
International Journal on Engineering Artificial Intelligence Management, Decision Support, and Policies 

Vol. 02, Iss. 03, S. No. 04, pp.38--52, Sept 2025  

ISSN (Online): 3048-8788 

 

 

ISSN (Online) : 3048-8788 38 IJAIMD  

 

Received: 12 Sept 2025, Accepted: 01 Oct 2025, Published: 04 Oct 2025 

Digital Object Identifier: https://doi.org/10.63503/j.ijaimd.2025.169 

Research Article   

The Role of Artificial Intelligence in Enhancing Operational Efficiency 

and Cost Optimization in Engineering-Driven Enterprises 

Nandha Kumar B1*, Balaji Jayakrishnan2* , Toufik Mzili3 

1, 2 Business School, Vellore Institute of Technology, Chennai Campus, India 

3 Department of Computer Science, Laboratory of LAROSERI, Faculty of Science, 

Chouaib Doukkali University, EI Jadida 24000, Morocco 

bnkaero@gmail.com1, balaji.jayakrishnan@vit.ac.in2, mzili.t@ucd.ac.ma3 

*Corresponding author: Nandha Kumar B, bnkaero@gmail.com  

ABSTRACT 

The business environment of engineering-driven enterprises is characterized by complex projects, strict deadlines, 

and financial constraints, which means that operational efficiency serves as a major success factor. Conventional 

project management and resource distribution techniques often become ineffective because they fail to account 

for the complexity of the task dependencies and resource constraints, thereby contributing to significant cost 

overruns and schedule slippage. These multi-objective optimization problems can be solved with advanced 

computational capabilities offered by the integration of Artificial Intelligence (AI), which provides a paradigm 

shift. This paper proposes an AI-based framework using a Genetic Algorithm (GA) to optimize both the cost and 

duration of a project simultaneously. A typical priority-based heuristic scheduling technique serves as the baseline, 

and the performance of the proposed GA model is thoroughly evaluated using a quantitative and simulation-based 

methodology.  According to the simulation results, the AI-based solution is statistically significant and reduces 

project expenses by 18.2% and project time by 23.5% when compared to the conventional option.  Additionally, 

by providing a Pareto front of optimal alternatives and demonstrating improved resource use, the AI model enables 

decision-makers to make flexible, data-driven strategic decisions. 

Keywords: Artificial Intelligence, Operational Efficiency, Cost Optimization, Engineering Management, Genetic 

Algorithms, Project Management, Predictive Analytics. 

1. Introduction 

Engineering-driven organizations, which operate in fields such as high-tech manufacturing, aerospace, 

and major infrastructure building, face unprecedented levels of competition in the modern global 

market.  Technological supremacy is no longer considered a prerequisite for assuming market 

leadership in this context; rather, a high degree of operational agility and financial discipline should be 

added.  The use of cutting-edge computational systems has evolved from a strategic decision to a 

requirement for operation to stay viable and competitive in the future, thanks to the paradigm shift 

brought about by Industry 4.0 and the pervasive exposure of digital technologies in all facets of 

industrial processes. According to this paradigm, these businesses are project-based, meaning that value 

is created through the effective execution of intricate, frequently engineered project work.  However, 

managing these projects is an extremely difficult task. The fundamental flaw in traditional project 

management techniques is the root of this problem.  These approaches are ill-equipped to handle the 

dynamism and uncertainty that are inherent in modern engineering projects since they are frequently 

based on idealized assumptions, a priori models, and human intuition. They have difficulties with 
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effective multi-objective optimization, especially when they are confronted by the conflicting objectives 

of minimizing the span of a project, minimizing the total cost, and maximizing the utilization of limited 

resources. This weakness is frequently expressed in gross budget variances, long schedule slippage, and 

less than optimal utilization of essential resources, which results in a negative effect on profit margins 

and reduced trust among the stakeholders. The traditional approaches are useful on simpler problems 

but fail to scale to the combinatorial complexity of large-scale project scheduling as the number of 

potential solutions spreads exponentially with the number of tasks and resources. 

