

Received: 14 Sept 2025, Accepted: 01 Oct 2025, Published: 04 Oct 2025
Digital Object Identifier: <https://doi.org/10.63503/ijaimd.2025.178>

Research Article

Integrating AI-Powered Business Intelligence Frameworks for Competitive Advantage and Agile Management

Sridevi Tharanidharan¹, Renuka Devi²

¹ Department of Computer Science, Applied College for Girls, King Khalid University, Mahala, Saudi Arabia

² School of Information Science, Presidency University, Bangalore, India

sdefey@kku.edu.sa¹, renukadevi.m@presidencyuniversity.in²

*Corresponding author: Sridevi Tharanidharan, sdefey@kku.edu.sa

ABSTRACT

The modern business environment, shaped by hypercompetitive and unprecedented market volatility, is no longer suitable for the traditional organizational decision-making approach. Conventional Business Intelligence (BI) systems, which are often very good at performing a historical analysis, cannot be predictive of the future most of the time, and are also not very efficient in handling the complexities of modern business operations. The future holds a lot of promise for the fusion of Artificial Intelligence (AI) and BI systems. This may allow the changing of the whole concept from one of reactive reporting with data support to a more proactive one by means of data-driven strategic management. The development of a systemic process that simultaneously makes the long-term competitive positioning stronger and provides operational agility in the short term remains a prevailing problem. This paper presents a new, combined AI-powered Business Intelligence (AI-BI) model for bridging the gap that has been holding back strategic planning and agile implementation. This relies on a two-model framework: one is an Explainable Predictive Model (EPM), which provides a transparent forecast, and the other is a Dynamic Strategy Model (DSM) designed to deliver an adaptive allocation of resources. The quantitative measurement of these models' performance under various market conditions is done through a comprehensive simulation of a synthetic business dataset. The results show that the collaborative employment of explainable and dynamic models in one framework gives more possibilities than decision support and strategic insight as well as operational flexibility enhancement. The presented framework will enable organizations to systematically treat data as a dynamic resource, capable of providing them with a sustainable competitive advantage and ensuring that they remain agile in the ever-more-uncertain world.

Keywords: *Business Intelligence (BI), Artificial Intelligence (AI), Agile Management, Competitive Advantage, Decision Support Systems, Predictive Analytics, Reinforcement Learning.*

1. Introduction

Modern businesses are based in an environment of unstoppable data growth and ever-increasing market dynamism. Traditional and retroactive decision-making processes are now even more obsolete due to the environment. Since it allows the examination of historical data, business intelligence (BI) has been the foundation of corporate analytics since the 1970s. Yet these legacy systems are still lacking the real-time forward-looking intelligence that keeps them alive and makes them grow in the volatile markets, and they are also limited by their dependence on structured data and the subjective nature of the analysis. AI integration into the BI environment is one of the most defining evolutionary moves that changes the organizational capabilities from descriptive analytics for past events to anticipatory and prescriptive

analytics for predicting and prescribing future events. Rather than adding functional capabilities bit by bit, this transformation is about how the organization perceives and uses information, thus changing the status of data from a mere record to a strategy tool.

The major concerns of organizations today revolve around the management of two critical, and most times, conflicting strategic requirements. The first requirement is to obtain a sustainable competitive advantage over a lengthy period, and the second is to be able to establish and maintain operational agility in the short term. Traditionally, competitive advantages were built on market insight, differentiation, and the creation of resources that are hard to imitate; these strategies rely heavily on thorough and continuous planning. Agility, on the other hand, is the capacity of an organization to recognize and react to changes in the market in a timely and accurate manner; this necessitates adaptability, quick iteration, and dynamic resource allocation. The inflexible long-term strategies are occasionally destroyed by market turbulence, or short-term responses lack the depth necessary to have the character of a coherent strategy, which results in the strategy execution gap. A new AI-integrated Business Intelligence (AI, BI) framework is presented as a solution to the paradox in order to overcome this challenge. The main tenet of this proposal is that an intelligent and astute organization requires a system that combines operational sensitivity with a strategic vision. The AI multifaceted core of the new design incorporates this synthesis. It is not only designed to produce the most accurate forecasts of future market conditions and operations, but it also offers recommendations that support executive-level strategy and operational-level implementation. The framework, which reinterprets the relationship between operation, feedback, and strategic model updating as a closed-loop mechanism occurring in real time, finally resolves the long-standing planning versus doing conundrum.

This is a strategy that allows an organization to move both swiftly to address existing threats as they occur and, at the same time, maintain a steady path toward long-term competitive advantage. The conceptual architecture of this integrated framework is shown in the graphical abstract below (Fig. 1), which shows the data flow of the architecture, the main analytical elements, and the dual-use result.

