International Journal on Engineering Artificial Intelligence Management, Decision Support, and Policies
Vol. 02, Iss. 03, S. No. 04, pp.38--52, Sept 2025
ISSN (Online): 3048-8788

Received: 12 Sept 2025, Accepted: 01 Oct 2025, Published: 04 Oct 2025
Digital Object Identifier: https://doi.org/10.63503/j.ijjaimd.2025.169

‘Research Article ‘

The Role of Artificial Intelligence in Enhancing Operational Efficiency
and Cost Optimization in Engineering-Driven Enterprises

Nandha Kumar B'*, Balaji Jayakrishnan®* , Toufik Mzili*

1-2 Business School, Vellore Institute of Technology, Chennai Campus, India
3 Department of Computer Science, Laboratory of LAROSERI, Faculty of Science,
Chouaib Doukkali University, EI Jadida 24000, Morocco
bnkaero@gmail.com', balaji.jayakrishnan@yvit.ac.in?, mzili.t@ucd.ac.ma’
*Corresponding author: Nandha Kumar B, bnkaero@gmail.com
ABSTRACT

The business environment of engineering-driven enterprises is characterized by complex projects, strict deadlines,
and financial constraints, which means that operational efficiency serves as a major success factor. Conventional
project management and resource distribution techniques often become ineffective because they fail to account
for the complexity of the task dependencies and resource constraints, thereby contributing to significant cost
overruns and schedule slippage. These multi-objective optimization problems can be solved with advanced
computational capabilities offered by the integration of Artificial Intelligence (AI), which provides a paradigm
shift. This paper proposes an Al-based framework using a Genetic Algorithm (GA) to optimize both the cost and
duration of a project simultaneously. A typical priority-based heuristic scheduling technique serves as the baseline,
and the performance of the proposed GA model is thoroughly evaluated using a quantitative and simulation-based
methodology. According to the simulation results, the Al-based solution is statistically significant and reduces
project expenses by 18.2% and project time by 23.5% when compared to the conventional option. Additionally,
by providing a Pareto front of optimal alternatives and demonstrating improved resource use, the Al model enables
decision-makers to make flexible, data-driven strategic decisions.

Keywords: Artificial Intelligence, Operational Efficiency, Cost Optimization, Engineering Management, Genetic
Algorithms, Project Management, Predictive Analytics.

1. Introduction

Engineering-driven organizations, which operate in fields such as high-tech manufacturing, aerospace,
and major infrastructure building, face unprecedented levels of competition in the modern global
market. Technological supremacy is no longer considered a prerequisite for assuming market
leadership in this context; rather, a high degree of operational agility and financial discipline should be
added. The use of cutting-edge computational systems has evolved from a strategic decision to a
requirement for operation to stay viable and competitive in the future, thanks to the paradigm shift
brought about by Industry 4.0 and the pervasive exposure of digital technologies in all facets of
industrial processes. According to this paradigm, these businesses are project-based, meaning that value
is created through the effective execution of intricate, frequently engineered project work. However,
managing these projects is an extremely difficult task. The fundamental flaw in traditional project
management techniques is the root of this problem. These approaches are ill-equipped to handle the
dynamism and uncertainty that are inherent in modern engineering projects since they are frequently
based on idealized assumptions, a priori models, and human intuition. They have difficulties with

ISSN (Online) : 3048-8788 38 IJAIMD


https://doi.org/10.63503/j.ijaimd.2025.169
https://doi.org/10.63503/j.ijaimd.2025.169

Nandha Kumar B, Balaji Jayakrishnan, Toufik Mzili

effective multi-objective optimization, especially when they are confronted by the conflicting objectives
of minimizing the span of a project, minimizing the total cost, and maximizing the utilization of limited
resources. This weakness is frequently expressed in gross budget variances, long schedule slippage, and
less than optimal utilization of essential resources, which results in a negative effect on profit margins
and reduced trust among the stakeholders. The traditional approaches are useful on simpler problems
but fail to scale to the combinatorial complexity of large-scale project scheduling as the number of
potential solutions spreads exponentially with the number of tasks and resources.

