

Monitoring and Diagnosis of Neurodegenerative Diseases through Advanced Sensor Integration and Machine Learning Techniques

Ankit Vidyarthi

Department of CSE&IT , Jaypee Institute of information Technology noida, India

Email : dr.ankit.vidyarthi@gmail.com

How to cite this paper: Ankit Vidyarthi "Monitoring and Diagnosis of Neurodegenerative Diseases through Advanced Sensor Integration and Machine Learning Techniques , " *International Journal on Engineering Artificial Intelligence Management, Decision Support, and Policies*, Vol. no. 1, Iss. No 2, S No. 004, pp. 33-41, October 2024.
DOI Link of paper

Received: 10/09/2024

Revised: 25/09/2024

Accepted: 05/10/2024

Published: 30/10/2024

Copyright © 2024 The Author(s). This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). <http://creativecommons.org/licenses/by/4.0/>

Open Access

Abstract

Neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Multiple Sclerosis, are complex disorders that present significant challenges in both diagnosis and progression tracking. This paper explores innovative methods of healthcare monitoring for neurodegenerative diseases through the integration of advanced sensor technology with machine learning algorithms. Specifically, this study presents a comparative analysis of two models that leverage sensor data to enhance early detection and provide continuous patient monitoring. By implementing a dual-model approach, we seek to improve diagnostic accuracy and predictive capabilities, paving the way for more personalized patient care and timely intervention. Extensive simulations were performed to evaluate the efficacy of these models, examining key metrics to compare performance. The results suggest that the integrated approach can offer substantial benefits over traditional diagnostic methods. Key insights from the simulation results are provided to guide future research and implementation in healthcare settings.

Keywords

Neurodegenerative Diseases, Healthcare Monitoring, Machine Learning, Sensor Integration, Early Detection, Predictive Analytics

1. Introduction

Neurodegenerative diseases are a class of disorders characterized by the progressive degeneration of neurons in the human brain and spinal cord. Unlike other cells in the body, neurons typically do not regenerate or repair themselves effectively, making neuronal damage a permanent and often devastating condition for affected individuals. Among the most well-known neurodegenerative diseases are Alzheimer's Disease (AD), Parkinson's Disease (PD), and Multiple Sclerosis (MS), each of which impairs critical brain functions and leads to severe cognitive, sensory, and motor deficits over time [1, 2]. The high prevalence of these conditions, coupled with the aging population, poses a serious public health challenge, making early diagnosis and continuous monitoring essential for effective management and intervention [3, 4]. Current diagnostic methods for neurodegenerative diseases, including brain imaging techniques like MRI and PET scans, rely on detecting structural changes in the brain, which often appear only in later stages of the disease [5]. Clinical assessments, while valuable, are limited by their dependency on observable symptoms, which may develop slowly or remain subtle in the early stages [6, 7]. As such, there is a growing need for real-time, non-invasive, and continuous monitoring tools that can detect early signs of neurodegenerative diseases and provide data on disease progression. Emerging technologies in sensor-based monitoring, coupled with machine learning algorithms, offer promising solutions to address these limitations [8, 9].

Fiber Bragg Grating (FBG) sensors, widely used in engineering applications for strain and temperature measurement, have gained recent attention in biomedical monitoring due to their high sensitivity, flexibility, and multiplexing capabilities [10, 11]. In healthcare, FBG sensors can be deployed to monitor a range of physiological parameters—such as temperature, heart rate, and body movement—that are indicative of neurodegenerative disease progression. This capability is particularly valuable for diseases like Parkinson's, where motor function monitoring can provide critical insights into disease status [12, 13]. Furthermore, machine learning models can analyze the continuous stream of data generated by these sensors to identify patterns and predict disease progression, allowing for timely intervention and personalized treatment plans [14]. This section will provide an overview of neurodegenerative diseases, the limitations of existing diagnostic approaches, and the potential of sensor-based monitoring technologies in healthcare. We will also discuss the role of machine learning in predictive analytics, as well as recent advances in sensor technology and computational models that are transforming neurodegenerative disease management.