These fundamental inefficiencies seem to be practically eradicable by artificial intelligence (AI), a 

potent technological force. AI's primary capabilities include processing large and complicated datasets, 

spotting subtle patterns and non-linear relationships, and automating intricate decision-making 

processes in ways that human planners would not be able to. Supply chains, logistics, predictive 

maintenance, and strategic planning are just a few of the business fundamentals that AI is radically 

altering. However, implementing new technology alone won't be enough to fully realize AI's potential.It 

requires a complete transformation of the organisation, through a dedicated C-suite and readiness to re-

architect the existing workflows to make use of the full potential of AI. Such a strategic alignment is 

vital because the advantages of AI can only be unlocked not through the algorithms themselves, but 

through the new behaviors and ways of operating that AI opens up. Fig. 1 gives a graphical overview 

of the Artificial Intelligence in enhancing operational efficiency and cost optimization in engineering-

driven enterprises.  

 

Fig.1: Overview of the Artificial Intelligence in enhancing operational efficiency and cost optimization 

in engineering-driven enterprises 

The main contribution of the proposed work is that it creates and quantitatively validates an AI-based 

multi-objective optimization model to plan an engineering project. The model uses a powerful 



Nandha Kumar B, Balaji Jayakrishnan, Toufik Mzili 

 

 

ISSN (Online) : 3048-8788 40 IJAIMD  

 

metaheuristic model known as Genetic Algorithm (GA), which takes into consideration the rules of 

natural evolution to explore the complex space of the solution of project schedules. In order to forge an 

explicit and significant level of its effectiveness, the efficiency of the GA model is systematically 

compared to a conventional priority-based heuristic scheduling model, which is a baseline in the 

industry. The analysis is undertaken in a full simulation framework whereby both models can be tested 

in controlled conditions under various project parameters. The further parts of this paper are organized 

in the following way: Section 2 provides a comprehensive review of the relevant literature., Section 3 

articulates the problem statement and research objectives. Section 4 details the methodology, including 

the mathematical formulation of the models. Section 5 presents and discusses the simulation results. 

Finally, Section 6 offers concluding remarks and outlines directions for future research. 

2. Literature Review 

The transformative potential of AI in engineering enterprises needs to be well understood based on a 

robust theoretical foundation. It is possible to summarize the available literature by identifying three 

major pillars: operational efficiency improvements through AI, cost management, and optimization 

through AI, and enabling technologies that construct cohesive, intelligent structures [1, 2]. A reflective 

look at these pillars will help us see a clear evolutionary trajectory in the use of AI, where discrete, local 

problems get solved, then complex, system-wide optimizations are coordinated. 

The application of AI has produced dramatic and quantifiable results in terms of increased operational 

efficiency in various areas across engineering-based industries [3]. Predictive Maintenance (PdM) is 

one of the most mature applications. PdM systems based on AI utilize machine learning algorithms to 

process sensor-based real-time information on industrial machinery and forecast possible failures before 

they happen [4]. This proactive approach is a significant breakthrough from the older reactive or 

planned maintenance policies. The reported effect is significant, and there is a reason to believe that AI-

driven PdM can save up to 40% of machine downtime and up to 30% of maintenance costs, which 

ultimately facilitates production continuity and extends asset life [5]. 

AI is helping to create what is known as a "smart factory," where connected devices make decisions on 

their own to increase output and quality in manufacturing processes.  Reinforcement learning, computer 

vision, and other forms of artificial intelligence are used to dynamically schedule production runs, 

optimize machine settings in real time, and perform automated quality control inspections that are 

quicker and more accurate than human operators. These systems can also respond to changes in material 

availability or demand [6,7]. AI is also revolutionizing supply chain and logistics optimization, which 

is crucial for every engineering firm.  These days, machine learning models can produce demand 

forecasts with an accuracy of up to 85%, which makes it possible to manage inventories more effectively 

and lower carrying costs and stockouts [8].  It has previously been shown that using AI algorithms in 

the logistics industry to optimize vehicle routes based on real-time traffic, weather, and delivery limits 

can save 15% of fuel use and drastically shorten delivery times [9]. 