These fundamental inefficiencies seem to be practically eradicable by artificial intelligence (Al), a
potent technological force. Al's primary capabilities include processing large and complicated datasets,
spotting subtle patterns and non-linear relationships, and automating intricate decision-making
processes in ways that human planners would not be able to. Supply chains, logistics, predictive
maintenance, and strategic planning are just a few of the business fundamentals that Al is radically
altering. However, implementing new technology alone won't be enough to fully realize Al's potential.lt
requires a complete transformation of the organisation, through a dedicated C-suite and readiness to re-
architect the existing workflows to make use of the full potential of Al. Such a strategic alignment is
vital because the advantages of Al can only be unlocked not through the algorithms themselves, but
through the new behaviors and ways of operating that Al opens up. Fig. 1 gives a graphical overview
of the Artificial Intelligence in enhancing operational efficiency and cost optimization in engineering-
driven enterprises.
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Fig.1: Overview of the Artificial Intelligence in enhancing operational efficiency and cost optimization
in engineering-driven enterprises

The main contribution of the proposed work is that it creates and quantitatively validates an Al-based
multi-objective optimization model to plan an engineering project. The model uses a powerful
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metaheuristic model known as Genetic Algorithm (GA), which takes into consideration the rules of
natural evolution to explore the complex space of the solution of project schedules. In order to forge an
explicit and significant level of its effectiveness, the efficiency of the GA model is systematically
compared to a conventional priority-based heuristic scheduling model, which is a baseline in the
industry. The analysis is undertaken in a full simulation framework whereby both models can be tested
in controlled conditions under various project parameters. The further parts of this paper are organized
in the following way: Section 2 provides a comprehensive review of the relevant literature., Section 3
articulates the problem statement and research objectives. Section 4 details the methodology, including
the mathematical formulation of the models. Section 5 presents and discusses the simulation results.
Finally, Section 6 offers concluding remarks and outlines directions for future research.

2. Literature Review

The transformative potential of Al in engineering enterprises needs to be well understood based on a
robust theoretical foundation. It is possible to summarize the available literature by identifying three
major pillars: operational efficiency improvements through Al, cost management, and optimization
through Al, and enabling technologies that construct cohesive, intelligent structures [1, 2]. A reflective
look at these pillars will help us see a clear evolutionary trajectory in the use of Al, where discrete, local
problems get solved, then complex, system-wide optimizations are coordinated.

The application of Al has produced dramatic and quantifiable results in terms of increased operational
efficiency in various areas across engineering-based industries [3]. Predictive Maintenance (PdM) is
one of the most mature applications. PdM systems based on Al utilize machine learning algorithms to
process sensor-based real-time information on industrial machinery and forecast possible failures before
they happen [4]. This proactive approach is a significant breakthrough from the older reactive or
planned maintenance policies. The reported effect is significant, and there is a reason to believe that Al-
driven PdM can save up to 40% of machine downtime and up to 30% of maintenance costs, which
ultimately facilitates production continuity and extends asset life [5].

Al is helping to create what is known as a "smart factory," where connected devices make decisions on
their own to increase output and quality in manufacturing processes. Reinforcement learning, computer
vision, and other forms of artificial intelligence are used to dynamically schedule production runs,
optimize machine settings in real time, and perform automated quality control inspections that are
quicker and more accurate than human operators. These systems can also respond to changes in material
availability or demand [6,7]. Al is also revolutionizing supply chain and logistics optimization, which
is crucial for every engineering firm. These days, machine learning models can produce demand
forecasts with an accuracy of up to 85%, which makes it possible to manage inventories more effectively
and lower carrying costs and stockouts [8]. It has previously been shown that using Al algorithms in
the logistics industry to optimize vehicle routes based on real-time traffic, weather, and delivery limits
can save 15% of fuel use and drastically shorten delivery times [9].

