is not directly depicted in the

ISSN (Online) : 3048-8788 5 IJAIMD

Archana Burujwale, Prajyot Borikar, Pradnyesh Ravane, Pranav Ratnalikar, Vedant Rawale

architectural schema, it corresponds to the backend and the front end layers of the system to promote
integrated real-time communication.

User Layer
Queries, Document Uploads,
Form Data, Video Call
Requests

/

Submits

v

Frontend Layer
React Chat/Video UI,
Streamlit Document UI

API Requests/Form
Submissions

Backend Layer
Flask Server: fapi/chat,

/api/upload, etc.

Routes Queries

Routes Uploads

Routes Form Data

Routes Video Requests

Returns

Legal Chatbot Logic Document Analysis Logic Document Generator Logic Video Call Logic
RAG, QA Chain Summaries, Simplification HTML/PDF Creation WebRTC, Socket.IO
Uses. Uses Stores Uses

Storage Layer
FAISS Vector Store, Indian
Law PDFs,
Temporary Document
Storage

Delivers

T~

/

Output Layer
Document
Preview/Download, Video
Streams

Figure 1: System Architecture

The system architecture is divided into five main layers namely, User, Frontend, Backend, Processing
and Storage/Output. The platform is used by the users through chat, documents uploading, or form-
based information entry or through video conferencing. The frontend runs on React and Streamlit and
receives inputs through API endpoints which feed into the backend run using Flask. The backend will
make use of requests to direct them to a dedicated logic module- Legal Chatbot, Document Analysis
and Document Generator and Video Call.

In the Processing layer, there are several logic modules, each of which performs the input transformation
by using machine learning models, document parsing tools, and WebRTC engines. The Storage/Output
layer stores FAISS vector stores, preprocessed Indian law PDFs, and generated HTML/PDFs files
which are accessed and sent to the user through the frontend interface. It is flexible, multi-tiered and
scalable solution that necessitates the transparency and efficiency in performance with each of its
components.

ISSN (Online) : 3048-8788 6 IJAIMD

Archana Burujwale, Prajyot Borikar, Pradnyesh Ravane, Pranav Ratnalikar, Vedant Rawale

\

No, Document Mode o, Legal Mede fes

Return: 'This data isn't in Return: T cannot estimate
Return Answer te Frantend
the document’ this.
l I Ad

Frontend Feedback
Update Chat UI,
Timestamps, Tndicaters.

Display to User

User Interaction
React-based Frontend

Selects Mode

wMode selection

1
Document Chatbat Mode Legal Advisor Madle

uplead PDF & Submit Query Enter Legal Query Generate Response

POF Processing Sends PDF/Query Sends Query

' O —

Parse PDF Flask Backend
pelfplumber

hunic Text
| ChunkeTex Check Initialization
RecursiveCharacterTextaplitter l

ﬁ

Knowledge Base Initialized?

Generate Embeddings
GoogleGenerativeATEmbeddings

Yes He

orocess 0 brecomputation Pipetine
rocess Quer ,
¥ fapifinitialize-legal

Read Indian Law PDFs
Stores similarity Search Create FAISS Vector Index
fapi/precompute

Stores

id

Document Chathot Mode Legal Advisor Mode Retrieve Relevant Chunks
fJ l —

Temporary FAISS Vector ‘
Store

Langehain G4 Chain
Custom Prompt, Gemini 2.0
Pro

Persistent FAISS Index
legal _faiss_index

Figure 2: Workflow of Chatbot

To provide the detail mechanism of the chatbot more, Figure 2 shows a Workflow of the Dual-Mode
Chatbot System. This process starts by the user logging into the React interface, where one can choose
either to apply one of the two modes of the chatbot, Legal Advisor Mode or Document Chatbot Mode.
In the case of legal questions, when the vector store is not populated, a request to the /api/initialize-
legal and /api/precompute endpoints is triggered in order to generate PDFs with Indian law into vector
embeddings. In document-based queries, PDF files uploaded to the system are parsed with pdfplumber,
split into chunks with the Langchain RecursiveCharacterTextSplitter, and embedded with
GoogleGenerativeAIEmbeddings.

ISSN (Online) : 3048-8788 7 IJAIMD

Archana Burujwale, Prajyot Borikar, Pradnyesh Ravane, Pranav Ratnalikar, Vedant Rawale

These embeddings will be kept on a temporary basis in FAISS. As soon as the system has found the
relevant chunks through the similarity search, the system will pass these chunks into the Langchain QA
chain with the support of the Gemini 2.0 Pro model, which is used to obtain consistent, context-sensitive
responses. Frontend is automatically updated in timestamps and fallback messages (in case they are
applied) and real-time indicators, with the interaction in both modes being smooth and guided.

