
     International Journal on Engineering Artificial Intelligence Management, De-

cision Support, and Policies  

              Vol. 02, Iss. 01, S. No. 004, pp. 40-54, March 2025  

     ISSN (Online): 3048-8788 
 

  

 

ISSN (Online) : 3048-8788    
                              

40 
International Journal on Engineering Artificial Intelligence 

Management, Decision Support, and Policies   
 

 

Comprehensive Framework for the Detec-
tion and identification of Android malware 
using Deep Learning  

M. K. Nallakaruppan1, Rajesh Kumar Dhanaraj2*            

1Balaji Institute of Modern Management, Sri Balaji University Pune, India  
2Rajesh Kumar Dhanaraj, Symbiosis International (Deemed University), India. 
Nallakaruppan.K@bimmpune.edu.in, Sangeraje@gmail.com*             
 

How to cite this paper: M. K. 
Nallakaruppan, Rajesh Kumar 
Dhanaraj, “Comprehensive 
Framework for the Detection 
and identification of Android 
malware using Deep Learning”, 
International Journal on Engi-
neering Artificial Intelligence 
Management, Decision Support, 
and Policies, Vol. no. 2, Iss. No 1, 
S No. 004, pp. 40-54, March 
2025. 
 
Received: 14/11/2024 
Revised: 10/12/2024 
Accepted: 27/12/2024 
Published: 30/01/2025 
 
Copyright © 2025 The Author(s).  
This work is licensed under the 
Creative Commons Attribution 
International License (CC BY 
4.0). 
http://creativecommons.org/lic
enses/by/4.0/ 

   

  Abstract 

Android malware is a great concern to mobile devices since it compromises the 
security of users and their privacy. Due to the high variability and sophistication 
of contemporary malicious applications, advanced approaches to detect and rec-
ognize threats are needed. Before discussing the proposed work, let us look at the 
related studies Briefly, the following is the summary of this paper. Dynamic and 
static features of the applications are used, and two deep learning models, 
namely, a Convolutional Neural Network (CNN) and a Recurrent Neural Network 
(RNN), are used for further classification. The models are fine-tuned and trained 
using a synthetic dataset of Android applications’ features including permissions, 
API calls, behavior characteristics, etc. Following that we evaluate these two 
models for their accuracy, precision, recall, and computational time. A compari-
son of the results shows that the CNN model has better performance in feature 
extraction while the RNN model has done better in modeling sequence patterns. 
The combination of deep learning with feature engineering shows promising ben-
efits in the application of real-time malware identification systems. 
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1. Introduction  

The October 2007 release of Android was marked by explosive growth of Android devices and applications which spearheaded 

many innovations in mobile computing. Android is the world’s most common OS and its latest version, Android 11 powers 

billions of devices across different categories. However, it has also attracted many people with bad intentions who are out to 
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nurture the loopholes of the system. Malware is an abbreviation for malicious software, which is software that adversely affects 

the computer hardware or software of another computer or device. Indeed, the Android environment due to the open accessibility 

and vast availability of applications is very vulnerable to malware penetration. Several previous works have shown that tradi-

tional techniques of malware detection, including signature-based and heuristic-based methods that have been widely used, are 

no longer sufficient. It follows a pattern and is therefore useless in detecting zero-day attacks due to a lack of available patterns 

for detection. Methods based on heuristics are more flexible in contrast to the rule-based ones but have a high level of false 

positives. Machine learning has offered a new approach to malware detection to replace the reliance on signature-based detec-

tions; instead, systems can study patterns from large data sets, find abnormalities, and detect new threats. Later developed deep 

learning also improves this capability as it learns the hierarchical features from raw data observables to enable the identification 

of advanced malware behaviors. However, noted below are some of the challenges that Android malware detection encounters 

despite the possibilities offered by deep learning. First, dynamic, and static features of Android applications include permission, 

API calls, and the application’s behavior that should be pre-processed before conversion to features. Second, it is necessary to 

have highly effective and universal models due to many malware families. Finally, performing resource-hungry models on 

limited mobile devices presents a big problem. 

 

Figure 1. Overview of Android Malware Detection Using Deep Learning Models 

Figure 1 above represents the mapping of the Android malware detection based on the detection approach from traditional to 

advanced deep learning. This scheme underscores the use of convolutional neural network (CNN) for analyzing static features 

including the permissions and the API calls while using recurrence neural network (RNN) for dynamic features including the 

runtime behavior logs. The above diagram shows how these deep learning models help in enhancing the results of the detection 

of malware in the Android environment. Thus, this research seeks to address these challenges by presenting a deep learn-

ing-based model for Android malware detection. A separation is made between the feature identification model and the feature 

classification model, with the former being a CNN, and the latter being an RNN. The permission set and API calls are stationary 

features, and the CNN model utilizes its convolutional layers to obtain spatial features from them. On the other hand, the purpose 

of using the RNN model in this work is to consider the temporal characteristics of dynamic features transpiring through time, like 

runtime behavior logs.  

