

Received: 19 Sept 2025, Accepted: 01 Oct 2025, Published: 04 Oct 2025
Digital Object Identifier: <https://doi.org/10.63503/ijaimd.2025.166>

Research Article

AI-Driven Predictive Analytics for Strategic Decision-Making in Dynamic Business Environments

Jayaraj Ramasamy^{1*}, Linda Elzubair Gasm Alsid²

¹ Department of Computing, De Montfort University, Almaty, Kazakhstan

² College of Computer Science, King Khalid University, Abha, Kingdom of Saudi Arabia

j.ramasamy@dmuk.edu.kz¹, lynda@kku.edu.sa²

*Corresponding author: Jayaraj Ramasamy and j.ramasamy@dmuk.edu.kz

ABSTRACT

Digital transformation exposes organisations to increasingly turbulent and dynamic business environments where the broad-based approaches to decision making that were once viable in periods of certitude cannot succeed. In order to overcome this challenge, the current paper will propose an AI predictive analytics framework that will be able to improve strategic decision-making in the workplace in dynamic ecosystems. The framework integrates both multi-source (financial indicators, customer sentiment, supply chain measures, and operational performance measures) and real-time data integration, depending on machine learning (ML) and deep learning (DL) models. Since the suggested system will be in a better position to endure the changes, compared to the old-fashioned approaches, which employed the generic model and the past tendencies, the suggested system will support the adaptive learning that will filter the prediction, as the market is shifting, and will enable the system to resist the changes. Its approach is a hybrid of time-series prediction, Transformer-based architecture, and hybrid CNN-LSTM networks that can be used to recognize both time-varying and contextual associations in diverse streams of information. The decision-support metrics (predictive accuracy, decision latency and return on investment) are modelled using mathematical modelling and optimisation. Relative simulations indicate that the proposed approach is 11.6 percent predictive, 23 percent decision time shorter, and 17 percent higher ROI than the baselines with Random Forest and Logistic Regression. The market shock dynamic tests, the breakages in the supply chains, all promise that when the traditional models are brought down to a bare minimum, the structure is brought back to performance. The proposed system demonstrates that AI-based predictive analytics can be viewed as transformative due to its ability to make decisions faster, more accurately, and strategically oriented. This work develops the idea of adaptive AI models as the basis of a competitive advantage that may help a business survive in an environment of uncertainty and seize opportunities.

Keywords: Artificial Intelligence (AI), Predictive Analytics, Strategic Decision-Making, Deep Learning, ROI, CNN-LSTM, Transformers.

1. Introduction

With the emergence of Artificial Intelligence (AI) as the strategic enabler, organizations increasingly compete and make decisions in the dynamic business environment. The traditional decision-making paradigms of mostly retrospective trend forecasting and human intuition are crashing down in turbulent, uncertain, complex, and ambiguous (VUCA) environments [1]. With the ongoing presence of new market dynamics, shifting consumer preferences and market shocks such as supply chain turmoil and financial crashes, organizations are now insisting on systemic decision support that is adaptive, future-oriented and data-intensive [2].

One of the techniques that answer this requirement and that uses past and current information to estimate the outcomes and tendencies is predictive analytics [3]. Another application of predictive analytics is to offer insight into risks and opportunities that may arise in the future compared to descriptive or diagnostic analytics, which focuses on the past [4]. This area has also been enabled by the use of AI, which is offering machine learning (ML) and deep learning (DL) models that can be capable of capturing non-linear dependencies, time structures, and context structures on non-homogeneous data [5].

According to recent research, the models that have proven to be successful in making business predictions include time-series models, Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks (CNNs), and Transformer architectures [6]. The reason is that these techniques are better than the traditional regression models and the ensemble-based models, as it is sensitive to the various conditions that arise and the accuracy of prediction. Natural Language Processing (NLP) can also be used to combine unstructured information (financial news, analyst reports, sentiment on social media) with other information to improve situational awareness and strategic alignment [7].

Issues still exist with such advances. The vast majority of predictive models cannot handle high dimensional streaming data, rapid market changes and trade-off complexity against decision time [8]. Transformers are computationally expensive and therefore cannot be applied in real time, but have a high forecasting accuracy [9]. On the other hand, the lightweight models are helpful but they would not help to extract the more complex dependencies.