AI provides a powerful tool for direct cost management and optimization in addition to increasing 

operational speed and efficiency [10].  AI techniques for predictive cost modeling have shown 

themselves to be far more accurate at project cost estimation, especially during the early design phases 

when uncertainty is common.  Compared to conventional regression-based techniques, more advanced 

models, such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), and gradient-

boosting algorithms, can capture complex, non-linear relationships between project characteristics and 

final costs, providing a more reliable basis for financial planning and budgeting [11,12]. 

Effective resource allocation and material, equipment, and personnel optimization are at the heart of 
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cost reduction.  It is a prime illustration of an operations research topic that can be computationally 

costly but that AI can successfully solve [13].  To minimize project costs and satisfy a complex set of 

constraints related to skill requirements, resource availability, and budgetary constraints, AI-powered 

optimization algorithms can search through large combinatorial search spaces to determine the optimal 

resource allocation to tasks [14].  These systems do more than just distribute resources; they can also 

dynamically reallocate in reaction to unforeseen circumstances, which helps to control costs throughout 

the course of a project. 

Digital twins are one example of how artificial intelligence (AI) can be fully utilized when integrated 

into bigger technical frameworks.  A digital twin is a high-fidelity, real-time virtual model of a physical 

system, process, or asset that serves as an illustration of this relationship.  AI and the Digital Twin have 

a strong partnership; while the Digital Twin provides rich, dynamic data and a virtual environment, AI 

provides the analytical and predictive power to examine that data.  Manufacturers can use a Digital 

Twin to model a variety of possible outcomes by experimenting with design or process modifications 

without physically altering operations [15]. 

There is a clear pattern to the development of AI applications in engineering.  Early programs focused 

on specific, well-defined activities like estimating costs or maintaining a certain piece of equipment 

[16].  Combining these point solutions into a logical system-level architecture that enables wholesale 

simulation and analysis is the next stage, symbolized by the rise of Digital Timers.  The transition is the 

current and developing frontier. 

The proposed work belongs to this direction, wherein AI does not remain a passive analytical tool but 

becomes an autonomous agent capable of planning, executing, and optimizing operations within the 

physical or digital world. [18] The proposed work is designed in this direction, and it creates an AI 

agent that can plan, execute, and optimize the operations of the complex system, a project schedule. 

Table 1 gives an Overview of Emerging AI Technologies in Engineering Operations. 

Table 1: Overview of Emerging AI Technologies in Engineering Operations 

Technology 

/Framework 

Core Features & AI 

Techniques 

Documented Limitations Supporting 

Citations 

Predictive 

Maintenance 

Anomaly detection, Time-

series analysis (e.g., LSTM), 

Survival analysis. 

Scarcity of real-world failure 

data, High cost of sensor 

instrumentation. 

[17] 

Process 

Optimization 

Reinforcement learning for 

scheduling, Computer vision 

for quality control, and NLP 

for reporting. 

Complex reward function design 

for RL, high-volume data 

requirement for vision models. 

[18] 

AI-based Cost 

Estimation 

ANNs, SVMs, Gradient 

Boosting (XGBoost), Deep 

Learning. 

"Black box" nature reduces 

interpretability, Sensitivity to 

data quality, and feature 

[7] 
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Technology 

/Framework 

Core Features & AI 

Techniques 

Documented Limitations Supporting 

Citations 

engineering. 

Digital Twin 

Integration 

Real-time data 

synchronization, Physics-

based simulation augmented 

with ML, "What-if" scenario 

analysis. 

High implementation cost and 

complexity, Challenges in data 

interoperability and 

standardization. 

[16] 

Agentic AI 

Systems 

Autonomous planning and 

execution, Tool use (e.g., 

calling simulation APIs), 

Multi-agent collaboration. 

Long-horizon planning is 

computationally expensive, 

ensuring agent alignment with 

high-level goals. 

[6] 

 

3. Problem Statement and Research Objective 

Problem Statement 

Enterprises that are engineered often have large-scale projects that are typified by all the task 

dependencies, shared resource pools, and they have inherent uncertainties. Conventional project 

management techniques that rely on basic heuristics and inflexible planning are typically insufficient 

to handle these complications.  Typically, they do not execute good multi-objective optimization, which 

leads to poor trade-offs between resource utilization, project completion time, and project cost.  This 

results in operational inefficiencies, overspending, and a decline in competitiveness.  An intelligent, 

flexible framework that can automatically search the vast solution space of project schedules for 

globally (or almost worldwide) optimal solutions that balance these conflicting goals is desperately 

needed. 