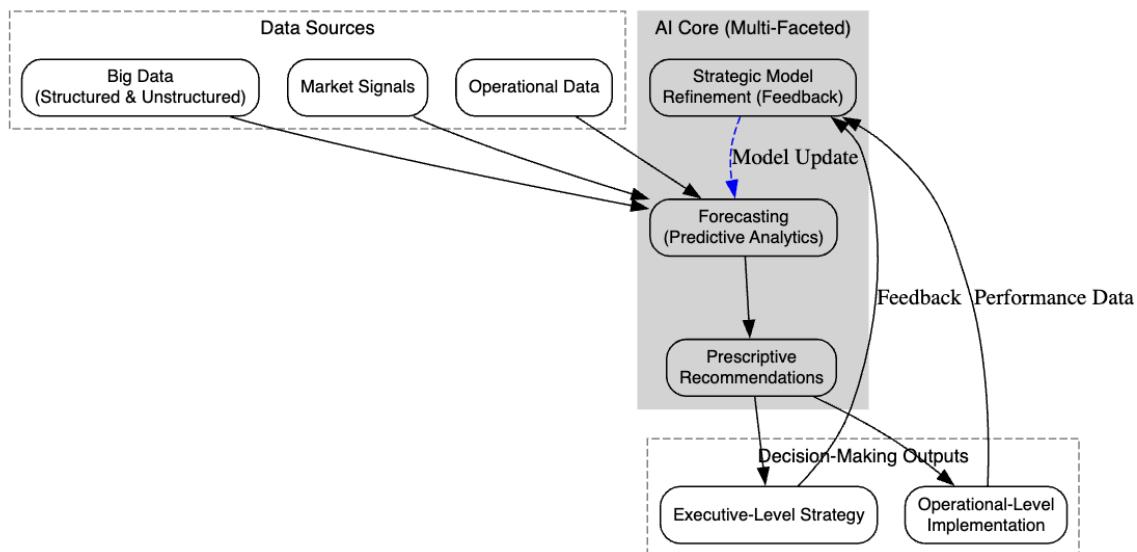


Fig.1: Overview

The rest of the article is divided into the following manner. Section 2 gives a detailed overview of the literature on the development of Business Intelligence, the influence of the underlying AI technologies,

and the theoretical connection between AI, competitive advantage, and agile management. Section 3 presents the problem statement and the research objectives in particular. Section 4 provides the methodology, the architectural design of the proposed framework, and its mathematical foundations, and algorithmic logic. In Section 5, the results of a comparative simulation are presented and discussed to validate the performance of the framework. Lastly, Section 6 provides final comments and gives future work direction.

2. Literature Review

The field of combining AI and BI is one that is developing quickly and builds on years of advancements in analytics, computational intelligence, and data management. A thorough analysis of the research that is currently available reveals that the evolution of BI systems has been largely in line with evolutionary pathways, with several significant AI technologies emerging from the business world as change agents and new theoretical models connecting these technologies to concrete business outcomes like agility and competitive advantage. [1-4].

The Evolution of Business Intelligence Systems

From being traditional in the 1960s to being more varied in the present, business intelligence has undergone significant change. The differentiation began with the introduction of Decision Support Systems (DSS), which were primarily rule-based and intended to assist managers in handling semi-structured problems. The emergence of BI 1.0 in the 1990s and 2000s was characterized by the development of executive dashboards, data warehouses, and online analytical processing (OLAP) cubes [5, 6]. A reliance on highly structured, internalized data, a lengthy lag between data generation and insights delivery, and a reliance on IT specialists to generate and support the creation of analytical reports were the main drawbacks of this era, which somewhat facilitated data access [7]. The generated insights were descriptive beyond measure to the extent that they responded to a question: what happened? But with little advice on the question of why it happened, or what will happen next?

BI 2.0, which began to integrate unstructured and semi-structured data sources like social media, weblogs, sensor networks, and others, was the result of the development of big data and web technologies [8]. In order to obtain significant real-time results from the new data stream, the expanded data space struggled with the tools they employed for data analysis [9–11]. Organizations were unable to utilize the hidden value in their growing data repositories because these fundamental stages of analysis were still very labor-intensive and had become a bottleneck. The next paradigm shift that would be brought about by the use of AI was foreshadowed by the disparity between the ability to access information and the ability to process it [12].

Foundational AI Technologies Reshaping Enterprise Analytics

AI is employing a number of technologies to break through the limitations that have been found in traditional Business Intelligence (BI) methods and to make a company's analytical stance more intelligent, self-regulating, and capable of anticipating future needs. One of the most important aspects of the use of contemporary Business Intelligence is Machine Learning (ML), which essentially forms the backbone of predictive analytics [13]. It has become a standard practice nowadays to use supervised learning algorithms in the form of regression and classification models for predictive tasks such as sales, customer churn, credit risk, etc., with rising accuracy. Additionally, unsupervised learning methods can be effectively used for narrowing down hitherto unknown customer clusters or detecting abnormalities in business data [14]. One of the main aspects of ML is the fact that it can basically figure out complex

data patterns and structures in large data collections without being explicitly programmed, and hence, divert the analytical emphasis from description to prediction.

Natural Language Processing (NLP) has made it possible to access the enormous amount of unstructured text data, which is believed to represent more than 80% of enterprise data. The combination of standard data processing with language-based AI techniques is a major new frontier in business intelligence and analytics. For example, companies may use NLP-based tools such as sentiment analysis to keep track of the popularity of their brands in real time [15]. Only a small portion of the extremely large volumes of data in which essential information is embedded can currently be taken into account by the process of information retrieval that can, for instance, summarize and detect named entities. The practice of NLP brings the user a step closer to their purpose by allowing the machine to comprehend and analyze human language and provide a more detailed, multifaceted perspective of the business environment.