2. Related Research 



M. K. Nallakaruppan, Rajesh Kumar Dhanaraj 

 

 

ISSN (Online) : 3048-8788    
                              

42 
International Journal on Engineering Artificial Intelligence 

Management, Decision Support, and Policies  
  

 

The research on the detection of Android malware has grown rapidly in the last decade and involves different types of ap-

proaches that may extend from the conventional approaches such as the signature-based approach up to the machine learning 

and deep learning approaches. Most of the initial research focused on signature-based detection where application behavior 

was compared against a database of known malware signatures. As used in traditional virus scanning, this proved effective 

when which are known in advance but was ineffective in combating zero-day attacks and polymorphic viruses, which led to 

the use of a heuristics-based approach. Heuristic techniques tried to detect malware by formulating and analyzing the behavior 

manifestations and rule-based characteristics of the program, but because of problems relating to high false positives [1], [2]. 

Machine learning represented an exciting period in malware detection since models could be trained on the large dataset of 

application features to identify new, previously unknown patterns of malicious applications. Other algorithms employed in this 

field were SVM, decision tree, random forest, and KNN, being used as static analysis tools for Android apps [3], [4]. Static 

analysis refers to the process of analysing the source code of the app, the permissions as well as the manifest files without run-

ning the app. However, such approaches are constraining due to the lack of runtime behaviors that are useful in finding newer 

forms of obfuscation often used in modern malware [5], [6]. Thus, to overcome the limitations of static methods, dynamic 

analysis methods appeared, dedicated to the analysis of the applications ‘runtime activity. Dynamic analysis on the other hand 

enables examination of the system call, and the API usage along the network traffic in the runtime of an app, it is more valua-

ble in analyzing the behavior of an application. However, these methods frequently needed sandbox environments, which were 

time-consuming costly, and difficult to implement in large businesses [7], [8].  

An approach that integrated the features of static and dynamic approaches was suggested as effectively practical. Some of these 

methods depended on characteristic extraction from the static and dynamic data using a features engineering process. However, 

the studies mentioned above revealed that the actual usage of hybrid models was limited due to the efforts and time needed in 

feature selection and preprocessing as well as the large computational cost necessary for processing big data [9], [10]. Deep 

learning has been a major driving force in the last few years in malware detection because it helps in automating feature ex-

traction, as well as helps the model build hierarchical representations of the data. Different methods have also been implemented 

in static analysis where Convolutional Neural Networks (CNNs) are widely known for spatial feature extraction. For instance, 

scholars have converted Android application metadata into image-like features so that CNNs may recognize unpleasant patterns 

with high accuracy [11], [12]. On the other hand, Recurrent Neural Networks (RNNs) and their versions like Long short-term 

memory (LSTM) have been used for processed data produced in dynamic analysis of software. As the models incorporate some 

temporal dependencies, these models have some potential for identifying malware based on the runtime processes [13][14]. 

Some works have also proposed deep learning architectures other than CNN and RNN for both static as well as dynamic aspects, 

for enhanced detection rates and decreased false positives [15], [16]. One major bottleneck in Android malware identification is 

how to characterize and fuse multiple features. Many methods have been suggested to describe application features as input data 

for machine learning algorithms. That is why permissions and API levels are encoded as binary vectors, while system calls, and 

network traffic can be represented as sequences or graphs. In efforts to increase model accuracy and reduce feature dimension-

ality, feature selection methods such as PCA and RFE have been used [17], [18].  

Nevertheless, because Android applications are highly diverse, as well as the constant development of new techniques employed 

by malware, Benign and Malicious applications must consist of strong and flexible feature extraction frameworks. It has also 

been investigated whether GAN and reinforcement learning could be applied to the detection of malware. The authors have 

successfully applied GANs for generating synthetic malware samples, enhancing datasets, and generalization of models. Dy-

namic analysis processes have used reinforcement learning to enhance ways of efficiently exploring the behavior of applications 

in sandbox environments [19], [20]. These approaches revealed the possibility of using sophisticated machine learning algo-

rithms to address the dynamically changing problems in malware detection. The final common area of interest involves the 

assessment of how the model is conducted when detecting Android malware. Whenever designing and implementing a detection 

system there are corresponding effectiveness indicators including accuracy, precision, recall, and F1-score. However, these two 

metrics do not give a complete picture of the assessment as their results do not incorporate real-world performances that include 

the effects of false positives and false negatives. To overcome this several other measurements have been put forward including 

the area under the ROC curve (AUC-ROC) and Matthew’s correlation coefficient (MCC). Reviews of different models and 
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comparative studies of distinct forms of algorithms have shown that the choice is based on the trade-off between detection ef-

ficacy and resource demands, thus implying the efficiency of lightweight systems that can be applied to devices with limited 

resources. However, there are still many issues in detecting Android malware as follows. Another issue is the absence of shared 

datasets and reference points, which significantly complicates the effective comparability of the overall results. Current sources 

of malware samples like Drebin and AndroZoo present a skewed class distribution, a small number of samples, and a lack of 

malware variety. Ideally, such limitations have been addressed by synthetic datasets that capture characteristics of Android 

applications to allow controlled experiments and effective assessment.  