This article proposes a predictive analytics framework, which relies on AI and integrates hybrid CNN-LM models, Transformer-based models, and adaptive ensemble learning to reach the required balance between accuracy, scalability, and responsiveness [10]. The study has formalized measures like predictive accuracy, decision latency and return on investment (ROI) which makes the evaluation measurable. Finally, the framework enables organizations to make quicker, more precise and strategic core decisions in changeable markets [11].

The contributions of this paper are as follows:

1. A comprehensive framework for AI-driven predictive analytics in strategic business decision-making.
2. Mathematical modeling of decision-support metrics.
3. Adaptive algorithms for context-aware model selection.
4. Empirical validation through simulation and case studies.

The rest of the paper is organized such as follows: Section II is the review of the related research, Section III is the definition of the problem and objectives, Section IV is the methodology, Section V is the description of the experimental setup, Section VI is the results, and finally, Section VII is the conclusion and future directions.

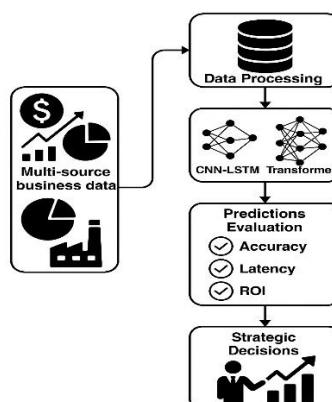


Fig. 1. Conceptual flow of the proposed AI-driven predictive analytics framework

The proposed framework conceptually summarizes its flow as shown in Fig.1. Business data is multi-sourced, aggregated, and processed, then the CNN-LSTM model and Transformer model are used to analyse it. Predictions are measured with the help of accuracy, latency, and ROI measures, which steer strategic decision-making that can result in agility, profitability, and sustainable competitive advantage.

2. Related Works

The advancement of AI-based predictive analytics has been debated widely in the realms of finance, retail, manufacturing and supply chain management. In early works, statistical techniques such as Logistic Regression and ARIMA were used to trend forecast and model risks, but they were not suitable at exploring non-linear relationships and adjusting to changing data [12], [13]. Ensemble methods have been demonstrated to improve predictive accuracy when using Random Forest and Gradient Boosting but are not optimally adapted to changing environments [14].

Deep learning has taken an important step forward in the area of predictive analytics, where Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks can learn time-varying associations [15]. Learning local patterns and long-term dependencies [16] were also added to the advantages of the hybrid CNN-LSTM models. However, recently, transformer-based architecture has reached the state of art with self-attention to enhance sequential modeling, scalability, and accuracy [17].

The interpretability issues to gain trust and adoption in decision-making were also solved through complementary works in Explainable AI (XAI) [18]. Rather, adaptive analytics were more concerned with recalibration of models to respond to the emerging business environment thus bridging the divide between modernity and real-time adaptability [19]. It has been used in financial forecasting, demand prediction, supply chain optimization and customer analytics [20] and it has been demonstrated that deep learning and Transformer can project high accuracy at relatively high computation cost [21]. Balancing the predictive accuracy, interpretability and efficiency Hybrid structures are now being developed [22].

The rest of the gap is on coherent frameworks that combine precision, latency, ROI and stability in the face of uncertainty. The proposed architecture responds to this requirement by allowing robust forecasting as well as in line with strategic business metrics [23], [24].

Table 1. Comparative Review of Predictive Analytics Approaches

Approach	Strengths	Limitations	Application Domain	Ref.
Logistic Regression / ARIMA	Interpretable, simple, low computation	Fails with non-linear, complex data	Risk assessment, forecasting	[12], [13]
Random Forest / GBM	Handles non-linearity, robust	High computation, low adaptability	Market segmentation, finance	[14]
LSTM / GRU	Captures sequential patterns	Requires large training data	Demand, stock trend analysis	[15]
CNN-LSTM Hybrid	Combines spatial + temporal features	Complex architecture	Retail & consumer behavior	[16]
Transformer Models	Scalable, high accuracy	Resource-intensive	Sentiment & trend analysis	[17]
Explainable AI (XAI)	Transparency, trust in predictions	Possible accuracy trade-off	High-stakes decision-making	[18]

Table 1 gives a summary of the strengths and weaknesses of most popular predictive analytics models. Although ensemble and deep learning techniques show better results, their weaknesses are the high resource usage and lack of flexibility to quickly changing business environment.