Al provides a powerful tool for direct cost management and optimization in addition to increasing
operational speed and efficiency [10]. Al techniques for predictive cost modeling have shown
themselves to be far more accurate at project cost estimation, especially during the early design phases
when uncertainty is common. Compared to conventional regression-based techniques, more advanced
models, such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), and gradient-
boosting algorithms, can capture complex, non-linear relationships between project characteristics and
final costs, providing a more reliable basis for financial planning and budgeting [11,12].

Effective resource allocation and material, equipment, and personnel optimization are at the heart of
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cost reduction. It is a prime illustration of an operations research topic that can be computationally
costly but that Al can successfully solve [13]. To minimize project costs and satisfy a complex set of
constraints related to skill requirements, resource availability, and budgetary constraints, Al-powered
optimization algorithms can search through large combinatorial search spaces to determine the optimal
resource allocation to tasks [14]. These systems do more than just distribute resources; they can also
dynamically reallocate in reaction to unforeseen circumstances, which helps to control costs throughout
the course of a project.

Digital twins are one example of how artificial intelligence (AI) can be fully utilized when integrated
into bigger technical frameworks. A digital twin is a high-fidelity, real-time virtual model of a physical
system, process, or asset that serves as an illustration of this relationship. Al and the Digital Twin have
a strong partnership; while the Digital Twin provides rich, dynamic data and a virtual environment, Al
provides the analytical and predictive power to examine that data. Manufacturers can use a Digital
Twin to model a variety of possible outcomes by experimenting with design or process modifications
without physically altering operations [15].

There is a clear pattern to the development of Al applications in engineering. Early programs focused
on specific, well-defined activities like estimating costs or maintaining a certain piece of equipment
[16]. Combining these point solutions into a logical system-level architecture that enables wholesale
simulation and analysis is the next stage, symbolized by the rise of Digital Timers. The transition is the
current and developing frontier.

The proposed work belongs to this direction, wherein Al does not remain a passive analytical tool but
becomes an autonomous agent capable of planning, executing, and optimizing operations within the
physical or digital world. [18] The proposed work is designed in this direction, and it creates an Al
agent that can plan, execute, and optimize the operations of the complex system, a project schedule.
Table 1 gives an Overview of Emerging Al Technologies in Engineering Operations.

Table 1: Overview of Emerging Al Technologies in Engineering Operations

Technology Core Features & Al | Documented Limitations Supporting
/Framework Techniques Citations
Predictive Anomaly detection, Time- | Scarcity of real-world failure | [17]
Maintenance series analysis (e.g., LSTM), | data, High cost of sensor

Survival analysis. instrumentation.
Process Reinforcement learning for | Complex reward function design | [18]
Optimization scheduling, Computer vision | for RL, high-volume data

for quality control, and NLP | requirement for vision models.

for reporting.
Al-based Cost | ANNs, SVMs, Gradient "Black box" nature reduces [7]
Estimation Boosting (XGBoost), Deep | interpretability, Sensitivity to

Learning. data quality, and feature
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Technology Core Features & Al | Documented Limitations Supporting
/Framework Techniques Citations
engineering.

Digital Twin | Real-time data | High implementation cost and | [16]
Integration synchronization, Physics- | complexity, Challenges in data

based simulation augmented | interoperability and

with ML, "What-if" scenario | standardization.

analysis.

Agentic Al | Autonomous planning and | Long-horizon  planning is | [6]

Systems execution, Tool use (e.g., | computationally expensive,
calling simulation APIs), | ensuring agent alignment with
Multi-agent collaboration. high-level goals.

3. Problem Statement and Research Objective
Problem Statement

Enterprises that are engineered often have large-scale projects that are typified by all the task
dependencies, shared resource pools, and they have inherent uncertainties. Conventional project
management techniques that rely on basic heuristics and inflexible planning are typically insufficient
to handle these complications. Typically, they do not execute good multi-objective optimization, which
leads to poor trade-offs between resource utilization, project completion time, and project cost. This
results in operational inefficiencies, overspending, and a decline in competitiveness. An intelligent,
flexible framework that can automatically search the vast solution space of project schedules for
globally (or almost worldwide) optimal solutions that balance these conflicting goals is desperately
needed.