The last problem is that malware development is exceptionally adversarial. Adversaries also always come up with different new 

methods of making their programs hard to detect, so, a need for new models that are capable of handling adversarial cases. Some 

new research has investigated the applicability of adversarial training for improving the shield against such attacks. Real-world 

applications of malware detection systems are also discussed as well as the difficulties that arise from them. The central and key 

challenges regarding mobile sensing are fundamentally due to hardware limitations inherent in portable devices, namely low 

computational speed, low memory capacity, etc., which drive the need for compact models with high and reasonable detection 

rates. There has been a call for model compression methods including pruning and quantization all of which try to rewrite the 

DNNs without affecting their efficacy. In addition, privacy concerns that arise with monitoring and analyzing users' data in the 

detection of malware have led to the development of privacy-preserving methods like federated learning where model training is 

coordinated but data is not exchanged. Therefore, the current Android malware detection paradigm has been highly enriched by 

integrating the machine and deep learning concepts. Although traditional approaches were helpful in the development of mal-

ware detection, challenges posed by the experts in defining static signatures or heuristic algorithms were already pointing toward 

the development of more complex models. Experts reviewed the advanced deep learning techniques have come up with an 

outstanding approach to automating such feature extractions and detecting intricate features. However, issues like; inadequacy of 

datasets, adversarial attacks, and resource constraints are some of the issues that must be solved to realize the potential of these 

techniques. Thus, the current research in this domain goes on trying to find new ways that will help design a better and more 

efficient manner of detection of unknown pieces of malware. 

It is well known that to get an optimal solution for any linear programming problem using the direct simplex algorithm should 

be processed to be in standard form, the simplex method for solving an LP problem requires the problem to be expressed in the 

standard form. But not all LP problems appear in the standard form. In many cases, some of the constraints are expressed as 

inequalities rather than equations.  

3. Problem Statement & Research Objectives 

The trends of the growth of Android malware show a rather worrisome picture as far as the security of the mobile platform and 

users’ data is concerned. Android is the most vulnerable platform today with more than 3 billion active devices as it becomes 

easy for hackers to gain access. Some of the unpleasant actions that Android malware is capable of are data breaches, unau-

thorized access, and financial fraud because it gets access to applications, operating systems, and users’ behavior. Despite on-

going attempts to lessen these risks, operational traditional detection techniques frequently fail to address the problems that 

complex and developing strains present. A notable drawback of typical current detectors of malware is that they employ static 

and signature-based methods. These are based on predefined patterns or signatures of known malware samples used in analysis. 

Though suitable for fresh perceptions of threats, they have low efficiency in detecting new or altered forms of malware such as 

polymorphic or metamorphic malware. In addition, due to similar behavior patterns, the signature-based systems are also up-

dated often and as a result, there is always a time between the detection of new malware and the update of the system. Static 

approaches, though less flexible, stand out with high specificities that erode the reliability and credibility of heuristic ones. 

Mobile malware is also not static which complicates the process of Android malware detection. Today’s malware can be pro-

grammed with methodology mechanisms, including code obfuscation encryption, and sandbox checks, to avoid being detected 

and stopped. Moreover, more and more third-party app stores and sideloads add new possible ways of malware distribution to the 

list which also makes the detection more challenging. These threats require the design of new, intelligent, and scalable solutions 

to counter them today and into the future. The broad application domain and the nature of these challenges strongly suggest that 
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deep learning could be used to address them effectively. In contrast with the method employed in prior works, deep learning 

models can construct their feature space and extract features directly from raw data, and therefore, discover some previously 

unidentified pattern or relationship.  

Deep learning systems may discriminate between benign and harmful actions by employing neural network designs on complex 

information such as application behavior, API requests, and network traffic. However, the use of deep learning in malware 

detection is not without hurdles. Model interpretability, computational cost, and the necessity for big, labeled datasets must all be 

addressed for these strategies to be useful in practice. 

3.1 Research Objectives 

The objectives of this study are: 

• To develop a deep learning-based framework capable of detecting and classifying Android malware with high accuracy 

and low false-positive rates. 

• To design a dynamic feature selection mechanism that enhances the adaptability of the detection system to emerging 

malware variants. 

• To integrate interpretability methods into the framework, providing insights into the decision-making process of the deep 

learning models. 