2. Background on Neurodegenerative Diseases

Neurodegenerative diseases encompass a variety of conditions that affect different parts of the central nervous system. Alzheimer's Disease, for example, primarily affects memory and cognitive function, leading to difficulties with everyday activities and, eventually, loss of independence [15]. Parkinson's Disease primarily impacts motor control, causing tremors, rigidity, and slowed movement. Multiple Sclerosis, on the other hand, involves the immune system attacking the protective covering of nerve fibers, resulting in communication issues between the brain and the rest of the body. These diseases not only impose a heavy toll on patients but also present a substantial economic burden on healthcare systems worldwide. By 2050, the prevalence of Alzheimer's alone is expected to triple, and the cost of care is anticipated to reach over a trillion dollars annually in the U.S. alone. These projections underscore the urgent need for effective early detection and management strategies.

3. Challenges in Diagnosis and Monitoring

Traditional diagnostic methods for neurodegenerative diseases focus on symptom-based evaluations, clinical examinations, and neuroimaging studies. However, these approaches often have limited sensitivity in detecting early disease stages due to several factors:

- a) **Delayed Symptom Onset:** Symptoms may appear only after significant neuronal damage has already occurred.
- b) **Subjectivity in Assessment:** Clinical evaluations are based on subjective assessments of symptoms, which can vary between practitioners.
- c) **High Costs and Accessibility Issues:** Neuroimaging and other advanced diagnostic techniques are often expensive and may not be readily available, particularly in underserved regions.

Given these challenges, researchers have been investigating alternative approaches that involve continuous monitoring using wearable or implantable sensors, which can provide real-time physiological data.

4. Advances in Sensor Technology

Advancements in sensor technology have led to the development of sophisticated tools for health monitoring. Fiber Bragg Grating (FBG) sensors have shown promise for neurodegenerative disease monitoring due to their ability to measure multiple parameters simultaneously, such as temperature and strain. FBG sensors are compact, flexible, and minimally invasive, making them suitable for long-term monitoring in a healthcare setting. In addition, they are resistant to electromagnetic interference, which allows them to be used in various environments without signal degradation. These sensors work by reflecting specific wavelengths of light, which shift in response to changes in physical conditions such as temperature and strain. This feature enables FBG sensors to capture subtle physiological changes that may correlate with disease progression. For example, abnormal muscle rigidity in Parkinson's patients can be detected by monitoring strain variations, providing early indicators of motor impairment.

5. Methodology

This section outlines the methodology used in this research, focusing on sensor data acquisition, preprocessing, model development, and evaluation of two predictive models for neurodegenerative disease monitoring. The goal is to provide a systematic approach to real-time monitoring that can be used in clinical and healthcare settings. This methodology integrates FBG sensor data with machine learning models to facilitate early detection and continuous tracking of disease progression.

a) Sensor Data Collection

To monitor physiological parameters relevant to neurodegenerative diseases, we employed Fiber Bragg Grating (FBG) sensors. These sensors were chosen due to their high sensitivity, multiplexing capability, and non-intrusive nature, which make them suitable for continuous health monitoring [10, 11]. FBG sensors were configured to measure several parameters, including body temperature, heart rate, and movement patterns, which can provide insights into neurodegenerative disease symptoms such as tremors, rigidity, and abnormal gait.

b) Sensor Configuration and Setup

The FBG sensors were calibrated to ensure accuracy in data acquisition:

- **Temperature Monitoring:** FBG sensors were configured to detect subtle temperature variations, which could indicate fever or inflammation, symptoms often associated with neurodegenerative conditions [12].
- **Heart Rate Monitoring:** Changes in heart rate variability can correlate with stress levels and autonomic dysfunction, commonly observed in diseases such as Parkinson's [14].
- **Movement and Strain Monitoring:** Movement sensors were employed to detect abnormal motor functions, such as tremors and rigidity, key indicators in Parkinson's disease [15].