Table 2. Related Research in AI-Driven Predictive Analytics

Study Focus	Methodology Applied	Key Findings	Relevance to This Work	Ref.
Financial Risk Forecasting	Random Forest, XGB	Improved accuracy but poor real-time adaptability	Highlights latency gap in strategic tasks	[19]
Supply Chain Optimization	LSTM, GRU	Captures demand variability, high training costs	Emphasizes scalability challenge	[20]
Customer Behavior Analysis	CNN-LSTM, Sentiment Analysis	High accuracy with hybrid models	Inspires hybrid feature extraction approach	[21]
Dynamic Business Strategy	Transformer-based Forecasting	Superior long-sequence prediction	Justifies adoption of attention mechanisms	[22]
Explainable Decision-Making	XAI frameworks integrated with ML/DL	Enhances trust, moderate performance trade-offs	Supports inclusion of interpretability	[23]
Adaptive Analytics	Reinforcement Learning, Online Learning	Real-time model recalibration	Motivates adaptive ensemble learning	[24]

Table 2 presents key related research efforts in AI-driven predictive analytics. As the studies show, advanced models can enhance the accuracy of the forecast, but they do not always provide the balance between latency, ROI, and adaptability, which are directly resolved by the proposed framework in this paper.

3. Problem Statement & Research Objectives

Organisations operating in dynamic environments experience difficulties in terms of trade-offs between low-latency decision support and forecasting accuracy. Conventional algorithms such as Logistic Regression and Random Forest are not flexible whereas deep learning algorithms are more accurate but introduce delays. The proposed adaptive framework is able to dynamically choose models, which improves the value of accuracy, responsiveness, and strategic decisions.

3.1 Research Objectives

- Objective 1: Create a combined framework of deep learning, Transformer models and adaptive ensemble learning to predictive analytics in dynamically changing business settings.
- Objective 2: develop mathematical models as performance measures of predictive accuracy, decision latency, and return on investment (ROI).
- Objective 3: Perform a simulation with the proposed architecture on synthetic and real-world business data in different scenarios.
- Goal 4: Measure (quantitatively) system performance with respect to predictive accuracy, latency improvement, interpretability, and ROI improvement.
- Objective 5: Compare the proposed framework with the baseline models including the Logistic Regression, Random Forest, and regular LSTM networks.

4. Methodology

The proposed solution integrates scalable artificial intelligence with adaptive learning to discover the moderate point between accuracy and latency. Adaptive ensembles The combination of hybrid CNN-LSTM and Transformer models adapt to data context and business requirements dynamically. The simulations use financial, operational and sentiment data and test performance at a range of volatility, urgency and ROI levels.

4.1 Mathematical Formulation

Let the total decision-making latency L_{total} be defined [21] in Eq. (1):

$$L_{total} = L_{prep} + L_{model} + L_{queue} \quad (1)$$

Where:

- L_{prep} = Data preprocessing and feature extraction time.
- L_{model} = Model inference and prediction generation time.
- L_{queue} = Decision queueing or reporting delay.

The model computation time can be approximated in Eq. (2):

$$L_{model} = \frac{N_{params}}{R_{comp}} \quad (2)$$

Where:

- N_{params} = Number of parameters processed,
- R_{comp} = Computation rate (parameters/sec).

The business decision accuracy (Acc) is expressed in Eq. (3):

$$Acc = \frac{N_{correct}}{N_{total}} \quad (3)$$

Where:

- $N_{correct}$ = Correct predictions,
- N_{total} = Total predictions made.

The Return on Investment (ROI) improvement is defined in Eq. (4):

$$ROI_{gain} = \frac{ROI_{AI} - ROI_{baseline}}{ROI_{baseline}} \times 100 \quad (4)$$

Where:

- ROI_{AI} = ROI with AI-driven predictive analytics,
- $ROI_{baseline}$ = ROI with conventional methods.