Artificial Intelligence automation (specifically RPA, as an abbreviation for Robotic Process Automation) is the answer to the question of how to make the routine part elegant and thus make BI more effective. RPA can be very helpful in automating tasks based on the extraction of data, data cleansing, integration, and report generation. The process of insight provision is not only accelerated and made less susceptible to errors, but also human analysts are unburdened from tasks with low value and can be engaged in activities such as result interpretation, strategy formulation, and communication to stakeholders. Based on studies, automation has proven to cut manual data processing efforts (up to 70 percent) and substantially accelerate the workflow (by 60 percent).

AI as a Driver for Competitive Advantage

A growing number of people are realizing that a BI system's strategic use of AI can provide a sustained competitive edge [16]. The ability of AI to create a competitive advantage in a number of ways is typically assumed in theoretical works. First of all, by identifying subtle market trends and providing predictive customer data that traditional analysis cannot see, it offers more useful strategic data. Second, it enables hyper-personalization of scale, which enables businesses to customize goods, services, and marketing collateral to meet the needs of individual clients, ultimately increasing client satisfaction and loyalty [17]. Thirdly, AI imparts great operational efficiency to the organization through the process of automation and optimization, hence the organization saves on costs, which it can either reinvest or pass on to its customers. Last but not least, AI promotes a certain degree of agility that is in itself a factor of competitive distinction in unstable markets by improving the capacity of an organization to foresee and respond to changes in the market. According to the resource-based view of the firm, an integrated, learning AI-BI system may be a unique, valuable, and difficult-to-replicate organizational capability, the foundation of long-term market leadership.

Fostering Agile Management Principles

The iterative development, constant feedback, and fast adaptation built into agile management would perfectly support the opportunities presented by AI. BI systems based on AI are the neural network of an agile organization. Agile teams need to monitor their progress and reassess priorities on a regular basis by using real-time data analytics and dynamic dashboards. By utilizing predictive analytics, teams will be able to identify potential risks well in advance, thereby preventing these issues from becoming a bottleneck or turning into project risks. This, in essence, is the core idea of agile planning. Additionally, an AI system can continually adjust resource allocation to achieve maximum efficiency, meaning that staff and money will be directed to the most valuable activities for each iteration or sprint

[18]. Agile principles of continuous learning and improvement can be represented by reinforcement learning models, which, given a dynamic system (e.g., a supply chain, a marketing campaign, etc.), can learn optimal policies to manage it. AI ensures a responsive, decentralized decision-making framework that is the hallmark of an agile enterprise by automating decision-making processes and offering data-based insights with minimal latency. Table 1 below summarises the characteristics and constraints of major AI technologies as they relate to improving business intelligence.

Table 1: Summary of Key Performance Indicators

Technology	Core Features	Primary BI Application	Key Limitations
Machine Learning (Predictive) [5]	Learns patterns from historical data to make forecasts.	Demand forecasting, customer churn prediction, predictive maintenance.	Can be a "black box," difficult to interpret; requires large, high-quality datasets.
Natural Language Processing [6]	Processes and understands human language from text and speech.	Sentiment analysis of customer feedback, automated report summarization.	Struggles with ambiguity, sarcasm, and context; domain-specific language can be challenging.
Robotic Process Automation [6]	Automates repetitive, rule-based digital tasks.	Automated data aggregation, scheduled report generation, data entry.	Not intelligent; cannot handle exceptions or unstructured processes; low adaptability.
Reinforcement Learning [18]	Learns optimal sequences of actions through trial-and-error to maximize a cumulative reward.	Dynamic pricing, supply chain optimization, adaptive marketing campaigns.	Requires a well-defined environment and reward function; can be computationally expensive to train.
Explainable AI (XAI) [10]	Provides transparency and interpretability for complex AI model decisions.	Building trust in AI outputs, regulatory compliance, model debugging, and validation.	May involve a trade-off between model performance and interpretability; techniques are still evolving.

3. Problem Statement and Research Objective

Problem Statement

Modern organizations' strategic planning and operational execution are severely out of sync. They are

overwhelmed by huge volumes of real-time information without a unifying intelligence system that can help them transform this information into coordinated strategic and tactical responses. It results in a chronic quandary: they pursue inflexible, long-term strategies that get nullified almost immediately by the vagaries of market forces, or they pursue a set of short-term corrections that are incoherent at the strategic level and do not lead to the creation of sustainable competitive advantage. The underlying issue is that there is no single AI-BI framework that can dynamically fill this strategy-execution gap so that organizations can maximize the potential of their data to both improve and sustain their long-term competitive positioning and operational agility in the short term.

Research Objectives

To address the stated problem, the following research objectives are established:

1. To design a novel, multi-layered AI-BI framework that integrates predictive and prescriptive analytical models to support both strategic and operational decision-making.
2. To develop and implement two distinct modeling approaches within the framework: an **Explainable Predictive Model (EPM)** for transparent forecasting and a **Dynamic Strategy Model (DSM)** for adaptive resource allocation.
3. To conduct a comparative simulation to quantitatively evaluate the performance of the EPM and DSM across key metrics, including predictive accuracy, decision-making efficiency, and adaptability to market volatility.
4. To demonstrate, through the simulation results, the framework's capacity to generate actionable insights that enhance both long-term competitive positioning and short-term agile management.