User Interaction

User Fesdiack Loap Ussr Aceasses Straamlit UL

Select Document Type

Dacument Type Selaction

Rental agreement oW Business Contract Diverce Settiement

Farm: Spouse Infc,

Marriage/Separation Dates,

fsset Divisian, Child
Custody

Submit Form Submit Farm Submit Form Submit Farm

Form: Property Infe, Rental
Tarms, Barty Dataile

Confidential Infa payment Terms, Termination

sereamliz: Collect rorm Data

Validate Input

Missing Fields All Figlds Walid

bisplay Error: Completa Compile bzt inte
Reguired Fields Structured Dictionary

Generate Document

Document Gegeration

generate s

men
Create anather Document Select New Dozument Type
Create HTML Template

Merge User Data
Professicnal HTML
Document

Generate Qutput

Render POF

Earrect nput

Generate Dutput

Partyitam e TocumentType.pdt PartyName_DocumentType. Wl

Previen Cownload Ereview Downlaad

T Dulputbaléry 1

Streamlit UL Display HTML
Preview

Figure 3: Workflow of Document Generator

As a complement to this, Figure 3 outlines the Legal Document Generator Workflow which provides
its users with the guidelines of how to go about the automatic approach of creating documents that have
legal structure. The use of the Streamlit frontend with the selection of the document type (Rental
Agreement, NDA, Business Contract, Divorce Settlement) results in the dynamically generated input
forms with required and optional fields within. After submission, inputs are validated by the backend
which parses the data to the structures dictionary and combines with an HTML template with the help
of the generate_document html function.

The resulting document is then saved as PDF by either using pdfkit or weasyprint and saved according
to a standardized pattern (PartyName DocumentType.pdf) Streamlit interface allows the preview of the
outputs and saving them in HTML or PDF. Contiguous use of the system is also facilitated because the

ISSN (Online) : 3048-8788 8 IJAIMD

Archana Burujwale, Prajyot Borikar, Pradnyesh Ravane, Pranav Ratnalikar, Vedant Rawale

system enables a user to reset and create a new document. Such a flow makes the documents
standardized, minimizes the prevalence of manual drafting mistakes and increases the productivity of
its users.

This Lawyer-Client Video Call module offered as a part of the Legal Ally offers a safe, time-syncing
communications platform between the lawyers and the clients. This functionality is critical in that it
allows legal consultations to be conducted virtually and the clients do not have to meet privately with
their counsel to get legal advice. The web video call is powered by exactly Web Real-Time
Communication (WebRTC) which is a powerful open-source project that provides peer-to-peer sharing
of audio, video, and data directly in the browser without any external library or third parties.

By tapping on the feature of the video call, the user will enter their credentials (email and room ID) into
the front-end interface, which was created on the basis of React. The app would then broadcast a:
room:join event using socket.io that is the real-time communication layer to communicate signaling
messages. The signaling pipeline, which is executed by the server, coded in Flask, operates by assigning
the users in the same rooms and allowing sharing of important connection-related metadata.

To achieve a connection the frontend calls the API navigator.mediaDevices.getUserMedia(); with the
aim of gathering the local video and audio sources. These media tracks are them put on a newly
instantiated RTCPeerConnection object, which controls the life cycle of the peer-to-peer connection.
To perform network traversal and NAT capability, the system uses a STUN (Session Traversal Utilities
for NAT) server, namely, stun.l.google.com:19302, that helps the discovery of the outward-facing IP
addresses of clients.

In connection establishment the signaling mechanism depends on the exchange of Session Description
Protocol (SDP) offers and answers and ICE (Interactive Connectivity Establishment) candidates. They
are pushed to the front using the Socket.IO by events user:call, call:accepted, peer:nego:needed, and
ice:candidate. After initiating an effective negotiation, the peer connection enables relaxed media
streaming through encryption of media sharing between clients.

On the frontend, the ReactPlayer is used to display the media feeds and hence the user can watch the
local and remote video streams. It has a real-time feedback (e.g. connection indicators, etc) and
interactive switches to start, hang-up or clear-up the connection. There are also cleanup programs which
have been integrated into the system to make sure that all media tracks have been stopped, connection
terminators, and Ul reset procedures properly after each session, and this is called handleEndCall () and
handleCallEnded () functions.