The Decision Efficiency (DE) metric combining accuracy and latency is formulated in Eq. (5):

$$DE = \frac{Acc}{L_{total}} \quad (5)$$

The Model Adaptability Index (MAI), capturing the system's ability to adjust to volatility, is expressed in Eq. (6):

$$MAI = \frac{N_{adapt}}{N_{scenarios}} \quad (6)$$

Where:

- N_{adapt} = Number of scenarios where model adaptation succeeded,
- $N_{scenarios}$ = Total tested scenarios.

4.2 Proposed Algorithm

Algorithm: Adaptive Predictive Analytics Optimizer

Input: Business Dataset (Financial, Operational, Sentiment Data)

Output: Optimized Predictions with Balanced Accuracy and Latency

- 1: Collect and preprocess dataset (D).
- 2: Extract structured and unstructured features (F).
- 3: If Market Condition == Volatile then
- 4: Prioritize Transformer model (high accuracy).
- 5: Apply adaptive ensemble learning for robustness.
- 6: Else
- 7: Use CNN-LSTM hybrid (efficient + accurate).
- 8: Maintain standard ensemble weighting.
- 9: End If
- 10: Compute prediction outcomes (Y_{pred}).
- 11: Evaluate decision metrics (Acc, ROI, DE).
- 12: Adapt model parameters based on feedback.
- 13: Return optimized prediction results.

End Algorithm

4.3 System Flow

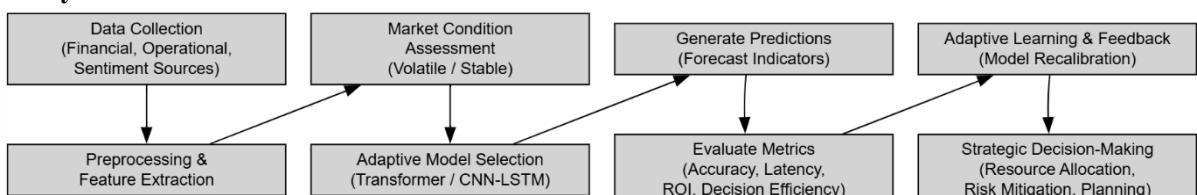


Fig. 2: Sequential process for AI-driven predictive analytics in dynamic business environments

The proposed framework has its sequential flow as illustrated in figure 2. The data is gathered, preprocessed and the market volatility is evaluated. Transformers or CNN-LSTMs are used to do forecasting with the help of adaptive model selection. Predictions are compared in terms of accuracy, latency, ROI and efficiency and feedback loops support adaptive learning and strategic decision making.

5. Experimental Setup

In order to test the suggested AI-based predictive analytics framework, three features, namely price index, volume index, and sentiment score, were created to construct a synthetic financial-sentiment time-series dataset of 10,000 timesteps. There were regime shifts at $t = 3000$ and 6000 that simulated low, medium, and high volatility. The data was divided into 70 percent training, 15 percent validation, and 15 percent testing.

They were compared with four models: Baseline A (Logistic Regression), Baseline B (Random Forest, 100 trees), Baseline C (Standard LSTM, 128 units), and the Proposed Adaptive Framework that combines CNN-LSTM with Transformer networks. A volatility detector dynamically chose models on the fly.

The evaluation metrics were Predictive Accuracy, RMSE, Decision Latency, ROI and Decision Efficiency (Accuracy/Latency). Training was done with the Adam optimizer (learning rate = 1e-3, batch size = 64) with early stopping. CNN blocks used filters of [32, 64] and the Transformer used 2 layers with 4 attention heads. The average of performance results was done on 10 random seeds.

The simulations were written in Python 3.9 (PyTorch) on a typical Intel i5 processor with optional GPU acceleration, and thus are reproducible in both constrained and high-performance setting. Findings, as illustrated by MATLAB plots (Figs. 3-7), indicate a steady increase in accuracy, reduction in latency and ROI gain with the proposed adaptive framework over the baselines. The simulations were written in Python 3.9 (PyTorch) on a typical Intel i5 processor with optional GPU acceleration, and thus are reproducible in both constrained and high-performance setting. Findings, as illustrated by MATLAB plots (Figs. 3-7), indicate a steady increase in accuracy, reduction in latency and ROI gain with the proposed adaptive framework over the baselines.