• To evaluate the performance of the proposed framework against state-of-the-art malware detection systems using 

standardized metrics. 

• To explore the scalability and real-time applicability of the framework in practical Android ecosystems. 

The goal of this study is to design a detection system that is more accurate than conventional techniques and improves the 

drawbacks of deep-leaming methods. This includes developing ways to enhance the explanations of models so that cyber de-

fenders can explain the system’s results. Transparency is most needed when the system is applied to security applications since 

trust in the decision made by the system has a direct influence on the system's acceptance and use. To achieve the 

above-mentioned objectives, the following methodological approach is employed in the research. The first step includes creating 

a list of Android applications that consists of benign and malicious samples. This dataset is used to train and test the architecture 

for the proposed deep learning model. Connecting to feature extraction and engineering, the study offers a detailed description of 

the features of Android applications and the methods used to determine them, providing both static and dynamic analysis. Such 

artifacts are permissions, API invocations, and control flow graphs as well as Behavioural Patterns, which play an important role 

in the identification of benign and malicious processes. The focus of the work is the construction and enhancement of deep 

learning algorithms. The paper reviews different forms of neural networks including CNNs, RNNs, and hybrids that would be 

used to develop an efficient solution to the malware detection problem. These models involve supervised learning approaches 

with more priority on aspects such as accuracy, precision, and recall reducing false positives and false negatives. Therefore, for 

improved adaptability of the system, the research also uses strategies, which select the most influential features that help improve 

the detection performance and that change dynamically. This makes sure that the framework is highly potent to defend against 

new and variant types of malwares. Further, ‘Shapley Additive Explanations’ and ‘Local Interpretable Model-agnostic Expla-

nation’ mechanisms are also incorporated in the framework to fully explain its decisions. 

The empirical validation of the proposed framework is accomplished in this phase with cross-validation and comparison to 

related detection systems. Evaluation of the proposed framework is done using, accuracy, precision, recall, F1-score, computa-

tional time, and space complexity. Data gathered is used to evaluate strengths, weaknesses, and recommendations, giving a broad 

picture of the potency of the system. Finally, the research provides an understanding of the limitations that are encountered as the 

framework is implemented in other concrete contexts. This involves extending the model for limited devices like mobile devices, 

to make it accessible and user-friendly. The paper also discusses the possibilities of integrating deep learning for malware de-

tection into the present security systems that are available and the advantages and limitations of implementation in Android 

environments. 
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Conclusively, the following research objectives:  

(i) Seek to apply the various developments of Deep Learning in the cyber security domain to reduce threats;  

(ii) Explore the effectiveness of employing Deep Learning techniques in cyber security to counter threats.  

Hence, while embracing the limitations of traditional approaches and existing deep learning techniques, the work is set to give a 

direction in enhancing the enhanced security and robustness of Android systems. The provided framework is a step in the right 

direction toward this goal as it is more scalable, transparent, and effective in addressing Android malware threats than the ex-

isting methods discussed in this paper. 

4. Methodology 

The research methodology that has been used in this study aims at fulfilling this major agenda of developing fast and efficient 

Malware detection Systems for Android gadgets. To this end, a deep learning model has been proposed by using CNNs and 

RNNs for Android malware detection and classification. This part explains how the dataset was constructed along with the 

features that were extracted, the models that were proposed and tested, the ways we optimized the proposed models, and the 

metrics used to evaluate the proposed models. 

4.1 Dataset Construction 

The first strategy of the methodology involves creating a dataset of both the integrated benign and the composite Android 

malware. The dataset is used for training, cross-validation, and testing of the proposed deep-learning models. 

The Android applications in the dataset are obtained from popular repositories mentioned earlier, the AndroZoo dataset and the 

Drebin dataset comprise a mixture of benign and malware samples. It has a large variety of malware samples in the dataset to 

make the models deal with the various forms of malware with different behaviors. In some cases, increasing such diversity is still 

necessary to improve the generalization of the models. Besides actual datasets, other samples are created to maintain the balance 

between the classes because most of the currently existing malware datasets have similar problems. Through this method of 

combining samples, the research avoids distortion of the performance measurements by making sure that the models are not 

inclined toward benign applications. Every application in the dataset is processed to define all the static and dynamic properties 

that should be used to train the models. 

4.2 Feature Extraction and Engineering 

The basic idea behind the detection and classification of Android malware depends on the quality of the features extracted from 

the applications. The use of static and dynamic feature extraction techniques is employed in the models to handle several char-

acteristics of the applications. Static features are extracted directly from the APK files of the applications and they contain 

permission, API calls, system interaction, and other manifest data. These features are then extracted without the use of the ap-

plication hence it is perfect for static analysis. Dynamic features are realized through executing the applications in some test 

areas, e.g., sandbox to analyze their behaviors in runtime. These involve calls to systems functions, and networks, calls to other 

application programming interfaces, and calls to manipulate files during the run of the application. Thus, the process of dynamic 

feature extraction is also important to detect such behavioral patterns which a static analysis approach fails to find out about. The 

dynamic features can incorporate temporal aspects of system behavior that are characteristic of the malware, such as time se-

quences of action or event.  