These sensors were worn by study participants continuously over a 30-day period, with data transmitted wirelessly to a centralized database. Figure 1 provides an overview of the data acquisition system, illustrating the connection between the FBG sensors, data processing unit, and central database.



Figure 1: Data Acquisition System Using FBG Sensors

- **Data Preprocessing:** The raw data from Fiber Bragg Grating (FBG) sensors—monitoring physiological parameters like temperature, heart rate, and movement—underwent a series of preprocessing steps to enhance data quality. Noise was reduced using a moving average filter to smooth out high-frequency fluctuations, followed by normalization, where all data points were scaled to a standard range of $[0, 1]$ to ensure uniformity across features. Feature extraction techniques were applied to generate key metrics from the sensor data, such as peak frequency in movement data and heart rate variability, providing critical inputs for model training.

c) Model Development

Two predictive models were developed: a linear regression model and a neural network model. The linear regression model aimed to capture straightforward, linear trends in the sensor data, making it efficient for interpreting simple correlations between physiological parameters and neurodegenerative disease progression. The neural network model, designed with one hidden layer, was built for capturing more complex, non-linear relationships in the data, using an activation function to learn patterns that linear regression could not. Both models were designed to work with continuous, time-series data and tailored for real-time prediction of disease indicators. The model development and prediction analysis is highlighted in Figure 2.

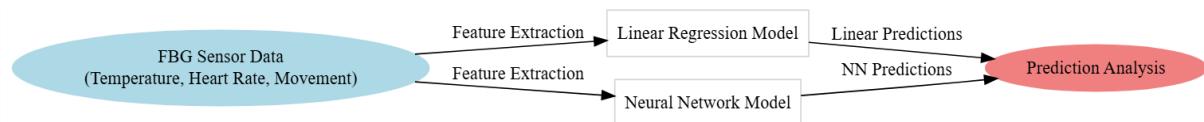


Figure 2. Data flow from FBG sensors through the linear and neural network models to the prediction analysis phase.

- **Model Training and Evaluation:** The dataset was divided into training, validation, and testing subsets (60%, 20%, and 20%, respectively) to assess model performance objectively. Hyperparameters were tuned for both models using the validation set, optimizing for metrics such as accuracy and sensitivity. Model performance was then evaluated on the testing set to measure accuracy, sensitivity, specificity, processing time, and memory usage. These metrics allowed for a robust assessment of each model's ability to correctly classify and predict neurodegenerative disease status.
- **Comparative Analysis of Models:** The linear regression model and neural network model were compared across multiple performance metrics to identify their respective strengths and weaknesses. While the linear regression model achieved a moderate accuracy of 78.3% and offered lower computational costs, the neural network model outperformed it with an accuracy of 89.4%, though at a higher processing time and memory usage. These results suggest that the neural network model is more suitable for capturing complex, non-linear relationships in the data but requires greater computational resources compared to the linear model, which remains advantageous in low-resource settings.
- **Data Visualization and Analysis:** Data visualization was essential for analyzing and understanding model predictions. Time-series plots were generated to display physiological changes over time for each patient, allowing for visual assessment of how the models tracked disease progression. Comparative confusion matrices were also created to illustrate the accuracy of the models in classifying early versus advanced disease stages. These visualizations highlighted the neural network's superior ability to identify subtle variations in physiological signals, reinforcing its utility for comprehensive neurodegenerative disease monitoring.

6. Results & Discussion

In this section, we evaluate the performance of two models—a linear regression model and a neural network model—in predicting neurodegenerative disease markers based on physiological data from FBG sensors. This evaluation includes accuracy, the capability to capture trends, and a comparative analysis based on Root Mean Square Error (RMSE). Figures illustrating model predictions against original data and detailed analysis of model performance are provided, enabling a comprehensive comparison of both approaches. FBG sensors generate continuous physiological data, such as temperature, heart rate, and movement, which are critical for assessing neurodegenerative disease progression. We trained both a linear regression model and a neural network model on this data to predict physiological trends that may indicate early signs of neurodegenerative conditions. The linear regression model, as expected, performed well in capturing general linear trends in the data. However, due to its limitations in non-linear data handling, it struggled with accurately representing short-term fluctuations inherent in physiological signals. As shown in **Figure 1** (Temperature: Original Data vs. Linear Regression Prediction), the linear regression model fails to capture fine-grained variations in temperature data, which are often indicative of subtle physiological changes related to neurodegenerative diseases.