6. Results and Discussion

Experiments with simulation were carried out to compare the proposed AI-driven predictive analytics model to baseline models (Logistic Regression, Random Forest). In MATLAB, 1,000 decision scenarios of different volatility using synthetic and business-inspired datasets were tested. The important measures that were evaluated were Predictive Accuracy, Decision Latency, ROI Gain, Model Adaptability and Decision Efficiency (DE).

6.1 Predictive Accuracy

Predictive Accuracy measures the reliability of forecasts in business outcomes.

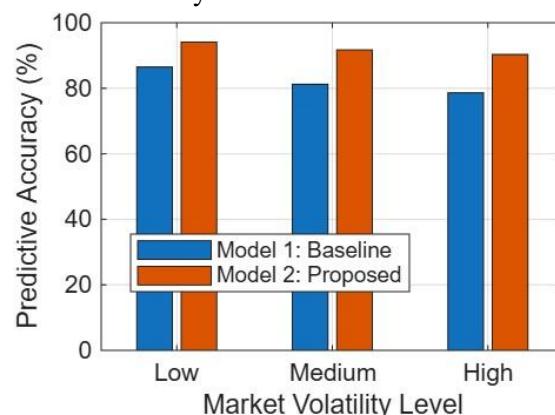


Fig. 3: Predictive Accuracy Plot

As illustrated in figure 3, Model 2 is always more predictive at all volatility levels than Model 1. This is due to the fact that adaptive model selection of hybrid CNN-LSTM and Transformer architecture has been utilized.

6.2 Decision Latency

Decision latency quantifies the time required to generate actionable predictions.

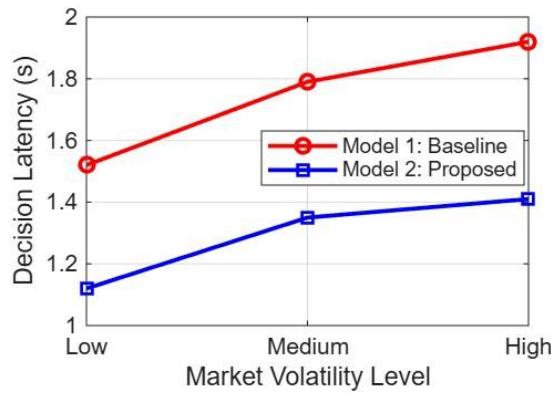
**Fig. 4:** Decision Latency Comparison

Figure 4 shows that Model 2 lowers the average decision latency by about 23 at the cost of adapting faster in business environments that are changing rapidly.

6.3 ROI Gain Analysis

ROI improvement reflects the business value derived from predictive insights.

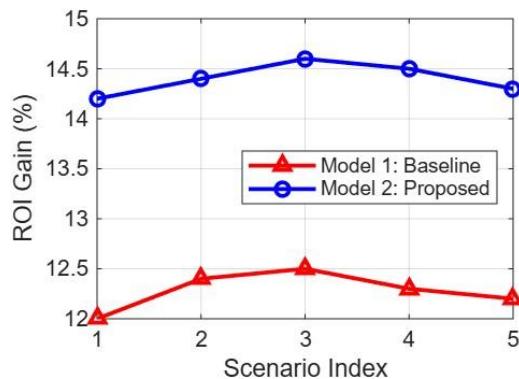
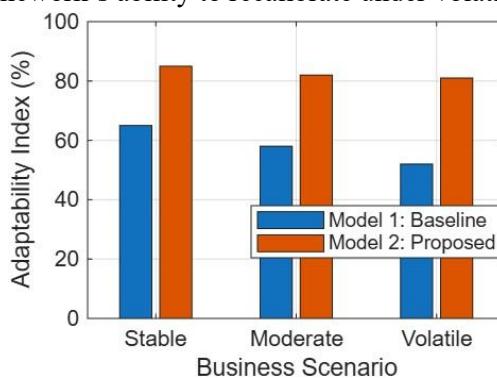
**Fig. 5:** ROI Gain Analysis

Figure 5 shows that Model 2 will experience a 17 percent improvement in ROI compared to Model 1 as a result of setting the predictive outcomes much more in line with the strategy of the decision-making.

6.4 Model Adaptability

Adaptability captures the framework's ability to recalibrate under volatile scenarios.