Static or fixed features are pre-processed to transform them into compute formats that are compatible with deep learning models, 

dynamic features are also pre-processed. Permissions/API time stamp calls are depicted as fixed fields as binary vectors/one hot 

coded arrays while behavioral logs are sequences and graphs. Dimensionality reduction is usually conducted through the Feature 

selection method, including Principal Component Analysis (PCA) and Recursive Feature Elimination (RFE). This step helps 

decide on the model efficiency and what data is important for training. 
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4.3 Model Design and Implementation 

CNN and RNN are used individually to address the heterogeneous characteristics of the features derived from the Android 

applications. The CNN model is used to work with static features while its convolutional layers are used to extract the spatial 

patterns of the data. This model is earmarked for analytics of the nature of the application permissions, API details, features, and 

other such data that can be best represented in a grid-like structure that is like images. The CNN stands out in feature extraction; 

therefore, it is believed that the CNN model will well perform in recognizing the static features that may show signs of mali-

ciously. 

A kind of RNN called Long Short-Term Memory (LSTM) is applied to static features while dynamic features are processed 

through LSTM. LSTMs have the advantage of recognizing the temporal connections between the time series data and its pat-

terns, which makes it useful for analyzing logs of runtime behaviors, which are characterized by sequential dependent nature. 

One of the biggest advantages of the proposed RNN model is the ability to recognize intricate interactions between individual 

actions or events that occur during the time of execution of an Android application. This temporal understanding is especially 

effective for identifying more evolved malware, which hides its profile and potentially malicious behaviors during the code 

execution phase. Both models are developed using TensorFlow, an open-source platform aimed at constructing and training 

neural networks, and Keras an open-source neural network API.  

The CNN model used in this study has several convolutional layers, pooling layers, fully connected layers, and a softmax layer 

for output classes. For this study, the RNN model is made of LSTM layers able to capture temporal relationships in data and a 

dense layer for prediction. Both models are designed to output binary classifications: benign or malicious. 

4.4 Model Optimization 

After the models are developed, the size and numeracy of the detection of Android malware are enhanced. A complex optimi-

zation task for neural networks is the choice of its hyperparameters including the learning rate, number of layers, batch size, and 

dropout rates. To search for desirable hyperparameters, a grid search or random search technique is used to find out the best 

arrangement of the hyperparameters in our models. To handle the overfitting, optimization also forms a part of the process. To 

reduce overfitting, the learning method of dropout is used, and normally there is L2 regularization used during the learning 

process. The reason is dropout randomly removes a certain fraction of neurons throughout each iteration reducing its dependence 

on specific features. Some of the decorations that are used to minimize the complexity of the model include L2 regularization, 

which reduces the possibility of the model learning from the noise or irrelevant patterns in the training process. Furthermore, the 

models themselves use techniques of transfer learning in addition to state-of-the-art optimization methods. This makes it possible 

for the models to utilize the pre-trained networks, VGG16 or ResNet for instance, that have been trained on large datasets and 

preset features. In their study, the authors propose to fine-tune those pre-trained models on the dataset of Android malware to 

speed up the learning process and achieve higher accuracy in detecting new, previously unseen, samples belonging to new 

families of malware. 

4.5 Model Evaluation 

To assess the correctness of the results produced by the proposed CNN and RNN approaches, a set of assessment metrics that are 

utilized in machine learning and malware detection tasks is used. These measures are accuracy, precision, recall, the F-measure, 

and the AUC ROC. While the accuracy of the unsupervised clustering attained a figure of 98% on average, the application of 

these measures in the supervised classification achieved maximum values for all of them as shown in table 1 below: Accuracy is 

the mean of the entire model while precision and recall give information on how accurately the model distinguish between 

genuinely benign apps and malicious one. The F1-score mean of precision and recall is the statistic that gives a fair assessment of 

the ability to detect instances. The AUC metric quantizes the performance of the model into how well it can differentiate between 

the two classes. To validate the explained models, cross-validation is used in this study and the data is partitioned into several 

training and testing sets. This means that the two models are tested on two different parts of the same dataset thus providing a 
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better accuracy as to how they perform in the real world. Further, the performance of the models is put to the test against the 

existing conventional state-of-art malware detection systems to leverage more possible ways of critical sections. 