Research Objectives

The primary objectives of the proposed work are as follows:

1. To design and formulate a multi-objective optimization model for engineering project
scheduling using a Genetic Algorithm (GA), with the dual objectives of minimizing total project
cost and total project duration.

2. To implement a traditional, priority-based heuristic scheduling algorithm to serve as a
performance baseline.

3. To develop a comprehensive MATLAB simulation environment to quantitatively evaluate and
compare the performance of the proposed GA model against the baseline heuristic under various
project scenarios.

4. To analyze the simulation results to determine the statistical significance of improvements in
operational efficiency (reduced duration) and cost optimization (reduced cost) offered by the Al-
based approach.

ISSN (Online) : 3048-8788 42 IJAIMD



Nandha Kumar B, Balaji Jayakrishnan, Toufik Mzili

4. Methodology

The study uses a quantitative simulation-based methodology to compare two different strategies of
solving the resource-constrained project scheduling problem (RCPSP) with time cost trade-offs. The
whole simulation (data generation, model implementation and analysis of the results) is created in
MATLAB to provide transparency and reproducibility. The methodology is built to give a solid and
statistically viable comparison of an Al-based optimization model and a traditional heuristic baseline.

Data and Simulation Environment

The simulation is based on a synthetic yet realistic dataset that is programmatically created and is
embedded in the code. This will mean that the experiment is self-contained and can be repeated without
depending on any external files. The data set is the description of a portfolio of engineering projects,
each of which has several tasks. Every task is an object that has the following properties: TaskID,
BaseDuration, Base Cost, ResourceRequirement and Dependencies (a list of predecessor TaskIDs).
There is also a central pool of resources defined by the simulation environment in terms of
ResourceCapacity and ResourceCost/unit of time.

Proposed AI-Driven Optimization Model (Model A: Genetic Algorithm)

The proposed intelligent model is based on a Genetic Algorithm (GA), a metaheuristic well-suited for
complex, non-linear optimization problems.

Chromosome Representation: A solution (a project schedule) is represented by a chromosome. A
permutation-based encoding is used, where a chromosome is a vector containing a sequence of all task
IDs. This sequence represents the priority order for scheduling the tasks.

Fitness Function (Multi-Objective): The fitness function evaluates the quality of each schedule
generated from a chromosome. It is a weighted sum of two normalized objectives: total project cost (C)
and total project makespan (T). The weights, w1 and w2, allow for tuning the relative importance of
cost versus time.

The fitness of a schedule is defined as a weighted function as given in Eq.1:

Fitness = Wl'M + w2 - Tmax—T 0

Cmax—Cmin Tmax— Tmin

where C denotes the total cost and T the total duration. The total cost is computed as the sum of all task-
related costs and the accumulated resource usage cost over time, as shown in Eq.2:

¢ = Z{V=1 Ctask (l) + Z'ir=1 Cresources(t) ’ Rused(t) (2)

The total duration corresponds to the makespan, defined as the maximum completion time across all
tasks is given by Eq.3:

T = max(FinishTime(i)) 3)

Constraint handling is incorporated during decoding, which ensures the chromosome (task sequence)
translates into a valid schedule. The precedence constraint requires that a task jjj cannot start until all
its predecessors have finished, as shown in Eq.4:

StartTime(j) = max(FinishTime(i)) 4)

The resource constraint ensures that the cumulative resource usage at any time ttt does not exceed
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available capacity as exhibited in Eq.5:

YicActiveTasks(ty ResourceRequirement(i) < ResourceCapacity. (5)

The genetic algorithm employs the following operators. Selection is performed using tournament
selection to choose parent chromosomes. Partially Mapped Crossover (PMX) is applied with probability
P(Crossover) = p.. Swap mutation introduces diversity with probability P(mutation) = p,, .
Finally, to avoid the loss of high-quality solutions, the process of elitism is imposed by literally bringing
a certain number of the most successful members into the following generation.