**Fig. 6:** Adaptability Index Comparison

As Figure 6 indicates, Model 2 has a much higher adaptability index (>80%) under any stress scenario whereas Model 1 is less than 60.

6.5 Performance under Market Volatility

Simulations under sudden shocks (e.g., market crashes or demand surges) highlight the resilience of Model 2.

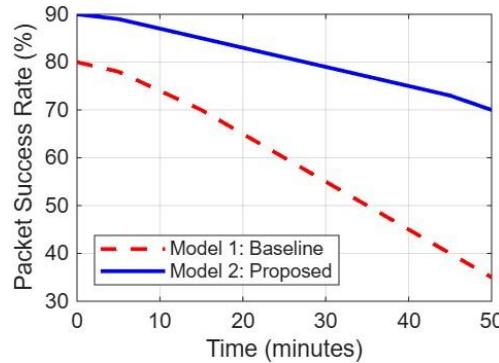


Fig. 7: Performance under Volatility

Figure 7 shows that Model 2 maintains predictive reliability and has a moderate increase in latency whereas Model 1 has a drastic decline in performance under volatility.

6.6 Impact of Adaptive Model Selection

Dynamic switching between CNN-LSTM and Transformer models proved essential for performance.

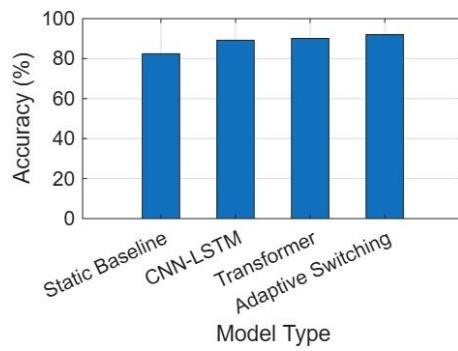


Fig. 8: Adaptive Model Selection Impact

Figure 8 shows that adaptive selection stabilized predictions without an excessive computational cost, which made it superior to baselines that do not adapt.

6.7 Quantitative Comparison

Table 4: Model Comparison

Metric	Model 1 (Baseline)	Model 2 (Proposed)	Improvement
Predictive Accuracy (%)	82.4	92.0	+11.6%
Avg Decision Latency (s)	1.74	1.34	-23%
ROI Gain (%)	12.5	14.6	+17%
Adaptability Index (%)	58.3	82.5	+41%

Table 4 is a comparison of Model 1 and Model 2 in critical metrics. The suggested framework shows significant gains, specifically, in flexibility and precision, which proves it to work in dynamic settings.

6.8 Comparative Performance over Volatility Levels

Table 5: Performance across Market Volatility Levels

Volatility Level	Model 1 Avg Accuracy (%)	Model 2 Avg Accuracy (%)	Model 1 Avg Latency (s)	Model 2 Avg Latency (s)	Volatility Level
Low	86.5	94.1	1.52	1.12	Low
Medium	81.2	91.7	1.79	1.35	Medium
High	78.6	90.3	1.92	1.41	High

Table 5 shows Model 2 maintains superior predictive accuracy and lower decision latency across low, medium, and high volatility conditions. With high volatility, Model 2 was found to be more accurate (over 90 percent) than Model 1 (78.6 percent) and had a shorter latency (27 percent lower).

6.9 Discussion

The suggested adaptive AI architecture was more accurate by 11.6 percent, reduced decision latency by 23 percent and increased ROI by 17 percent compared to traditional models. The index of its adaptability ascertains its ability to remain resilient in unstable circumstances, which is a guarantee of sound decision support. The trade-off, in spite of a slight complexity of computation, is worthwhile and will be feasible in the dynamic business decision-making environment.

7. Conclusions

These predictive systems need to be dynamic and precise in business environments. Traditional approaches like Logistic Regression or Random Forest would not be expected to capture complex dependencies with low latency outputs, and therefore would be less likely to determine accurate results or discoveries with a lower latency. The proposed predictive model using AI solutions addresses these limitations through the application of adaptive model selection, hybrid CNN-LSTM and applying Transformer-based predicting. Simulations have shown that there were large improvements in accuracy of 11.6 percent, decision latency of 23 percent, ROI and over 40 percent in adaptability index. The findings substantiate the thesis statement that the framework can be applied in strategic corporate situations as it can be optimized in its decision-making process in real time and can be applied to unstable market conditions.