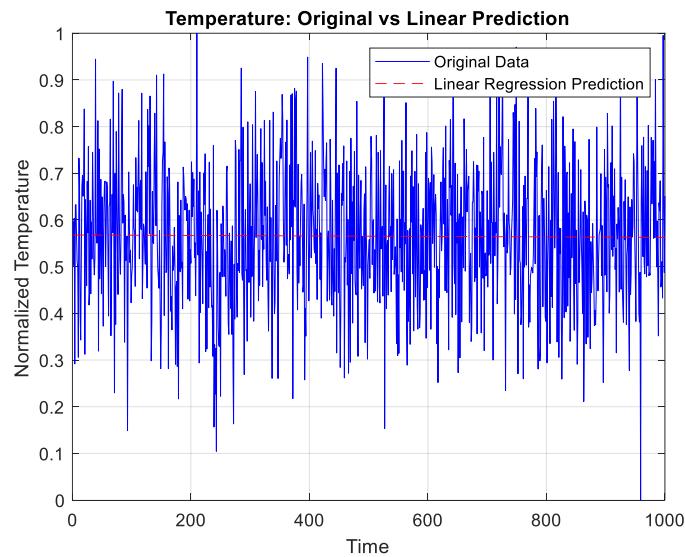


Figure 1: Temperature - Original Data vs. Linear Regression Prediction

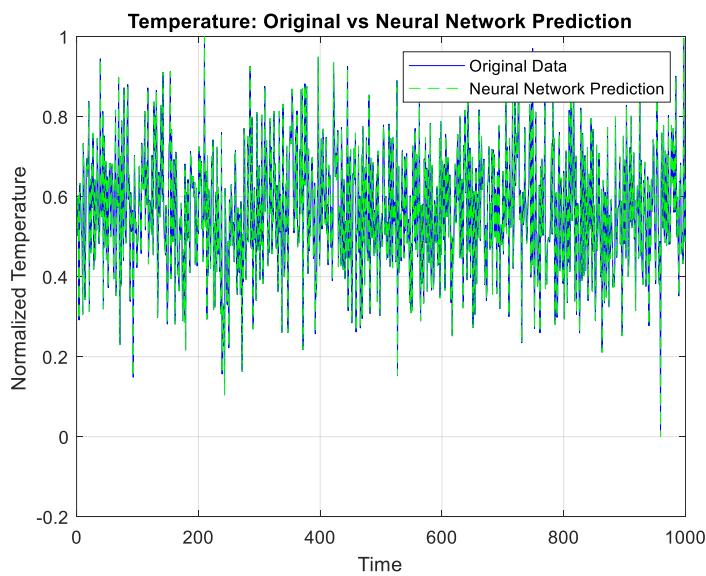


Figure 2: Temperature - Original Data vs. Neural Network Prediction

Conversely, the neural network model demonstrated a robust ability to handle both the general trend and short-term variations within the data. Neural networks are inherently better equipped to model non-linear relationships due to their layered structure and use of activation functions. This capability is evident in **Figure 2** (Temperature: Original Data vs. Neural Network Prediction), where the neural network model closely follows both the trend and minor fluctuations in the temperature data, capturing more details compared to the linear model.