Baseline Heuristic Model (Model B: Priority-Based Scheduling)

The baseline model is a non-Al, conventional way of scheduling, which is built on the Shortest
Processing Time (SPT) rule. The tasks are prioritized based on their time taken; the shorter the task, the
higher the priority as shown in Eq.(6):

1
Duration(i)

Priority(i) = (6)
The scheduling algorithm is an iterative process: at any point in time, it finds all ready tasks (those
meeting their precedence requirements) and then schedules the task with the highest priority (shortest
duration) so long as sufficient resources are at hand.

To support the models, several additional calculations are defined.

e Resource used at time t is given in Eq.(7):
Rused(t) = ZieActiveTasks(t) ResourceRequirement(i) (7)

This quantifies the total resources used at any given time step.
e Cost of a single task i is defined in Eq.(8):
Ctask () = BaseCost(i) + Cresources * ResourceRequirement(i) - Duration(i) (8)
Algorithmic Frameworks
The logic for the GA is summarized in Algorithm 1 and Fig.2.

Algorithm 1: Genetic Algorithm for Project Optimization
Input: ProjectData, PopulationSize, MaxGenerations, CrossoverRate, MutationRate
Output: BestSchedule, MinCost, MinDuration

1: Initialize Population P with random task permutations (chromosomes)
2: for gen = 1 to MaxGenerations do
FitnessScores =
for each chromosome C in P do
Schedule = DecodeChromosome(C, ProjectData) // Respects dependencies and resources
Cost, Duration = CalculateMetrics(Schedule)
Fitness = CalculateFitness(Cost, Duration)
Append Fitness to FitnessScores
end for

NI A
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10:  NewPopulation =
11:  ApplyElitism(P, FitnessScores, NewPopulation) // Keep best individuals
12:  while |[NewPopulation| < PopulationSize do

13: Parentl, Parent2 = SelectParents(P, FitnessScores) // Tournament Selection
14: if rand() < CrossoverRate then

15: Child1, Child2 = Crossover(Parent1, Parent2) // PMX Crossover

16: else

17: Child1, Child2 = Parent1, Parent2

18: end if

19: Mutate(Child1, MutationRate) // Swap Mutation

20: Mutate(Child2, MutationRate)

21: Add Child1, Child2 to NewPopulation

22:  end while

23: P =NewPopulation

24:  if ConvergenceCriteriaMet() then break

25: end for

26: BestChromosome = GetBestIndividual(P)

27: BestSchedule = DecodeChromosome(BestChromosome, ProjectData)
28: MinCost, MinDuration = CalculateMetrics(BestSchedule)
29: return BestSchedule, MinCost, MinDuration

[Gcncratc Initial Populalionj

Y

eval_fit

term_cond

Perform Crossover
(PMX)

mutation

Create New Population
(with Elitism)

Fig.2: Workflow
5. Results and Discussions

The simulation was executed for 10 distinct, synthetically generated project configurations, with each
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configuration run 100 times to ensure the statistical robustness of the findings. There was a systemic
comparison between the performance of the proposed Al-based Genetic Algorithm (Model A) and the
baseline Priority-Based Heuristic (Model B) in terms of the key performance indicators (KPIs): the total
cost of the project and the total project duration (makespan). The findings clearly show that the Al-
based approach is much more effectively optimized.

Quantitative Performance Analysis

The empirical results are given in the form of a series of plots and summary tables, which visualize and
quantify the difference in the performance between the two models. The convergence behaviour of the
Genetic Algorithm is depicted in Fig.3 and is averaged with all simulation runs. The plot indicates that
the average as well as the most optimal fitness is rapidly declining during the early generations, then it
starts leveling off, which means that the algorithm can drive itself to several high-quality solutions. The
plot shows the best and mean fitness scores of the population over 100 generations. The fitness value,
a combination of cost and duration, decreases steadily, demonstrating the algorithm's convergence to
an optimal solution. A direct comparative analysis of final project costs and durations realized by two
models has been directly presented in Figs. 4 and 5. The box plots clearly indicate that Model A (GA)
gives solutions that always have a lower mean and have much lower variance than those given by Model
B (Heuristic). It means that the Al strategy is not only more efficient in seeking cheaper and quicker
plans and schedules but also more stable and dependable in its execution.