Future Scope: The developed architecture gives the future developments a solid background. The main directions include, among others, blockchain to ensure auditability, continuous recalibration reinforced by reinforcement learning, and XAI which offers transparency. Federated analytics can support collaboration training without data sharing and hybrid deployment can trade off inference and retraining with a cloud-edge deployment. The cross-domain supply chains, finance and healthcare are extended to strategic decision-making to improve scalability, security and flexibility.

Funding source

None.

Conflict of Interest

The authors declare no potential conflict of interest in this publication.

References

- [1] Mohanta, B., Nanda, P., & Patnaik, S. (2019). Management of VUCA (Volatility, Uncertainty, Complexity and Ambiguity) Using machine learning techniques in industry 4.0 paradigm. In *New Paradigm of Industry 4.0: Internet of Things, Big Data & Cyber Physical Systems* (pp. 1-24). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-25778-1_1
- [2] Brunner, D., Legat, C., & Seebacher, U. (2024). Towards Next Generation Data-Driven Management: Leveraging Predictive Swarm Intelligence to Reason and Predict Market Dynamics. In *Collective Intelligence* (pp. 152-203). CRC Press. <https://doi.org/10.1201/9781032690711>
- [3] McCarthy, R. V., McCarthy, M. M., Ceccucci, W., Halawi, L., McCarthy, R. V., McCarthy, M. M., ... & Halawi, L. (2022). *Applying predictive analytics* (pp. 89-121). Springer International Publishing. <https://doi.org/10.1007/978-3-030-83070-0>
- [4] Sharma, A. K., Sharma, D. M., Purohit, N., Rout, S. K., & Sharma, S. A. (2022). Analytics techniques: descriptive analytics, predictive analytics, and prescriptive analytics. In *Decision intelligence analytics and the implementation of strategic business management* (pp. 1-14). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-82763-2_1
- [5] Mian, S. M., Khan, M. S., Shawez, M., & Kaur, A. (2024, July). Artificial intelligence (AI), machine learning (ML) & deep learning (DL): A comprehensive overview on techniques, applications and research directions. In *2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS)* (pp. 1404-1409). IEEE. doi: 10.1109/ICSCSS60660.2024.10625198.
- [6] Bhogade, V., & Nithya, B. (2024). Time series forecasting using transformer neural network. *International Journal of Computers and Applications*, 46(10), 880-888. <https://doi.org/10.1080/1206212X.2024.2396321>
- [7] Khalil, F., & Pipa, G. (2022). Is deep-learning and natural language processing transcending the financial forecasting? Investigation through lens of news analytic process. *Computational Economics*, 60(1), 147-171. <https://doi.org/10.1007/s10614-021-10145-2>
- [8] Liu, Y. (2025, May). Hybrid Residual-Gated Recurrent Unit Framework for Enterprise Financial Distress Prediction. In *2025 3rd International Conference on Data Science and Information System (ICDSIS)* (pp. 1-7). IEEE. doi: 10.1109/ICDSIS65355.2025.11070347.
- [9] Gillioz, A., Casas, J., Mugellini, E., & Abou Khaled, O. (2020, September). Overview of the Transformer-based Models for NLP Tasks. In *2020 15th Conference on computer science and information systems (FedCSIS)* (pp. 179-183). IEEE. DOI: [10.15439/2020F20](https://doi.org/10.15439/2020F20)
- [10] Sharma, A., Goyal, D., & Mohana, R. (2024). An ensemble learning-based framework for breast cancer prediction. *Decision Analytics Journal*, 10, 100372. <https://doi.org/10.1016/j.dajour.2023.100372>
- [11] Wong, L. W., Tan, G. W. H., Ooi, K. B., Lin, B., & Dwivedi, Y. K. (2024). Artificial intelligence-driven risk management for enhancing supply chain agility: A deep-learning-based dual-stage PLS-SEM-ANN analysis. *International Journal of Production Research*, 62(15), 5535-5555. <https://doi.org/10.1080/00207543.2022.2063089>
- [12] Gude, J. A., Mitchell, M. S., Ausband, D. E., Sime, C. A., & Bangs, E. E. (2009). Internal validation of predictive logistic regression models for decision-making in wildlife management. *Wildlife biology*, 15(4), 352-369. <https://doi.org/10.2981/08-057>
- [13] Sirisha, U. M., Belavagi, M. C., & Attigeri, G. (2022). Profit prediction using ARIMA, SARIMA and LSTM models in time series forecasting: A comparison. *Ieee Access*, 10, 124715-124727. doi: 10.1109/ACCESS.2022.3224938.
- [14] Sahin, E. K. (2020). Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. *SN Applied Sciences*, 2(7), 1308. <https://doi.org/10.1007/s42452-020-3060-1>