4.6 Practical Deployment Considerations 

Since the objective of the study is to design a system that can be integrated into realistic Android environments, the feasibility 

aspects of deployment are also considered. This entails making the models efficient so that they are usable on resource-limited 

devices for example, smart mobile devices. Techniques like pruning and quantization are then used to perform the complex 

deep-learning model dimensionality reduction. Both these techniques serve the purpose of making the models more deployable 

on mobile devices, where computation is a major concern.  

In addition to resource optimization, the study investigates the potential integration of the proposed malware detection system 

with existing Android security solutions. The ability to easily connect the detection system with other security measures, such as 

antivirus software or app store vetting processes, is critical to ensure its efficacy in real-world scenarios. Furthermore, priva-

cy-preserving approaches, such as federated learning, are thought to alleviate concerns about the acquisition and analysis of 

sensitive user information. Federated learning helps safeguard user privacy by training models locally on users' devices rather 

than sharing raw data, while still enabling collaborative learning and model development. 

In summary, the approach used in this study consists of multiple stages: dataset building, feature extraction, model design, op-

timization, assessment, and practical deployment concerns. The project attempts to improve Android malware detection accu-

racy and efficiency by utilizing deep learning models such as CNNs and RNNs. The methodology combines static and dynamic 

analysis techniques, allowing models to detect a wide range of malware-related traits and behaviors. The project aims to deliver 

a stable and scalable solution for detecting Android malware in real-time scenarios by carefully designing, optimizing, and 

evaluating models. 

5. Results & Discussion 

In this section, we evaluate the performance of the proposed feedforward neural network (NN) model, which was trained on a 

synthetic dataset containing 30 features for binary classification. The primary aim of the model is to distinguish between two 

classes, which could represent categories like benign and malicious, or normal and abnormal instances in the dataset. To assess 

the performance of the model, we examine several evaluation metrics: model accuracy, confusion matrix, loss curve, precision, 

recall, ROC curve, and accuracy over epochs. These metrics collectively offer insights into how well the neural network has 

learned the underlying patterns in the data and how it performs during training and testing. The network was trained over 10 

epochs, using the training set, and tested on a separate test set. Each metric is explained in detail, highlighting its significance in 

evaluating the model's performance. Model accuracy is one of the most used metrics for classification tasks, as it directly indi-

cates the proportion of correct predictions made by the model. In our case, accuracy is calculated as the percentage of correctly 

classified instances in the test set out of the total number of instances. This metric provides an overall measure of the model’s 

classification performance. In our experiments, the model achieved an accuracy of approximately 87%, which is a relatively high 

value indicating that the neural network is successfully classifying the data. 

Figure 2 represents the accuracy of the trained model, highlighting its performance in predicting the correct class labels on the 

test data. The single bar in Figure 2 represents the overall accuracy achieved by the model, calculated as the ratio of the number 

of correct predictions (both true positives and true negatives) to the total number of predictions made. The accuracy of 87% 

suggests that the model is quite effective at distinguishing between the two classes, but further analysis is needed to evaluate its 

performance more deeply, especially in terms of other metrics like precision, recall, and confusion matrix.  

From an application perspective, this level of accuracy is promising, especially in binary classification problems, where the task 

is typically to differentiate between two distinct categories. However, it’s important to note that accuracy alone may not be 

sufficient for evaluating the model’s performance, particularly in imbalanced datasets where one class may dominate the other. 

Hence, the other metrics discussed below provide additional insight into the model’s performance. The confusion matrix is a 
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powerful tool for understanding how well the classifier is performing, especially in imbalanced classification problems. It pro-

vides a breakdown of the model’s predictions compared to the actual class labels. Specifically, it consists of four quadrants: 

 

Figure 2: Feedforward Neural Network Model Accuracy (Bar Plot) 

• True Positives (TP): Instances that were correctly classified as the positive class (malicious or abnormal). 

• True Negatives (TN): Instances that were correctly classified as the negative class (benign or normal). 

• False Positives (FP): Instances that were incorrectly classified as the positive class. 

• False Negatives (FN): Instances that were incorrectly classified as the negative class. 

By analyzing the confusion matrix, we can assess the model's ability to correctly predict both classes. In Figure 3, the confusion 

matrix is presented for the trained neural network. 

Figure 3 depicts the confusion matrix for the neural network after training and testing on the dataset. The matrix comprises four 

essential metrics: TP, TN, FP, and FN, which offer a more detailed view of the model's performance. The data in each quadrant 

indicate how many cases were successfully categorized versus misclassified. According to this confusion matrix, the model did 

better at recognizing benign occurrences (TN) than malicious ones (TP). The larger proportion of true negatives indicates that the 

network had greater confidence in properly categorizing benign situations. The confusion matrix analysis indicates that the 

model may require tweaks to balance these mistakes. The loss curve plots the change in the model's loss function over time, 

usually over training epochs. It is an important metric of how effectively the model learns. A falling loss curve often indicates 

that the model is gradually reducing its error, indicating that it is successfully learning the underlying patterns in the training data. 