Research Objectives 

The primary objectives of the proposed work are as follows: 

1. To design and formulate a multi-objective optimization model for engineering project 

scheduling using a Genetic Algorithm (GA), with the dual objectives of minimizing total project 

cost and total project duration. 

2. To implement a traditional, priority-based heuristic scheduling algorithm to serve as a 

performance baseline. 

3. To develop a comprehensive MATLAB simulation environment to quantitatively evaluate and 

compare the performance of the proposed GA model against the baseline heuristic under various 

project scenarios. 

4. To analyze the simulation results to determine the statistical significance of improvements in 

operational efficiency (reduced duration) and cost optimization (reduced cost) offered by the AI-

based approach. 
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4. Methodology 

The study uses a quantitative simulation-based methodology to compare two different strategies of 

solving the resource-constrained project scheduling problem (RCPSP) with time cost trade-offs. The 

whole simulation (data generation, model implementation and analysis of the results) is created in 

MATLAB to provide transparency and reproducibility. The methodology is built to give a solid and 

statistically viable comparison of an AI-based optimization model and a traditional heuristic baseline. 

Data and Simulation Environment 

The simulation is based on a synthetic yet realistic dataset that is programmatically created and is 

embedded in the code. This will mean that the experiment is self-contained and can be repeated without 

depending on any external files. The data set is the description of a portfolio of engineering projects, 

each of which has several tasks. Every task is an object that has the following properties: TaskID, 

BaseDuration, Base Cost, ResourceRequirement and Dependencies (a list of predecessor TaskIDs). 

There is also a central pool of resources defined by the simulation environment in terms of 

ResourceCapacity and ResourceCost/unit of time. 

Proposed AI-Driven Optimization Model (Model A: Genetic Algorithm) 

The proposed intelligent model is based on a Genetic Algorithm (GA), a metaheuristic well-suited for 

complex, non-linear optimization problems. 

Chromosome Representation: A solution (a project schedule) is represented by a chromosome. A 

permutation-based encoding is used, where a chromosome is a vector containing a sequence of all task 

IDs. This sequence represents the priority order for scheduling the tasks. 

Fitness Function (Multi-Objective): The fitness function evaluates the quality of each schedule 

generated from a chromosome. It is a weighted sum of two normalized objectives: total project cost (C) 

and total project makespan (T). The weights, w1 and w2, allow for tuning the relative importance of 

cost versus time. 

The fitness of a schedule is defined as a weighted function as given in Eq.1: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑤1 ∙
𝐶𝑚𝑎𝑥−𝐶

𝐶𝑚𝑎𝑥−𝐶𝑚𝑖𝑛
 +  𝑤2 ∙

𝑇𝑚𝑎𝑥− 𝑇

𝑇𝑚𝑎𝑥− 𝑇𝑚𝑖𝑛
    (1) 

where C denotes the total cost and T the total duration. The total cost is computed as the sum of all task-

related costs and the accumulated resource usage cost over time, as shown in Eq.2: 

   𝐶 =  ∑𝑁
𝑖=1 𝐶𝑡𝑎𝑠𝑘(𝑖) +  ∑𝑇

𝑖=1 𝐶𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝑡) ∙ 𝑅𝑢𝑠𝑒𝑑(𝑡)  (2) 

The total duration corresponds to the makespan, defined as the maximum completion time across all 

tasks is given by Eq.3: 

   𝑇 = 𝑚𝑎𝑥(𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒(𝑖))      (3) 

Constraint handling is incorporated during decoding, which ensures the chromosome (task sequence) 

translates into a valid schedule. The precedence constraint requires that a task jjj cannot start until all 

its predecessors have finished, as shown in Eq.4: 

   𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒(𝑗) ≥  𝑚𝑎𝑥(𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒(𝑖))    (4) 

The resource constraint ensures that the cumulative resource usage at any time ttt does not exceed 
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available capacity as exhibited in Eq.5: 

   ∑𝑖𝜖𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑎𝑠𝑘𝑠(𝑡) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡(𝑖) ≤ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦. (5) 

    

The genetic algorithm employs the following operators. Selection is performed using tournament 

selection to choose parent chromosomes. Partially Mapped Crossover (PMX) is applied with probability 

𝑃(𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟) = 𝑝𝑐 . Swap mutation introduces diversity with probability 𝑃(𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛) = 𝑝𝑚 . 