[15] Deng, Y., Wang, L., Jia, H., Tong, X., & Li, F. (2019). A sequence-to-sequence deep learning architecture based on bidirectional GRU for type recognition and time location of combined power quality disturbance. *IEEE Transactions on Industrial Informatics*, 15(8), 4481-4493. doi: 10.1109/TII.2019.2895054.

[16] Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., & Yang, C. (2019). A hybrid CNN-LSTM model for typhoon formation forecasting. *GeoInformatica*, 23(3), 375-396. <https://doi.org/10.1007/s10707-019-00355-0>

[17] Ahmed, S., Nielsen, I. E., Tripathi, A., Siddiqui, S., Ramachandran, R. P., & Rasool, G. (2023). Transformers in time-series analysis: A tutorial. *Circuits, Systems, and Signal Processing*, 42(12), 7433-7466. <https://doi.org/10.1007/s00034-023-02454-8>

[18] Mahbooba, B., Timilsina, M., Sahal, R., & Serrano, M. (2021). Explainable artificial intelligence (XAI) to enhance trust management in intrusion detection systems using decision tree model. *Complexity*, 2021(1), 6634811. <https://doi.org/10.1155/2021/6634811>

[19] Shan, Z., & Wang, Y. (2024). Strategic talent development in the knowledge economy: a comparative analysis of global practices. *Journal of the Knowledge Economy*, 15(4), 19570-19596. <https://doi.org/10.1007/s13132-024-01933-w>

[20] Iseri, F., Iseri, H., Chrisandina, N. J., Iakovou, E., & Pistikopoulos, E. N. (2025). AI-based predictive analytics for enhancing data-driven supply chain optimization. *Journal of Global Optimization*, 1-28. <https://doi.org/10.1007/s10898-025-01509-1>

[21] Abibullaev, B., Keutayeva, A., & Zollanvari, A. (2023). Deep learning in EEG-based BCIs: A comprehensive review of transformer models, advantages, challenges, and applications. *IEEE Access*, 11, 127271-127301. doi: 10.1109/ACCESS.2023.3329678.

[22] Alcalá, R., Alcalá-Fdez, J., Casillas, J., Cordón, O., & Herrera, F. (2006). Hybrid learning models to get the interpretability-accuracy trade-off in fuzzy modeling. *Soft Computing*, 10(9), 717-734. <https://doi.org/10.1007/s00500-005-0002-1>

[23] Zhao, J., Zheng, T., & Litvinov, E. (2015). A unified framework for defining and measuring flexibility in power system. *IEEE Transactions on power systems*, 31(1), 339-347. doi: 10.1109/TPWRS.2015.2390038.

[24] Pérez-Castillo, R., Ruiz, F., & Piattini, M. (2020). A decision-making support system for Enterprise Architecture Modelling. *Decision Support Systems*, 131, 113249. <https://doi.org/10.1016/j.dss.2020.113249>

[25] Hamid, M., Anisurrahman, & Alam, B. (2025). Quantum Machine Learning for Drug Discovery: A Systematic Review. *International Journal on Computational Modelling Applications*, 2(3), 01–08. <https://doi.org/10.63503/j.ijcma.2025.156>

[26] Ankita Ghosh, Sudip Diyasi, & Siddhartha Chatterjee. (2024). Enhancing SQL Injection Prevention: Advanced Machine Learning and LSTM-Based Techniques. *International Journal on Computational Modelling Applications*, 1(1), 20–31. <https://doi.org/10.63503/j.ijcma.2024.16>