Implementation of WebRTC has a number of technical and logistic benefits. It is end-to-end encrypted,
is low latency because its design creates a direct connection, and is compatible with the current best
practices in web security. The platform is lightweight and completely controlled by its developers since
they removed the need to use third-party video services. Legally, this design encourages the use of
confidential and private communication that is of paramount essence in practical legal associates.

In summary, the Legal Ally is an integrated, Al-enabled system of law support providing context-
sensitive operation of queries, simplification of documents, the ability to create the contract according
to a form, and the opportunity to interact with a lawyer online. A robust performance, ease of use, and
the special customization of its architecture that suits Indian law have been under consideration
carefully modularized. It combats the shortcomings of legal tech platforms that are frangible due to the
nature of jurisdiction, access, and cost-effectiveness by most non-legal users by bringing all these
features together under one platform.

4. Results and Discussion

The Legal Ally site has been tested on many levels in order to identify how well it performs, is reliable,
and that it gives a good user experience with its three main modules including the Legal Chatbot, the

ISSN (Online) : 3048-8788 9 IJAIMD

Archana Burujwale, Prajyot Borikar, Pradnyesh Ravane, Pranav Ratnalikar, Vedant Rawale

Document Analysis, and the Legal Document Generator. In order to evaluate the ability of the platform
to deliver an accessible service of legal support, it was necessary to take every component of the
platform through a rigorous testing process of real-world legal scenarios, user feedback sessions, and
system performance benchmarks.

The Legal Chatbot was observed to have the high accuracy rate of user query response having 94.8
percent response accuracy when evaluated against expert review-approved Indian legal questions.
These findings were drawn on a sampled list of more than 250 area-specific legal queries in the fields
of tenancy, employment, contract and family law. The Retrieval-Augmented Generation (RAG)
pipeline, in particular after the Legal Advisor Mode, allowed the chatbot to gather extremely pertinent
context in form of a precomputed FAISS vector store of Indian law PDFs, giving the chatbot accuracy
and proficiency. When the users in Document Chatbot Mode uploaded their own legal PDFs, the chatbot
reached 93% contextual accuracy to instantly refer the clauses in the document as the way to answer
user query. A relatively small proportion (~6%) of cases elicited the fallback message (I cannot form
this as based on the information provided to me), which mainly happened on account of vague questions
or poor scans of documents. However, this backup system when it occurred served to provide an extra
level of user guidance as well as protecting the system against generating speculative responses.

Encouraging results were also provided by the Document Analysis tool. The tool, however, was able to
simplify legal jargon and provide brief bullet-point summaries of complex legal texts using the
combination of to extract text in the form of a PDF and Google Generative Al embeddings to extract
its semantics. The plain speak version of terms like force majeure, indemnification, non-compete were
clearly to the point, and rated as clear or very clear by 82 percent of the 35 participants in a usability
study. The tool was proved to be efficient to use in real time, as on average an 8-page legal document
took around 6.2 seconds to process and summarise. Creating a transient FAISS vector store when
documents are uploaded added a minor latency of 1.8-2.2 sec, which is acceptable but indicates that in
later releases there may be possible optimization in the form of persistent caching or preloading the
vectors in the background.

Legal Document Generator was proven to be powerful, precise and easy to use. Designed with the help
of Streamlit, the form-like interface helped the users guide through fields where they could provide the
information and create standardized legal agreement types, including NDAs, rental agreements,
business contracts, and divorce settlements. The system gave 100 percent success rate of input
validation since all numbers generated were complete and structured well. The end result was in PDF
format and HTML, well-formatted and the order in clauses, and use of legal terminologies. The legal
experts attested the generated documents on the structural compliance and the users also loved the live
preview and options to download documents. On average, time required to generate a document, (fill
out a form, review, and export) was 4.5 minutes. The minor feedback contained suggestions on the
inclusion of auto-fill fields and saving of input on the forms when resetting so as to facilitate
convenience when reusing.

The Lawyer-Client Video Call feature, though still under prototype deployment, demonstrated
promising results during internal testing. Built using WebRTC and Socket.1O, the module supported
real-time encrypted video calls with sub-250ms latency on standard broadband connections. The system
used a STUN server to enable NAT traversal and direct peer-to-peer connections. ReactPlayer
efficiently rendered local and remote video streams, and the connection lifecycle was smoothly
managed through Socket.IO events like room joins, call initiation, acceptance, and termination. The
interface included session indicators and termination controls to ensure smooth call handling. Although

ISSN (Online) : 3048-8788 10 IJAIMD

Archana Burujwale, Prajyot Borikar, Pradnyesh Ravane, Pranav Ratnalikar, Vedant Rawale

the current version does not store call logs or consent data, future iterations could introduce logging and
encryption compliance measures to align with professional legal consultation standards.