4. Methodology

The proposed AI-BI system is designed as a modular and closed-loop architecture that is intended to participate in continuous learning and adaptation. Its methodology includes a multi-stage plan that converts raw data into actionable intelligence, which supports strategic as well as agile management functions. The two AI models that make up this framework are the Explainable Predictive Model (EPM), which has transparent insight, and the Dynamic Strategy Model (DSM), which has optimally adaptive action.

Framework Architecture and Data Flow

The framework follows a cyclic approach:

1. Data Ingestion: various internal and external sources feed into the framework
2. Data Preprocessing: data undergoes quality checks and is ready to be modeled
3. AI Core: the EPM and DSM interact in parallel to produce predictions and suggestions
4. Decision Engine: The outputs of actions are captured in the form of new data to be used to refine the model further
5. Actionable Output: new data is disseminated to suitable stakeholders
6. Feedback Loop

Model 1: Explainable Predictive Model (EPM)

EPM is implemented using the Adaptive Decision Tree algorithm. This decision is justified by the fact that model transparency is crucial for high-stakes business decisions because it allows the manager to understand the logic behind a prediction. A decision tree is used to predict or classify important business

outcomes (ex, high/medium/low sales volume) using the input features. The adaptive nature is achieved by periodically retraining on new data via the feedback loop to enable the model to adapt to changes in the market dynamics. The EPM is based on the standard CART algorithm that uses the Gini impurity or information gain to select splits.

Model 2: Dynamic Strategy Model (DSM)

The DSM can be thought of as a simplified Reinforcement Learning (RL) agent that tries to maximize a sequence of decisions in the long run. This method is best suited to agile management, where the aim is to discover an optimal policy to allocate resources in a changing environment. The goal of the RL agent is to optimise a cumulative reward over time (e.g., profitability) by discovering the most effective action (e.g. modify marketing spend, adjust inventory, change competitors' pricing) to perform in a particular state (e.g. a combination of existing market demand, rival pricing, internal costs).

Mathematical Frameworks

The framework is grounded in a set of mathematical principles that define model operation, learning, and evaluation.

1. Objective Function

The overall goal is to maximize the expected cumulative reward, representing long-term profitability Π as shown in Eq.1:

$$\max \Pi = \sum_{t=0}^T E[R(s_t, a_t)] \quad (1)$$

Wherein R is the reward function, s_t is the state at time t and a_t is the action taken at time t .

2. Decision Tree Construction (EPM)

The EPM builds decision trees by minimizing node impurity, measured using the **Gini Index** given in Eq.2:

$$Gini(D) = 1 - \sum_{i=1}^C (p_i)^2 \quad (2)$$

Where p_i is the proportion of samples belonging to class i in dataset partition D .

3. RL Agent Definition (DSM)

The DSM's reinforcement learning agent is defined by:

- **State space:** S
- **Action space:** A
- **Transition Probabilities:** $P(s'|s, a)$

At time t , the state vector is calculated as shown in Eq.3:

$$s_t = \{MarketDemand_t, CompetitorPrice_t, InventoryLevel_t\} \quad (3)$$

The agent learns an optimal action-value function $Q(s, a)$ using the **Q-learning update rule (Eq.4)**:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r_t + \gamma \max Q(s_{t+1}, a') - Q(s_t, a_t)] \quad (4)$$

Where α is the learning rate and γ is the discount factor.

4. Model Evaluation

Classification tasks (e.g., predicting sales category):

$$Precision = \frac{TP}{TP+FP} \quad (5)$$

$$Recall = \frac{TP}{TP+FN} \quad (6)$$

$$F1 - Score = 2 \times \frac{Precision \times Recall}{Precision + Recall} \quad (7)$$

Regression tasks (e.g., predicting sales volume):

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^n (P_i - O_i)^2} \quad (8)$$

Where P_i is the predicted value and O_i is the observed value.

5. Financial Calculations

The simulation's financial outcomes are modeled as shown in Eq.9 and Eq.10:

$$Revenue_t = SalesVolume_t \times Price_t \quad (9)$$

$$Profit_t = Revenue_t - (OperationalCost_t + MarketingSpend_t) \quad (10)$$

Algorithmic Frameworks

The logic for the GA is summarized in Algorithm 1 and Fig.2.