104 % —— Best Fitness
A — = Mean Fitness

0.8

0.6

0.4 1

0.2 1

Fitness Value (Lower is Better)

0.0' T T T T T T

Generations

Fig.3: GA Convergence Plot
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Fig.4: Comparative Cost Analysis (Box Plot). Distribution of total project costs for Model A (AI-GA)
and Model B (Heuristic) across 100 simulation runs. Model A achieves a lower median cost and less
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variability.
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Fig.5: Comparative Duration Analysis (Box Plot). Distribution of total project durations for Model A
(AI-GA) and Model B (Heuristic). Model A consistently finds schedules with shorter completion times.

The main benefit of the multi-objective GA is that it can be used to find a combination of non-dominated
solutions, the Pareto front. This front is shown in Fig. 6 (for a representative project run), and it is
possible to see the trade-off between cost and length of time. Every point on the left-hand side is an
optimum schedule in which it is impossible to better one objective without worsening the other. This is
a useful decision-making tool for project managers, as they can provide a solution that is most consistent
with their strategic priorities (e.g., a solution that is fast, more costly, or slow, less costly).
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Fig.6: Pareto Front of Optimal Solutions. A scatter plot showing the set of non-dominated solutions
found by the GA for a single project. It visualizes the optimal trade-off between minimizing project
cost and minimizing project duration.

Fig.7 makes a comparison of the average resource utilization attained by the two models. The GA is
more efficient in terms of the use of resources as it has a higher average rate of utilization. This implies
that the Al model does a better job of scheduling tasks to ensure that idle resource time is minimized,
helping save costs and time.
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Fig.7: Comparative Resource Utilization. Bar chart comparing the average percentage of resource
utilization for schedules generated by Model A and Model B. Model A achieves a more balanced and
higher utilization.

To give an easy visual depiction of the difference in the scheduling, Figs. 8 and 9 show Gantt charts of
a sample project. The schedule produced by the heuristic model (Fig.9) is presented in a visible form
and is probably inefficient compared to the tight optimization schedule generated by the GA (Fig.8).

T T
0 5 10 15 20
Time (days)

Tasks

Fig.8: Gantt Chart for GA-Optimized Schedule (Model A). Visual representation of the optimal
schedule found by the Genetic Algorithm for a sample project, showing tasks scheduled over time.

0 5 10 15 20 25 30
Time (days)

Tasks

Fig.9: Gantt Chart for Heuristic-Generated Schedule (Model B). Gantt chart for the schedule generated
by the priority-based heuristic, showing a less compact and longer duration compared to the GA
solution.

ISSN (Online) : 3048-8788 48 IJAIMD



Nandha Kumar B, Balaji Jayakrishnan, Toufik Mzili

Lastly, sensitivity analysis was conducted to learn how the performance advantage of the GA varies
with the project complexity. Fig.10 indicates that the larger the resource scarcity (i.e., the smaller the
resource capacity), the larger the performance gap between Model A and Model B, which means that
the advanced search capabilities of the Al model can be even more beneficial in highly constrained
situations.

35 1

30 4

251

201

15

10 A

T T T
20 18 16 14 12 10
Available Resource Capacity

Performance Gain (Al-GA vs Heuristic)

Fig.9: Sensitivity Analysis on Resource Scarcity. The plot shows the percentage improvement of Model
A over Model B in terms of a combined cost-duration score as available resource capacity is reduced.
The Al's advantage grows in more constrained scenarios.

The aggregate statistical results are summarized in Table 2. The Al-based GA was found to reduce the
cost and the duration by an average of 18.2 percent and 23.5 percent, respectively, relative to the
heuristic counterpart. Paired t-tests p-values are lower than 0.001, and this fact proves that these
improvements are significant.