Finally, to avoid the loss of high-quality solutions, the process of elitism is imposed by literally bringing 

a certain number of the most successful members into the following generation. 

Baseline Heuristic Model (Model B: Priority-Based Scheduling) 

The baseline model is a non-AI, conventional way of scheduling, which is built on the Shortest 

Processing Time (SPT) rule. The tasks are prioritized based on their time taken; the shorter the task, the 

higher the priority as shown in Eq.(6): 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑖) =
1

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑖)
      (6) 

The scheduling algorithm is an iterative process: at any point in time, it finds all ready tasks (those 

meeting their precedence requirements) and then schedules the task with the highest priority (shortest 

duration) so long as sufficient resources are at hand. 

To support the models, several additional calculations are defined. 

● Resource used at time t is given in Eq.(7): 

  𝑅𝑢𝑠𝑒𝑑(𝑡) =  ∑𝑖𝜖𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑎𝑠𝑘𝑠(𝑡) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡(𝑖)  (7) 

 This quantifies the total resources used at any given time step. 

● Cost of a single task i is defined in Eq.(8): 

𝐶𝑡𝑎𝑠𝑘(𝑖) = 𝐵𝑎𝑠𝑒𝐶𝑜𝑠𝑡(𝑖) + 𝐶𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∙ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡(𝑖) ∙ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑖) (8) 

Algorithmic Frameworks 

The logic for the GA is summarized in Algorithm 1 and Fig.2. 

Algorithm 1: Genetic Algorithm for Project Optimization 

Input: ProjectData, PopulationSize, MaxGenerations, CrossoverRate, MutationRate 

Output: BestSchedule, MinCost, MinDuration 

 

1:  Initialize Population P with random task permutations (chromosomes) 

2:  for gen = 1 to MaxGenerations do 

3:      FitnessScores = 

4:      for each chromosome C in P do 

5:          Schedule = DecodeChromosome(C, ProjectData) // Respects dependencies and resources 

6:          Cost, Duration = CalculateMetrics(Schedule) 

7:          Fitness = CalculateFitness(Cost, Duration) 

8:          Append Fitness to FitnessScores 

9:      end for 
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10:     NewPopulation = 

11:     ApplyElitism(P, FitnessScores, NewPopulation) // Keep best individuals 

12:     while |NewPopulation| < PopulationSize do 

13:         Parent1, Parent2 = SelectParents(P, FitnessScores) // Tournament Selection 

14:         if rand() < CrossoverRate then 

15:             Child1, Child2 = Crossover(Parent1, Parent2) // PMX Crossover 

16:         else 

17:             Child1, Child2 = Parent1, Parent2 

18:         end if 

19:         Mutate(Child1, MutationRate) // Swap Mutation 

20:         Mutate(Child2, MutationRate) 

21:         Add Child1, Child2 to NewPopulation 

22:     end while 

23:     P = NewPopulation 

24:     if ConvergenceCriteriaMet() then break 

25: end for 

26: BestChromosome = GetBestIndividual(P) 

27: BestSchedule = DecodeChromosome(BestChromosome, ProjectData) 

28: MinCost, MinDuration = CalculateMetrics(BestSchedule) 

29: return BestSchedule, MinCost, MinDuration 

 

 

 

Fig.2: Workflow 

5. Results and Discussions 

The simulation was executed for 10 distinct, synthetically generated project configurations, with each 
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configuration run 100 times to ensure the statistical robustness of the findings. There was a systemic 

comparison between the performance of the proposed AI-based Genetic Algorithm (Model A) and the 

baseline Priority-Based Heuristic (Model B) in terms of the key performance indicators (KPIs): the total 

cost of the project and the total project duration (makespan). The findings clearly show that the AI-

based approach is much more effectively optimized. 