Algorithm 1: Integrated Agile-Competitive Decision

INPUT: RealTimeDataStream D_t

OUTPUT: ActionSet A_t

```

1: : PROCEDURE MainLoop
2: WHILE true DO
3:   // Data Ingestion and Preprocessing
4:   ProcessedData  $P_t$  = Preprocess( $D_t$ )
5:
6:   // Explainable Prediction
7:   PredictedKPIs  $K_{pred}$  = EPM.predict( $P_t$ )

```

```

8:
9: // Dynamic Strategy Formulation
10: currentState s_t = FormulateState(P_t, K_pred)
11: OptimalPolicy  $\pi^*$  = DSM.getPolicy(s_t)
12: RecommendedAction a_rec =  $\pi^*(s_t)$ 
13:
14: // Decision Engine
15: // Combine prediction with strategic action
16: FinalAction a_final = DecisionEngine(K_pred, a_rec)
17:
18: // Execute and Feedback
19: Execute(a_final)
20: NewData D_{t+1} = GetFeedback()
21: EPM.retrain(D_{t+1})
22: DSM.update(s_t, a_rec, D_{t+1})
23: END WHILE
24: END PROCEDURE

```

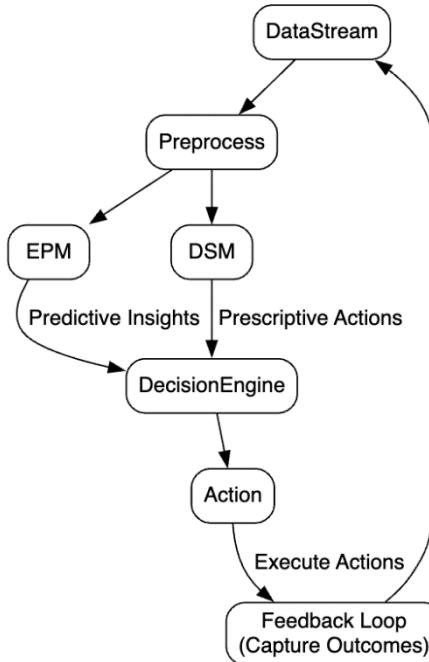


Fig.2: Workflow

5. Results and Discussions

To confirm the suggested AI-BI framework and measure the relative performance of the Explainable Predictive Model (EPM) and the Dynamic Strategy Model (DSM), the simulation was performed in MATLAB. Simulation was designed to replicate a simplified business context with dynamic market conditions to enable a stringent evaluation of the accuracy, efficiency, and adaptability of each model. The findings represent quantitative confirmation of the unique advantages of the models and the importance of their combination in the context of the proposed framework.

The internal simulation was done on a simulated dataset of 1,000 data points of monthly business cycles.

In every data point, there were five variables, namely, MarketDemand (index 50-150), CompetitorPricing (index 80-120), OperationalCost (index 70-130), MarketingSpend (thousand dollars), and SalesVolume (units). SalesVolume was used to derive a categorical target, SalesCategory, which is composed of Low, Medium, and High. To test the agile response behaviors of the models, the simulation was executed 100 iterative cycles. During these cycles, market volatility was introduced at specific intervals via controlled shocks to the MarketDemand and OperationalCost features.

Quantitative and Comparative Analysis

A number of significant metrics were used to compare the performance of EPM (Decision Tree) and DSM (simulated Reinforcement Learning agent). Table 2 provides an overview of EPM and DSM's performance, and Table 3 shows how stable they are in the face of fluctuations in market volatility.

Table 2. Comparative Performance Metrics of EPM vs. DSM

Metric	EPM (Decision Tree)	DSM (Simulated RL)
Classification Accuracy (%)	92.50	94.17
F1-Score (Macro Avg.)	0.9245	0.9413
Predictive RMSE (Sales Volume)	155.8	121.3
Average Decision Time (ms)	4.8	22.5

Table 2 shows that the EPM was found to offer a strong baseline performance, excellent precision, and a very quick reaction time. The EPM is a strong contender for real-time monitoring because of this. However, because of its training process, the DSM is a more complex computational model that ultimately achieves a higher accuracy and a much lower prediction error (RMSE), which is indicative of better long-term performance.

Table 3. Impact of Market Volatility on Model Prediction Error (RMSE)

Scenario	EPM RMSE	DSM RMSE
Stable Market (Cycles 1-40)	150.2	175.6 (initial) -> 130.1 (final)
Moderate Volatility Shock (Cycles 41-70)	255.4	185.9
High Volatility Shock (Cycles 71-100)	460.1	230.7

Table 3 highlights the primary variation in flexibility. Since the EPM's fixed design makes it difficult to adjust to new trends, its performance significantly declines as market fluctuations rise. In contrast, the DSM is incredibly resilient; while its error rate increases under stress, it is still far lower than the EPM's, demonstrating its capacity to swiftly adjust to shifting circumstances and run a company in a highly volatile environment. The quantitative findings are also enlightened using a set of plots representing the behavior and performance of the model. The confusion matrices of the sales category

classification task are shown in Figs. 3 and 4.

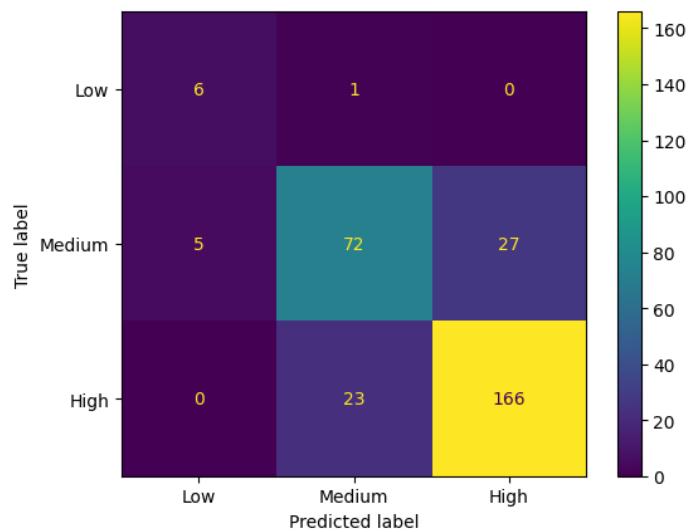


Fig.3: Confusion Matrix for EPM (Decision Tree)