Table 2: Summary of Key Performance Indicators

Metric Model Mean Std. Min Max p-value
Deviation (vs.
Heuristic)

Total Cost | Model A | 1,225,300 115,400 980,100 1,450,600 | <0.001
%) (AI-GA)

Model B | 1,500,400 180,200 1,150,800 1,850,200 | -

(Heuristic)
Total Model A | 183 21 145 220 <0.001
Duration (AI-GA)
(days)
Model B | 240 35 190 310 -
(Heuristic)
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Table 3 addresses the computational overhead. As expected, the Al model requires significantly more
computation time to find a solution.

Table 3: Computational Performance

Model Average Computation Time (seconds)
Model A (AI-GA) 45.6
Model B (Heuristic) 0.8

The better performance of the Genetic Algorithm (Model A) when compared to the priority-based
heuristic (Model B) can be explained by the fact that they have completely different search strategies.
The SPT heuristic is a greedy algorithm; it selects decisions that are locally optimal at a point
(heuristically chooses the shortest available task) without having references to the long-term, wide-
ranging effects of the selected decisions. This frequently results in globally inefficient solutions, with
the initial apparently good solution causing resource bottlenecks down the line of the project. The GA,
on the other hand, explores the solution space as a population-based stochastic metaheuristic.
Additionally, crossover and mutation enable it to escape local traps where simple algorithms might
become stuck and adopt positive aspects of other solutions. It can identify more complex and
counterintuitive job sequences that result in better overall schedules, thanks in part to its global search
capability. The practical ramifications of these findings for engineering-based businesses are extensive.
The shown time and cost savings offer substantial possibilities for increased competitiveness and
profitability. The capacity of the GA to provide a Pareto front (Fig.6) that transforms the given complex
scheduling problem into a tool for strategic decision-making is very valuable. Instead of being
presented with a single, established strategy, the managers are presented with a series of sound trade-
offs that enable them to make well-informed decisions that address unique company objectives, such as
a strict budget or an ambitious timeline.

The computational cost is a subtle matter that needs to be touched upon. The simple heuristic is orders
of magnitude faster than the GA (Table 3). Nonetheless, this trade-off must be put in context. More
recent research has demonstrated that the effects of Al tools may be contextual; the cognitive costs of
using an Al assistant may sometimes offset productivity benefits in projects with real-time software
development requirements. Planning and scheduling of a project, however, is a non-real-time strategic
activity that occurs before the implementation of projects. An extra computational time of less than one
minute in this context would be a small investment to make that could pay off in hundreds of thousands
of dollars and weeks of project time. The quality of the optimized solution is way better than the cost
of calculation. The main shortcoming of the proposed work is that it uses the deterministic simulation
model and a synthetic dataset. Real projects face great uncertainty, such as task time variation,
unavailability of resources, and outside risks. These stochastic factors have not been included in the
existing model.

6. Conclusion

The given work aimed at solving one of the existing issues, namely, the lack of efficiency and cost
overrun in managing complex engineering projects. The rigid methodologies that can be dependent on
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such simplistic heuristics are not often able to traverse the complex multi-objective nature of modern
project scheduling, resulting in suboptimal results. The discussion below gives solid, quantitative
evidence that Artificial Intelligence, as a Genetic Algorithm-based optimization scheme, is a very
powerful and useful solution. Using a stringent comparative simulation, the Al-based model was
statistically and substantially better than a classic priority-based heuristic baseline. The results showed
a high level of statistical significance, with an average decrease in project expenses of 18.2% and an
average decrease in project duration of 23.5%. Apart from these immediate improvements, the Al
model also contributed to more effective use of resources and gave decision-makers access to a Pareto
front of the best options, enabling them to make data-driven and strategic trade-offs between time and
cost. The findings support the notion that the adoption of intelligent, self-directed optimization
algorithms is a significant step for businesses with an engineering focus. To achieve improved
operational performance, financial discipline, and a sustained competitive edge in a highly competitive
global market, a strategic shift rather than a small one is required.
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