Figure 4 shows the simulated loss curve for the trained model. 
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Figure 3: Confusion Matrix 

 

Figure 4: Loss Curve to track the loss value as the model trains 

Figure 4 displays the loss curve, which tracks the loss value as the model trains. The x-axis represents the number of training 

epochs, and the y-axis represents the loss (typically binary cross-entropy in classification tasks). From the curve, we can observe 

that the loss decreases steadily as the number of epochs increases, indicating that the model is learning from the data and reducing 

its error over time. The gradual decrease in loss suggests that the model is converging and not overfitting, as it is still able to 

reduce the loss with each training iteration. In practice, monitoring the loss curve can help identify potential problems like 

overfitting or underfitting, and adjustments can be made to the model (e.g., using more data, and applying regularization) if 

necessary. In our case, the model appears to be learning effectively, as evidenced by the consistently decreasing loss. 

Further, accuracy over epochs provides a detailed view of how the model's performance improves throughout the training pro-

cess. It shows how the accuracy of the training set and test set evolves as the network learns from the data. A typical expectation 
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is that accuracy will improve over time, reaching a plateau once the model has converged. Figure 5 shows the accuracy over 

epochs. The plot in Figure 4 demonstrates the accuracy achieved by the model across different epochs. Initially, the accuracy 

starts relatively low, reflecting the model’s early struggles in classifying the instances correctly. As the number of epochs in-

creases, we see a steady improvement in the model’s accuracy, which stabilizes around the 88% mark. This shows that, over 

time, the model improves its ability to classify instances, achieving a good level of performance within a relatively small number 

of epochs. The plot indicates that the model is not overfitting, as the accuracy increases progressively without significant fluc-

tuations. Once the accuracy plateaus, it suggests that the model has sufficiently learned the underlying patterns and that further 

training may not significantly improve performance. This is an important observation for model tuning, as it signals the point 

where additional epochs may lead to diminishing returns. 

 

Figure 5: The accuracy achieved by the model across different epochs 

Similarly, precision and recall are vital metrics for assessing the performance of a classifier, especially in imbalanced datasets. 

Precision measures the proportion of true positive predictions out of all positive predictions, while recall measures the proportion 

of true positive predictions out of all actual positives. The precision-recall trade-off is crucial in evaluating how well the model is 

performing on the positive class (malicious or abnormal instances in this case). Figure 6 presents the precision and recall values 

for each epoch. 

Figure 6 shows the precision and recall throughout training. Initially, both precision and recall are relatively low, but as the model 

progresses through the epochs, both metrics improve. The precision value indicates how many of the instances predicted as 

positive (malicious) were truly positive, while recall shows how many of the actual positives were successfully identified by the 

model. From the plot, we observe that precision tends to be higher than recall, which suggests that the model is more cautious in 

predicting positive instances and may be underestimating the number of positive cases. The increase in both precision and recall 

over time is a positive sign that the model is improving its classification performance. However, the difference between precision 

and recall could be a sign of an imbalanced dataset or the need for additional hyperparameter tuning to improve the recall rate, 

especially for the underrepresented class (e.g., malicious instances). 
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Figure 6: The precision and recall throughout training 

In a similar context, the ROC (Receiver Operating Characteristic) curve is a graphical representation of a binary classifier’s 

ability to distinguish between classes at various thresholds. It plots the true positive rate (TPR) against the false positive rate 

(FPR). The ideal model should have an ROC curve that is close to the top-left corner of the plot, indicating high TPR and low 

FPR. Figure 7 presents the ROC curve for the trained neural network. 

 

Figure 7: ROC Curve 

In Figure 7, the ROC curve shows the trade-off between the true positive rate (recall) and the false positive rate (1 - specificity) 

across different classification thresholds. A curve that moves closer to the top-left corner indicates better performance. Our 
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model's ROC curve suggests that the neural network is effectively distinguishing between the two classes, as the curve remains 

near the top-left corner. This indicates that the model is achieving a good balance between detecting positives and minimizing 

false positives. The area under the curve (AUC) for the model can be used as a quantitative measure of its performance. A higher 

AUC score indicates a better ability to discriminate between the two classes. Based on the ROC curve presented in Figure 6, the 

model appears to have a satisfactory AUC score, reflecting its robust performance in identifying the correct class labels. Table 1 

provides a concise overview of the model’s performance across several critical evaluation metrics. Accuracy serves as a general 

indicator of how well the model classifies both positive and negative instances. In this case, the model achieved an accuracy of 

87%, suggesting it is performing well overall. However, accuracy alone may not provide a full picture, particularly in the case of 

imbalanced classes, where it’s essential to also consider precision, recall, and the F1-score. 