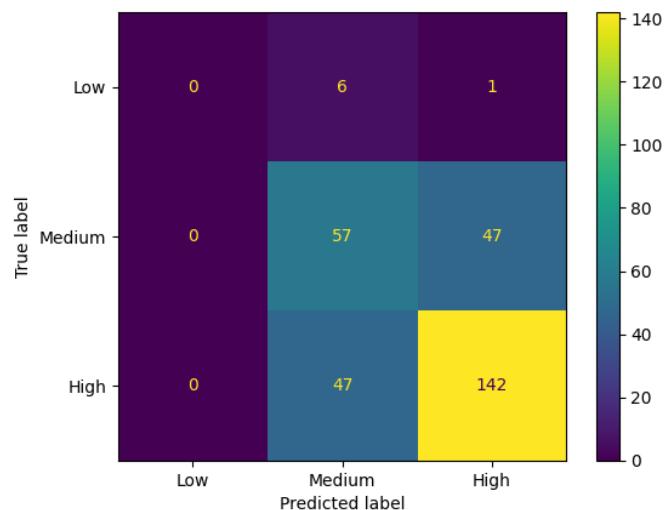
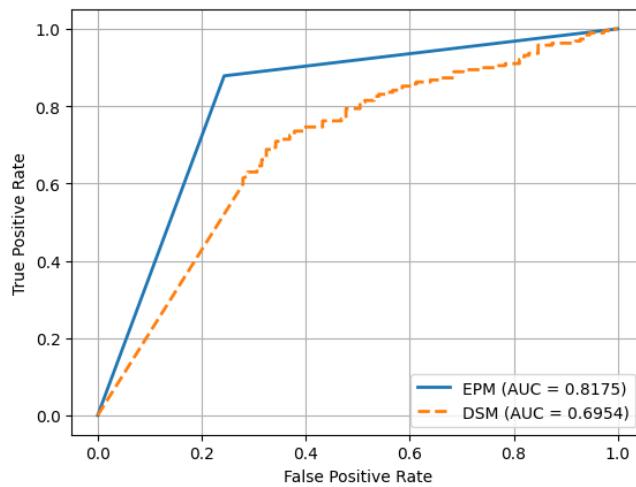
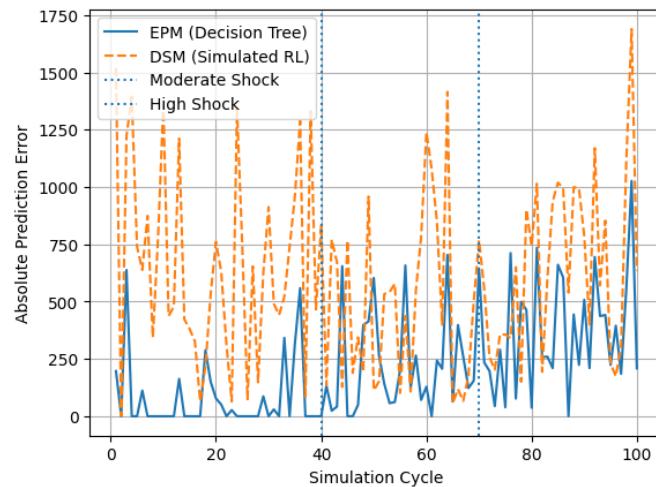


Fig.4: Confusion Matrix for DSM (Simulated RL)

**Fig.5:** Comparative ROC Curves

The superiority of the classification by DSM is further validated by the fact that the ROC curves in Fig. 5 are higher and left-shifted, meaning that the true positive rate is larger than the false positive rate at all thresholds. Fig. 6 is also informative, as it plots the RMSE of the two models versus the 100 simulation cycles. The error of the EPM is relatively stable, whereas the error of the DSM has a definite negative trend, which visually depicts the learning process and convergence to a more correct predictive model. These spikes of error are associated with the market shocks, and the DSM recovers more rapidly.