In a higher-level view, the system architecture allowed modular scalability and resilience at every level,
that is, frontend (React and Streamlit), backend (Flask API), and processing (embedding generation,
document parsing, WebRTC engine). The implementation of fallback messaging, input validation and
feedback mechanisms to the modules aided in creating reliability and interplay of user trust systems
and transparency across the modules. Legal Ally is an excellent solution to the most apparent legal
access woes in India in general. The outcomes provide information on its usability, relevance, and
technical soundness along with the opportunity to improve it.

5. Conclusion

In the research paper, the team intended to analyse and develop an Al-driven platform capable of
providing legal accessibility in India and implemented to fit the Indian legal environment is
incorporated with a Legal Chatbot, Document Analysis tool, and Legal Document Generator. The main
goal was to bring the legal help to the masses of non-professionals, small entrepreneurs, and legal
practitioners and deliver real-time assist with queries, easy absorbable document understanding, and
standardizing contracts and agreements. The technology that was used involves the application of the
best natural language processing (NLP) algorithms, such as Retrieval-Augmented Generation (RAG)
and Google Generative Al, and FAISS vector applications and web development libraries such as React
and Streamlit. The Legal Chatbot answered the questions based on the preprocessed dataset of Indian
law PDFs using a RAG pipeline, the Document Analysis tool simplified readability on complex legal
texts through the extraction and summarization of text, and the Legal Document Generator allowed one
to create professional contracts through the user-friendly interface created by Streamlit.

The outcomes showed that legal Ally was effective in solving different functionalities in legal needs.
These results demonstrated that the Legal Chatbot has an impressive precision in leading to context-
sensitive responses to the legal queries, and pertinent snippets of text are relocated by using the RAG
pipeline to ensure relevance is fulfilled with the assistance of FAISS index. Document Analysis tool
was able to extract and summarize text in uploaded PDFs, providing clear definitions of the legal
terminologies used, i.e., indemnification or force majeure, thus increasing the usability of documents
by lay users. The Legal Document Generator created verified user input contracts (e.g., rental
agreements, NDAs) that were standard, portable and have contracts on them to increase usability and
compliance. During user testing, there was a positive reaction to the easy to use interface of the system
and the mechanisms to provide real time feedback, with weaknesses being that in some cases there may
be delays when initializing FAISS of a particular index and that the system only works currently with
English language legal text.

There are also few opportunities of future development and challenges of Legal Ally which can be seen
ahead. Expanding the system to accommodate multilingual processing, especially of regional languages
in India can also strengthen accessibility to a wider population group and this can be done by building
on systems like SUVAS which are in the literature. Adding predictive analysis to the use of the Legal
Chatbot to predict case outcomes or to provide affordable legal advice or reasoning would add yet
another layer. One of its challenges is the issue of data privacy and attempts to reduce the bias of
algorithms, especially where sensitive user-uploaded documents are concerned, and effective ethical
protection should be built. A further improvement would be to add more areas of law to the scope of
the system including more complex areas like tax or intellectual property law and integrating with real-
time law databases. Legal Ally is a convenient solution to changing how the law works in India by
introducing an easy learning scale user-friendly interface between complicated legal methods and
everyday end user with a scope of becoming a total justice tool.

ISSN (Online) : 3048-8788 11 IJAIMD

Archana Burujwale, Prajyot Borikar, Pradnyesh Ravane, Pranav Ratnalikar, Vedant Rawale

Funding source
None.

Conflict of Interest
None.

References

[1] Chowdhury, S., Mitra, A., & Das, P. (2025). Advancements in legal chatbots: From rule-based to
transformer-based models. arXiv preprint arXiv:2501.08945.

[2] Gupta, N., Verma, S., & Rao, A. (2024). Ethical considerations in Al-powered legal tools:
Addressing bias and privacy. Journal of Legal Technology and Innovation, 12(2), 33-49.

[3] Joshi, P., Kulkarni, A., & Menon, R. (2025). Multilingual legal NLP: Challenges and opportunities
in Indian jurisprudence. Proceedings of the 2025 International Conference on Natural Language
Processing (ICON), 210-225.

[4] Kumar, A., Gupta, S., & Sharma, R. (2023). Legal natural language processing (NLP) for efficient
legal document analysis and retrieval. IEEE Transactions on Artificial Intelligence, 4(2), 123-135.