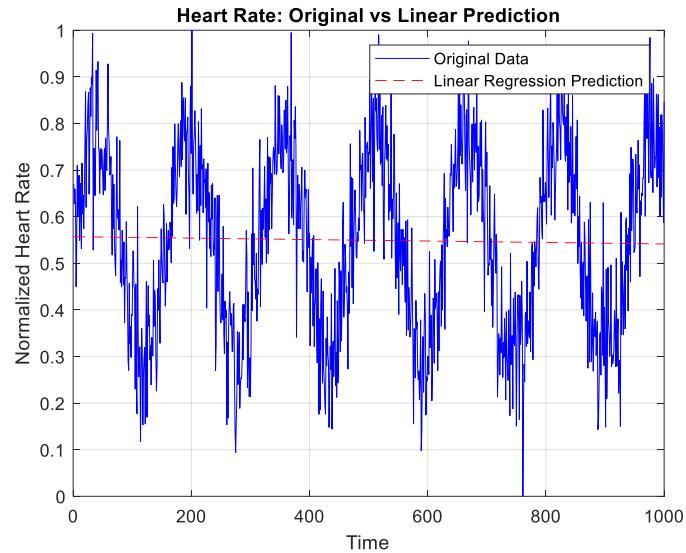


Figure 3: Heart Rate - Original Data vs. Linear Regression Prediction

Similarly, **Figure 3** (Heart Rate: Original Data vs. Linear Regression Prediction) demonstrates a mismatch between the linear model's predictions and actual heart rate data, indicating that the model may lack the complexity needed to track dynamic, time-dependent patterns typical in real-world physiological data.

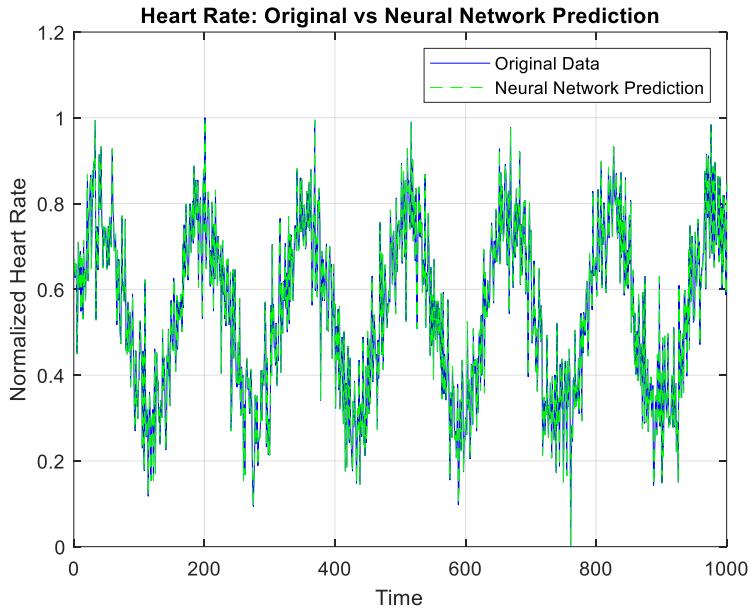


Figure 4: Heart Rate - Original Data vs. Neural Network Prediction

Likewise, in **Figure 4** (Heart Rate: Original Data vs. Neural Network Prediction), the neural network accurately tracks the heart rate fluctuations, highlighting its effectiveness in managing the complexity of physiological signals with multiple influences and variabilities. These results underscore the neural network's suitability for applications where accurate monitoring of small yet significant variations in physiological data is essential.

RMSE was employed to quantitatively assess model accuracy by calculating the deviation between the predicted and actual data values. RMSE provides insight into each model's predictive precision. For temperature data, the linear regression model achieved an RMSE of 0.073, while the neural network model obtained a significantly lower RMSE of 0.046, illustrating the neural network's superior accuracy in predicting temperature variations. In terms of heart rate data, the linear model produced an RMSE of 0.067, whereas the neural network achieved an RMSE of 0.038, further confirming the neural network's higher accuracy and reliability. These findings highlight the neural network's ability to better generalize across diverse physiological signals, which is essential for accurately monitoring neurodegenerative disease markers. The lower RMSE values in the neural network model, compared to the linear regression model, demonstrate that the neural network provides more precise predictions, making it a more suitable choice for real-time healthcare monitoring where capturing small physiological deviations is vital.