Quantitative Performance Analysis 

The empirical results are given in the form of a series of plots and summary tables, which visualize and 

quantify the difference in the performance between the two models. The convergence behaviour of the 

Genetic Algorithm is depicted in Fig.3 and is averaged with all simulation runs. The plot indicates that 

the average as well as the most optimal fitness is rapidly declining during the early generations, then it 

starts leveling off, which means that the algorithm can drive itself to several high-quality solutions. The 

plot shows the best and mean fitness scores of the population over 100 generations. The fitness value, 

a combination of cost and duration, decreases steadily, demonstrating the algorithm's convergence to 

an optimal solution. A direct comparative analysis of final project costs and durations realized by two 

models has been directly presented in Figs. 4 and 5. The box plots clearly indicate that Model A (GA) 

gives solutions that always have a lower mean and have much lower variance than those given by Model 

B (Heuristic). It means that the AI strategy is not only more efficient in seeking cheaper and quicker 

plans and schedules but also more stable and dependable in its execution. 

 

Fig.3: GA Convergence Plot 

 

 

Fig.4: Comparative Cost Analysis (Box Plot). Distribution of total project costs for Model A (AI-GA) 

and Model B (Heuristic) across 100 simulation runs. Model A achieves a lower median cost and less 
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variability. 

 

Fig.5: Comparative Duration Analysis (Box Plot). Distribution of total project durations for Model A 

(AI-GA) and Model B (Heuristic). Model A consistently finds schedules with shorter completion times. 

The main benefit of the multi-objective GA is that it can be used to find a combination of non-dominated 

solutions, the Pareto front. This front is shown in Fig. 6 (for a representative project run), and it is 

possible to see the trade-off between cost and length of time. Every point on the left-hand side is an 

optimum schedule in which it is impossible to better one objective without worsening the other. This is 

a useful decision-making tool for project managers, as they can provide a solution that is most consistent 

with their strategic priorities (e.g., a solution that is fast, more costly, or slow, less costly). 

 

Fig.6: Pareto Front of Optimal Solutions. A scatter plot showing the set of non-dominated solutions 

found by the GA for a single project. It visualizes the optimal trade-off between minimizing project 

cost and minimizing project duration. 

Fig.7 makes a comparison of the average resource utilization attained by the two models. The GA is 

more efficient in terms of the use of resources as it has a higher average rate of utilization. This implies 

that the AI model does a better job of scheduling tasks to ensure that idle resource time is minimized, 

helping save costs and time. 
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Fig.7: Comparative Resource Utilization. Bar chart comparing the average percentage of resource 

utilization for schedules generated by Model A and Model B. Model A achieves a more balanced and 

higher utilization. 

To give an easy visual depiction of the difference in the scheduling, Figs. 8 and 9 show Gantt charts of 

a sample project. The schedule produced by the heuristic model (Fig.9) is presented in a visible form 

and is probably inefficient compared to the tight optimization schedule generated by the GA (Fig.8). 

 

Fig.8: Gantt Chart for GA-Optimized Schedule (Model A). Visual representation of the optimal 

schedule found by the Genetic Algorithm for a sample project, showing tasks scheduled over time. 

 

 

Fig.9: Gantt Chart for Heuristic-Generated Schedule (Model B). Gantt chart for the schedule generated 

by the priority-based heuristic, showing a less compact and longer duration compared to the GA 

solution. 
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Lastly, sensitivity analysis was conducted to learn how the performance advantage of the GA varies 

with the project complexity. Fig.10 indicates that the larger the resource scarcity (i.e., the smaller the 

resource capacity), the larger the performance gap between Model A and Model B, which means that 

the advanced search capabilities of the AI model can be even more beneficial in highly constrained 

situations. 

 

Fig.9: Sensitivity Analysis on Resource Scarcity. The plot shows the percentage improvement of Model 

A over Model B in terms of a combined cost-duration score as available resource capacity is reduced. 

The AI's advantage grows in more constrained scenarios. 

The aggregate statistical results are summarized in Table 2. The AI-based GA was found to reduce the 

cost and the duration by an average of 18.2 percent and 23.5 percent, respectively, relative to the 

heuristic counterpart. Paired t-tests p-values are lower than 0.001, and this fact proves that these 

improvements are significant. 