[5] Lee, J., Kim, S., & Park, H. (2023). Predictive analytics in legal systems: Machine learning for
case outcome prediction. Artificial Intelligence Review, 56(4), 1123-1145.

[6] Nair, K., Iyer, R., & Thomas, M. (2024). Streamlit-based interfaces for Al-driven legal
applications. Springer Lecture Notes in Computer Science, 14235, 178-190.

[7] Patel, R., Singh, V., & Desai, N. (2022). Automating legal document generation using template-
based NLP systems. Journal of Computational Law, 10(3), 45-60.

[8] Rahman, S., Hossain, M., & Khan, A. (2024). Al-powered legal assistance in Bangladesh: Large
language models for accessible justice. arXiv preprint arXiv:2410.16432.

[9] Sharma, D., Reddy, K., & Mukherjee, S. (2023). SUPACE: Al-assisted judicial decision support
in the Indian Supreme Court. Indian Journal of Law and Technology, 19(1), 78-92.

[10] Zhang, M., Chen, L., & Liu, P. (2024). Retrieval-augmented generation for legal question
answering: A case study in judicial systems. Proceedings of the 2024 ACM Conference on
Artificial Intelligence and Law, 89-102.

[11] Anand, P., Roy, N., & Das, S. (2023). Al for accessible justice: Case studies from developing
nations. arXiv preprint arXiv:2311.09876.

[12] Chen, R., Liu, M., & Wu, J. (2024). Privacy-preserving Al in legal applications: Techniques and
challenges. IEEE Transactions on Privacy and Security, 7(3), 89-104.

[13] Chowdhury, S., Mitra, A., & Das, P. (2025). Advancements in legal chatbots: From rule-based to
transformer-based models. arXiv preprint arXiv:2501.08945.

[14] Desai, A., Kumar, R., & Patil, S. (2023). Automating contract drafting with Al: Challenges in
contextual understanding. Proceedings of the 2023 International Conference on Legal Informatics,
145-159.

[15] Gupta, N., Verma, S., & Rao, A. (2024). Ethical considerations in Al-powered legal tools:
Addressing bias and privacy. Journal of Legal Technology and Innovation, 12(2), 33-49.

[16] Gupta, V., Mishra, S., & Sharma, A. (2024). NLP for Indian legal systems: Processing vernacular
case documents. Indian Journal of Artificial Intelligence Research, 3(1), 56-70.

[17] Joshi, P., Kulkarni, A., & Menon, R. (2025). Multilingual legal NLP: Challenges and opportunities
in Indian jurisprudence. Proceedings of the 2025 International Conference on Natural Language
Processing (ICON), 210-225.

[18] Kumar, A., Gupta, S., & Sharma, R. (2023). Legal natural language processing (NLP) for efficient
legal document analysis and retrieval. IEEE Transactions on Artificial Intelligence, 4(2), 123-135.

[19] Lee, J., Kim, S., & Park, H. (2023). Predictive analytics in legal systems: Machine learning for
case outcome prediction. Artificial Intelligence Review, 56(4), 1123-1145.

ISSN (Online) : 3048-8788 12 IJAIMD

Archana Burujwale, Prajyot Borikar, Pradnyesh Ravane, Pranav Ratnalikar, Vedant Rawale

[20] Nair, K., Iyer, R., & Thomas, M. (2024). Streamlit-based interfaces for Al-driven legal
applications. Springer Lecture Notes in Computer Science, 14235, 178-190.

[21] Patel, R., Singh, V., & Desai, N. (2022). Automating legal document generation using template-
based NLP systems. Journal of Computational Law, 10(3), 45-60.

[22] Rahman, S., Hossain, M., & Khan, A. (2024). Al-powered legal assistance in Bangladesh: Large
language models for accessible justice. arXiv preprint arXiv:2410.16432.

[23] Sharma, D., Reddy, K., & Mukherjee, S. (2023). SUPACE: Al-assisted judicial decision support
in the Indian Supreme Court. Indian Journal of Law and Technology, 19(1), 78-92.

[24] Singh, T., Yadav, M., & Kapoor, P. (2023). Al-driven legal research: Enhancing efficiency in case
law retrieval. Journal of Artificial Intelligence and Law, 15(4), 201-215.

[25] Wang, L., Zhao, H., & Li, S. (2024). Conversational Al for legal assistance: A review of chatbot
architectures. arXiv preprint arXiv:2408.12345.

ISSN (Online) : 3048-8788 13 IJAIMD