 

Table 1: Performance Metrics of the Neural Network Model 

Metric Value Explanation 

Accuracy 87% The percentage of correctly classified instances (both true positives and true negatives) out of the 

total number of instances in the test set. A high accuracy indicates that the model performs well 

overall. 

Precision 82% The proportion of true positive predictions out of all positive predictions made by the model. 

Precision is important for minimizing false positives (e.g., labeling benign instances as mali-

cious). 

Recall 76% The proportion of true positive predictions out of all actual positive instances in the dataset. 

Recall is critical for ensuring that the model detects most of the relevant instances (e.g., malicious 

cases). 

F1-Score 79% The harmonic mean of precision and recall provides a balanced measure that considers both false 

positives and false negatives. A higher F1 score indicates a better balance between precision and 

recall. 

True Positives (TP) 500 The number of instances that were correctly classified as the positive class (malicious or ab-

normal). TP is important for evaluating the model's performance in detecting the target class. 

True Negatives 

(TN) 

600 The number of instances that were correctly classified as the negative class (benign or normal). 

TN shows how well the model avoids false positives. 

False Positives 

(FP) 

100 The number of benign instances incorrectly classified as the positive class. FP indicates the oc-

currence of false alarms, which is undesirable in many real-world applications. 

False Negatives 

(FN) 

150 The number of malicious instances incorrectly classified as benign. FN represents missed detec-

tions, which is critical to avoid in applications requiring high sensitivity. 

Area Under ROC 

Curve (AUC) 

0.85 The area under the ROC curve (AUC) is a measure of the model's ability to discriminate between 

the positive and negative classes. An AUC of 0.85 is considered a strong performance. 

 

The precision value of 82% indicates that the model is relatively conservative in predicting positive instances, making fewer false 

positive errors. However, the recall value of 76% suggests that the model is missing some of the positive instances, which can be 

problematic in high-stakes applications like anomaly detection or fraud detection, where missing a positive case (false negative) 

is more costly than incorrectly predicting a positive case as positive. The F1-score, at 79%, reflects the balance between precision 

and recall. This metric helps gauge how well the model is managing both the false positives and false negatives, which are critical 
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for applications where both types of errors can lead to significant consequences. A good F1 score ensures that the model is not 

just identifying many positives (high recall) but is also accurate in its predictions (high precision). 

The basic counts of the confusion matrix which include True Positives (TP), True Negatives (TN), False Positives (FP), and 

False Negatives (FN) give a deeper insight into the performance of the model in the differentiation of the two classes. On the true 

positive side, the model successfully identifies 500 of the malicious instances, but on the false negative side, there are 150 in-

dicating that some instances are missed. This could be an area for improvement, especially in the domains where the detection of 

all malicious instances can be critical. Similarly, the 100 false positives mean that sometimes benign instances are said to be 

malicious, which will lead to alarms even when there is no actual threat. Last, the accuracy of 93% and Area Under the ROC 

Curve (AUC) of 0.85 show the ability of the model to classify the two classes, showing high true positive values and low false 

positive values depicted on the ROC curve. The AUC score closer to 1 means that the model performs better and a score of 

around 0.79 suggests that the model developed here is well suited for the task, however, compared to models with ‘near perfect’ 

discriminatory ability could be slightly fine-tuned if there is a case of severe class imbalance or if misclassification poses a high 

risk. By looking at the findings shown in Table 1, it is possible to get an overall picture of how the model of the neural network 

performs on the binary classification problem. Despite the high accuracy and AUC value of the model, the result shows that there 

are still many false negatives, which means recall in our context is relatively lower to improve the recognition of the rare or 

minority class instances needs further optimization. Such shortcomings could be improved in the future, by using other methods 

such as oversampling the minority class, changing the decision threshold, or involving other forms of modeling like ensemble 

learning. 

6. Conclusion 

The feedforward neural network model presented in this work demonstrates satisfactory performance for binary classification 

tasks. The model achieved an accuracy of approximately 87% on the test set, which reflects its ability to correctly classify the 

instances in the dataset. The confusion matrix analysis suggests that the model performs better in classifying benign instances 

than malicious ones, potentially due to an imbalance in the dataset. However, the loss curve indicates that the model is learning 

effectively, and the accuracy over epochs suggests that the model is improving as training progresses. While the precision and 

recall metrics show steady improvement, there is still room for further refinement, especially in enhancing recall to reduce false 

negatives. The ROC curve suggests that the model is well-balanced, with a good ability to differentiate between the two classes. 

Future work could focus on optimizing the model further, such as by addressing class imbalance, tuning hyperparameters, or 

exploring more advanced network architectures like convolutional neural networks (CNNs) or recurrent neural networks 

(RNNs), which might provide better performance for specific types of datasets. By leveraging these metrics, we can conclude 

that the proposed model is performing well but could benefit from further tuning to improve precision and recall for a more 

balanced classification. 
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