Table 2: Summary of Key Performance Indicators 

Metric Model Mean Std. 

Deviation 

Min Max p-value 

(vs. 

Heuristic) 

Total Cost 

($) 

Model A 

(AI-GA) 

1,225,300 115,400 980,100 1,450,600 < 0.001 

 
Model B 

(Heuristic) 

1,500,400 180,200 1,150,800 1,850,200 - 

Total 

Duration 

(days) 

Model A 

(AI-GA) 

183 21 145 220 < 0.001 

 
Model B 

(Heuristic) 

240 35 190 310 - 
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Table 3 addresses the computational overhead. As expected, the AI model requires significantly more 

computation time to find a solution. 

Table 3: Computational Performance 

Model Average Computation Time (seconds) 

Model A (AI-GA) 45.6 

Model B (Heuristic) 0.8 

 

The better performance of the Genetic Algorithm (Model A) when compared to the priority-based 

heuristic (Model B) can be explained by the fact that they have completely different search strategies. 

The SPT heuristic is a greedy algorithm; it selects decisions that are locally optimal at a point 

(heuristically chooses the shortest available task) without having references to the long-term, wide-

ranging effects of the selected decisions. This frequently results in globally inefficient solutions, with 

the initial apparently good solution causing resource bottlenecks down the line of the project. The GA, 

on the other hand, explores the solution space as a population-based stochastic metaheuristic.  

Additionally, crossover and mutation enable it to escape local traps where simple algorithms might 

become stuck and adopt positive aspects of other solutions.  It can identify more complex and 

counterintuitive job sequences that result in better overall schedules, thanks in part to its global search 

capability. The practical ramifications of these findings for engineering-based businesses are extensive.  

The shown time and cost savings offer substantial possibilities for increased competitiveness and 

profitability. The capacity of the GA to provide a Pareto front (Fig.6) that transforms the given complex 

scheduling problem into a tool for strategic decision-making is very valuable.  Instead of being 

presented with a single, established strategy, the managers are presented with a series of sound trade-

offs that enable them to make well-informed decisions that address unique company objectives, such as 

a strict budget or an ambitious timeline. 

The computational cost is a subtle matter that needs to be touched upon. The simple heuristic is orders 

of magnitude faster than the GA (Table 3). Nonetheless, this trade-off must be put in context. More 

recent research has demonstrated that the effects of AI tools may be contextual; the cognitive costs of 

using an AI assistant may sometimes offset productivity benefits in projects with real-time software 

development requirements. Planning and scheduling of a project, however, is a non-real-time strategic 

activity that occurs before the implementation of projects. An extra computational time of less than one 

minute in this context would be a small investment to make that could pay off in hundreds of thousands 

of dollars and weeks of project time. The quality of the optimized solution is way better than the cost 

of calculation. The main shortcoming of the proposed work is that it uses the deterministic simulation 

model and a synthetic dataset. Real projects face great uncertainty, such as task time variation, 

unavailability of resources, and outside risks. These stochastic factors have not been included in the 

existing model. 

6. Conclusion 

The given work aimed at solving one of the existing issues, namely, the lack of efficiency and cost 

overrun in managing complex engineering projects. The rigid methodologies that can be dependent on 
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such simplistic heuristics are not often able to traverse the complex multi-objective nature of modern 

project scheduling, resulting in suboptimal results. The discussion below gives solid, quantitative 

evidence that Artificial Intelligence, as a Genetic Algorithm-based optimization scheme, is a very 

powerful and useful solution. Using a stringent comparative simulation, the AI-based model was 

statistically and substantially better than a classic priority-based heuristic baseline. The results showed 

a high level of statistical significance, with an average decrease in project expenses of 18.2% and an 

average decrease in project duration of 23.5%.  Apart from these immediate improvements, the AI 

model also contributed to more effective use of resources and gave decision-makers access to a Pareto 

front of the best options, enabling them to make data-driven and strategic trade-offs between time and 

cost.  The findings support the notion that the adoption of intelligent, self-directed optimization 

algorithms is a significant step for businesses with an engineering focus.  To achieve improved 

operational performance, financial discipline, and a sustained competitive edge in a highly competitive 

global market, a strategic shift rather than a small one is required. 
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