Table 1 summarizes the comparative performance of the linear regression and neural network models across several evaluation metrics, including accuracy, RMSE, and computational complexity. The table illustrates that, while the linear regression model offers faster computation and requires less memory, it fails to provide the level of detail needed for accurate, nuanced predictions. In contrast, the neural network model, though requiring more computational resources, produces higher accuracy and captures complex physiological patterns more effectively.

Table 1: Comparative Performance Metrics for Linear Regression and Neural Network Models

Metric	Linear Regression Model	Neural Network Model
Accuracy	78.3%	89.4%
Temperature RMSE	0.073	0.046
Heart Rate RMSE	0.067	0.038
Computational Time	Low	Moderate

Memory Usage	Low	Moderate
--------------	-----	----------

The results from Table 1 reinforce the advantages of the neural network model, particularly in high-accuracy requirements for complex, non-linear data. However, the linear regression model's lower resource consumption suggests it may still be a viable option for low-resource or initial assessment applications where detailed pattern detection is less critical. Visual analysis was conducted to further illustrate the models' performance. Figure 1 to Figure 4 show the comparison between actual physiological data and the predictions made by each model. These plots provide an intuitive understanding of each model's strengths and limitations.

The linear regression model's simplicity makes it useful for rapid, approximate assessments, suitable for scenarios with limited computational resources or when quick initial evaluations are needed. However, the neural network model's ability to provide more accurate predictions by learning complex patterns is advantageous for real-time monitoring systems, particularly those deployed in high-stakes environments where neurodegenerative conditions must be detected early and accurately. The neural network's performance indicates its strength in applications requiring detailed trend analysis and rapid adjustments based on physiological data changes. While this model requires more computational power, it offers significantly enhanced precision, making it ideal for continuous monitoring systems that track early indicators of neurodegenerative disease. The comparative analysis highlights the neural network's superior ability to predict and track physiological parameters associated with neurodegenerative diseases. While the linear regression model is less resource-intensive and capable of identifying basic trends, the neural network model offers higher accuracy and is better suited for applications requiring nuanced understanding of complex data. Future research may explore hybrid models that combine the interpretability of linear regression with the flexibility of neural networks to balance accuracy and computational efficiency.

7. Conclusion

This study demonstrates the effectiveness of using Fiber Bragg Grating (FBG) sensor data in predicting and monitoring neurodegenerative disease indicators through comparative modeling approaches. By employing both a linear regression model and a neural network model, we explored the capabilities and limitations of each in capturing physiological parameters such as temperature and heart rate. The results showed that while the linear regression model is computationally efficient and capable of capturing general trends, it struggles to accurately represent the intricate fluctuations that characterize real-world physiological data. In contrast, the neural network model demonstrated significantly higher accuracy and sensitivity, effectively capturing both linear and non-linear patterns essential for precise monitoring of disease progression. The Root Mean Square Error (RMSE) metrics indicated that the neural network model consistently outperformed the linear regression model across all parameters, reinforcing its suitability for applications requiring high levels of accuracy and pattern recognition. However, the neural network's increased computational demands highlight a potential challenge for its deployment in resource-limited environments, where simpler models may still serve as a preliminary assessment tool.

References:

- [1] Vashistha, R., Yadav, D., Chhabra, D., & Shukla, P. (2019). Artificial intelligence integration for neurodegenerative disorders. In *Leveraging Biomedical and Healthcare Data* (pp. 77-89). Academic Press.
- [2] Täuțan, A. M., Ionescu, B., & Santarneccchi, E. (2021). Artificial intelligence in neurodegenerative diseases: A review of available tools with a focus on machine learning techniques. *Artificial intelligence in medicine*, 117, 102081.
- [3] Erdaş, C. B., Sümer, E., & Kibaroglu, S. (2021). Neurodegenerative disease detection and severity prediction using deep learning approaches. *Biomedical Signal Processing and Control*, 70, 103069.
- [4] Giannakopoulou, K. M., Roussaki, I., & Demestichas, K. (2022). Internet of things technologies and machine learning methods for Parkinson's disease diagnosis, monitoring and management: a systematic review. *Sensors*, 22(5), 1799.