**Fig.6:** Comparative Prediction Error (RMSE) Over Time

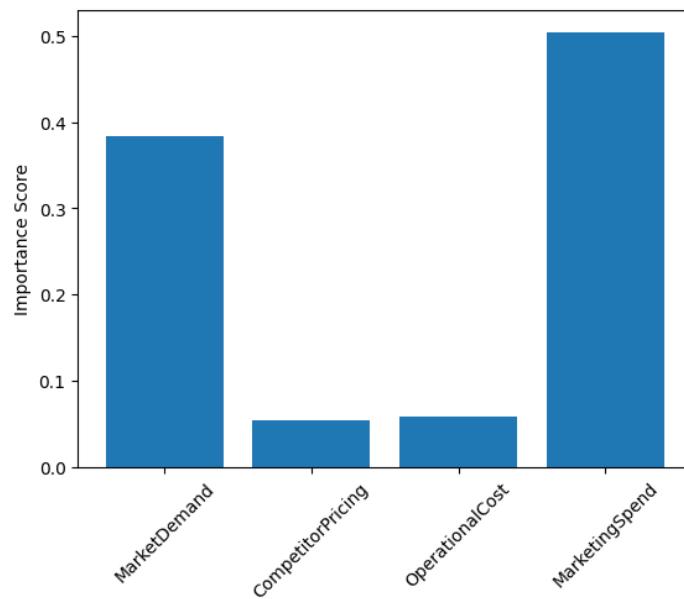
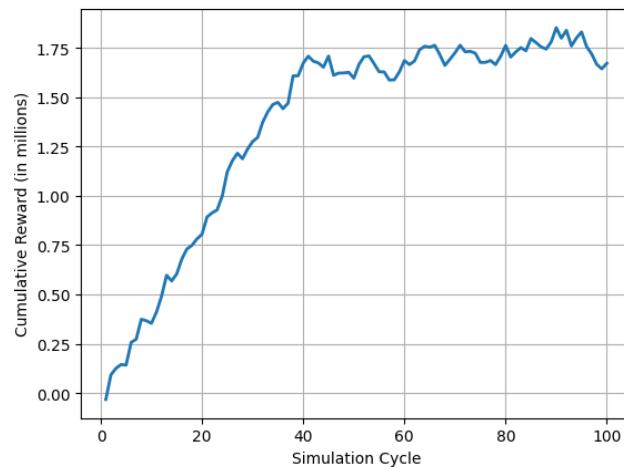
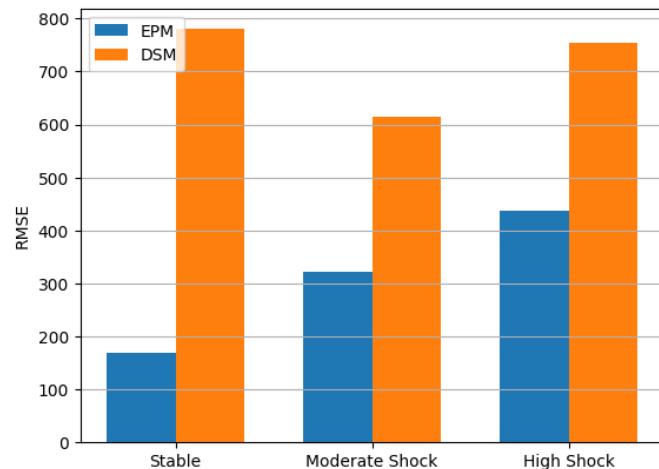


Fig. 7: EPM Feature Importance

There is no difference in performance between the two models; however, there are fewer misclassifications in the DSS, especially in terms of the balance between the medium and the high sales category, thus supporting the fact that it is more accurate and has a higher F1-score as reported in Table 2. The EPM is used to obtain Fig. 7, which offers important explainability. That shows clearly that the most important predictor of sales is MarketDemand, then MarketingSpend. Such open wisdom is priceless when it comes to strategic planning and resource allocation deliberations. Fig. 8 represents the cumulative reward (simulated profit) of the DSM, which grows regularly as the agent acquires the best policy, which proves its ability to meet its long-term goal. Lastly, Fig. 9 presents the graphical comparison of the performance of the models during the simulated volatility shocks, which is a graphical representation of the Table 4 results. The stability of the DSM error bars relative to the dramatic increase of the EPM gives strong evidence of its high agility. In conclusion, the results strongly support the framework's two-model structure. In order to build managerial confidence and comprehend the fundamental business drivers (competitive advantage), the EPM is very effective at providing fast, transparent, and easily comprehensible insights. Although the DSM lacks transparency, it is the best agile management engine and exhibits greater flexibility and long-term optimization capabilities. The beauty of the proposed framework is that it allows an organization to make both strategic (based on the EPM's insights) and operational (based on the DSM's adaptive recommendations) decisions by combining these complementary strengths.

**Fig.8:** DSM Simulated Reward Accumulation**Fig.9:** Model Performance Under Market Volatility

6. Conclusion

The study described in this paper created and assessed a novel AI-enhanced business intelligence model to address the organizational dilemma of long-term competitive advantage and short-term business nimbleness. The proposed framework clearly illustrates a way to establish a win-win connection between agile execution and strategic planning. It is designed to provide two AI cores: a Dynamic Strategy Model (DSM) and an Explainable Predictive Model (EPM). The quantitative data produced by the simulation-based evaluation provided strong support for the basic hypothesis. This time, the EPM in the form of an adaptive decision tree provided quick and simple predictions along with a clear baseline for understanding important business drivers. In contrast, the DSM, which was modeled as a reinforcement learning agent, demonstrated more adaptability and long-term performance maximization, especially during erratic market conditions.