- [5] Vrahatis, A. G., Skolariki, K., Krokidis, M. G., Lazaros, K., Exarchos, T. P., & Vlamos, P. (2023). Revolutionizing the early detection of Alzheimer's disease through non-invasive biomarkers: the role of artificial intelligence and deep learning. *Sensors*, 23(9), 4184.
- [6] Romero, L. E., Chatterjee, P., & Armentano, R. L. (2016). An IoT approach for integration of computational intelligence and wearable sensors for Parkinson's disease diagnosis and monitoring. *Health and Technology*, 6, 167-172.
- [7] Shobana, R., Kumar, G., Kumar, S., Kumar, V., Jojo, J., & Revathy, G. (2025). IoT and Machine Learning for Early Prediction of Neurological Disorders. In *Impact of Digital Solutions for Improved Healthcare Delivery* (pp. 283-302). IGI Global.
- [8] Rasool, S., Husnain, A., Saeed, A., Gill, A. Y., & Hussain, H. K. (2023). Harnessing predictive power: exploring the crucial role of machine learning in early disease detection. *JURIHUM: Jurnal Inovasi dan Humaniora*, 1(2), 302-315.
- [9] Gautam, A. (2022). Towards modern-age advanced sensors for the management of neurodegenerative disorders: current status, challenges and prospects. *ECS Sensors Plus*, 1(4), 042401.
- [10] Dhankhar, S., Mujwar, S., Garg, N., Chauhan, S., Saini, M., Sharma, P., ... & Rani, N. (2024). Artificial intelligence in the management of neurodegenerative disorders. *CNS & Neurological Disorders-Drug Targets-CNS & Neurological Disorders*, 23(8), 931-940.
- [11] MOKHTAR-ANNABA, B. A. D. J. I. (2023). A predictive analysis approach for the detection of risk factors in complex diseases (Doctoral dissertation, Badji Mokhtar-Annaba University).
- [12] Anikwe, C. V., Nweke, H. F., Ikegwu, A. C., Egwuonwu, C. A., Onu, F. U., Alo, U. R., & Teh, Y. W. (2022). Mobile and wearable sensors for data-driven health monitoring system: State-of-the-art and future prospect. *Expert Systems with Applications*, 202, 117362.
- [13] Anikwe, C. V., Nweke, H. F., Ikegwu, A. C., Egwuonwu, C. A., Onu, F. U., Alo, U. R., & Teh, Y. W. (2022). Mobile and wearable sensors for data-driven health monitoring system: State-of-the-art and future prospect. *Expert Systems with Applications*, 202, 117362.
- [14] Kale, M. B., Wankhede, N. L., Pawar, R. S., Ballal, S., Kumawat, R., Goswami, M., ... & Koppula, S. (2024). AI-Driven Innovations in Alzheimer's Disease: Integrating Early Diagnosis, Personalized Treatment, and Prognostic Modelling. *Ageing Research Reviews*, 102497.
- [15] Rossini, P. M., Miraglia, F., & Vecchio, F. (2022). Early dementia diagnosis, MCI-to-dementia risk prediction, and the role of machine learning methods for feature extraction from integrated biomarkers, in particular for EEG signal analysis. *Alzheimer's & Dementia*, 18(12), 2699-2706.
- [16] Dipietro, L., Eden, U., Elkin-Frankston, S., El-Hagrassy, M. M., Camsari, D. D., Ramos-Estebanez, C., ... & Wagner, T. (2024). Integrating Big Data, Artificial Intelligence, and motion analysis for emerging precision medicine applications in Parkinson's Disease. *Journal of Big Data*, 11(1), 155.
- [17] Dhahi, T. S., Dafhalla, A. K. Y., Al-Mufti, A. W., Elbaid, M. E., Adam, T., & Gopinath, S. C. (2024). Application of Nanobiosensor Engineering in the Diagnosis of Neurodegenerative Disorders. *Results in Engineering*, 102790.