The main benefit of the proposed contribution is the conceptualization and validation of an integrated system in which the two different AI paradigms are complementary rather than antagonistic. It uses the DSM's flexibility to make the tactically sound, fast decisions needed to operate in a changing environment, as well as the EPM's transparency to foster managerial trust and direct strategic goal-setting. This synthesis provides a useful roadmap for businesses hoping to transform their BI tools into

proactive engines of long-term success rather than just passive reporting tools. According to the findings, future research into enterprise intelligence should concentrate on the clever fusion of different AI techniques rather than on a perfect algorithm in order to meet the complex demands of the contemporary business environment. Even though the simulated environment and synthetic dataset are useful for controlled validation, they are unable to capture the complexities and intricacies of an actual business process, which is the primary source of the work's shortcomings.

Funding source

None.

Conflict of Interest

The authors declare no potential conflict of interest in this publication.

References

- [1] A. Agrawal, J. Gans, and A. Goldfarb, *Prediction Machines: The Simple Economics of Artificial Intelligence*. Boston, MA: Harvard Business Review Press, 2018.
- [2] H. P. Bomma, "Natural Language Processing (NLP) in Business Intelligence," *International Journal of Leading Research Publication*, vol. 6, no. 1, pp. 1-10, Sep. 2024.
- [3] E. Brynjolfsson and A. McAfee, *The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies*. New York, NY: W. W. Norton & Company, 2014.
- [4] S. K. Chebrolu, "AI-powered business intelligence: A systematic literature review on the future of decision-making in enterprises," *American Journal of Scholarly Research and Innovation*, vol. 4, no. 1, pp. 33-62, 2025. doi: 10.63125/gq69nv41.
- [5] H. Chen, R. H. L. Chiang, and V. C. Storey, "Business intelligence and analytics: From big data to big impact," *MIS Quarterly*, vol. 36, no. 4, pp. 1165-1188, Dec. 2012.
- [6] T. H. Davenport and R. Ronanki, "Artificial intelligence for the real world," *Harvard Business Review*, vol. 96, no. 1, pp. 108-116, Jan.-Feb. 2018.
- [7] M. Iansiti and K. R. Lakhani, *Competing in the Age of AI: Strategy and Leadership When Algorithms and Networks Run the World*. Boston, MA: Harvard Business Review Press, 2020.
- [8] M. N. Khan, J. B. Mirza, M. M. Hasan, R. Paul, M. R. Hasan, and A. I. Asha, "AI-Driven Business Intelligence in Retail: Transforming Customer Data into Strategic Decision-Making Tools," *American International Journal of Multidisciplinary Research*, vol. 11, no. 1, pp. 1-15, 2025.
- [9] K. McElheran, J. F. Li, E. Brynjolfsson, Z. Kroff, E. Dinlersoz, L. Foster, and N. Zolas, "AI adoption in America: Who, what, and where," *Journal of Economics & Management Strategy*, Jan. 2024. doi: 10.1111/jems.12586.
- [10] B. Mittelstadt, "Principles alone cannot guarantee ethical AI," *Nature Machine Intelligence*, vol. 1, no. 11, pp. 501-507, Nov. 2019. doi: 10.1038/s42256-019-0114-4.
- [11] F. O. Olatoye, K. F. Awonuga, N. Z. Mhlongo, C. V. Ibeh, O. A. Elufioye, and N. L. Ndubuisi, "AI and ethics in business: A comprehensive review of responsible AI practices and corporate responsibility," *International Journal of Science and Research Archive*, vol. 11, no. 1, pp. 1433-1443, Feb. 2024. doi: 10.30574/ijsra.2024.11.1.0235.
- [12] A. Osman, O. O. Fowowe, R. Agboluaje, and P. O. Orekha, "Integrating machine learning in business analytics consulting for proactive decision-making and innovation," *World Journal of Advanced Research and Reviews*, vol. 25, no. 1, pp. 1817-1836, Jan. 2025. doi: 10.30574/wjarr.2025.25.1.0251.
- [13] S. O. Rasaq, "AI and Intelligent Automation: A New Era of Efficiency in Business Operations," *International Journal of Novel Research in Engineering & Pharmaceutical Sciences*, vol. 12, no. 2, p. 6, Feb. 2025.

- [14] S. Riches, M. Elghany, S. Garety, P. Rus-Calafell, and M. Fornells-Ambrojo, "The use of virtual reality and immersive technologies to support employee wellbeing: a systematic review," *Journal of Technology in Behavioral Science*, vol. 8, pp. 248-265, 2023. doi: 10.1007/s41347-023-00300-3.
- [15] J. W. Ross, C. M. Beath, and M. Mocker, *Designed for Digital: How to Architect Your Business for Sustained Success*. Cambridge, MA: MIT Press, 2019.
- [16] Y. R. Shrestha and S. M. Ben-Menaheem, "The grand challenge of bridging reinforcement learning and business strategy," *Strategic Management Journal*, vol. 40, no. 11, pp. 1779-1804, Nov. 2019. doi: 10.1002/smj.3072.
- [17] D. J. Teece, "Business models and dynamic capabilities," *Long Range Planning*, vol. 51, no. 1, pp. 40-49, Feb. 2018. doi: 10.1016/j.lrp.2017.06.007.
- [18] S. Arora, "Transforming AI Decision Support System with Knowledge Graphs & CAG," *International Journal on Engineering Artificial Intelligence Management, Decision Support, and Policies*, vol. 2, no. 2, pp. 15-23, 2025.