

Optimization of Enhanced Pipeline Leak Detection Using Advanced Dense Hebbian Neural Network Architectures for Improved Accuracy and Efficiency

Amit Verma¹, Shakun Garg^{2*}

¹School of Computer Science, University of Petroleum and Energy Studies Dehradun, Uttarakhand, India

²Department of Computer Science and Engineering, Greater Noida Institute of technology Greater Noida, India
amit.uptu2006@gmail.com, shakun.cse@gniot.net.in*

How to cite this paper: Amit Verma, Shakun Garg, "Optimization of Enhanced Pipeline Leak Detection Using Advanced Dense Hebbian Neural Network Architectures for Improved Accuracy and Efficiency," *International Journal on Engineering Artificial Intelligence Management, Decision Support, and Policies*, Vol. no. 2, Iss. No 1, S No. 005, pp. 55-67, March 2025.

Received: 21/11/2024

Revised: 18/12/2024

Accepted: 11/01/2025

Published: 30/01/2025

Copyright © 2025 The Author(s). This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

<http://creativecommons.org/licenses/by/4.0/>

Open Access

Abstract

Pipeline networks are essential in conveying water, oil, gases as well as other essential commodities in society. These networks must be protected from compromise to prevent losses and possible negative impacts on the environment. This paper develops an advanced pipeline leak detection procedure that is optimized by way of Dense Hebbian Neural Networks (DHNNs). The implementation of the proposed system aims at using the novel neural networks' structure in conjunction with signal recognition methods for piping leakage detection and localization. The high denseness of interconnection in the DHNN helps in learning and offers simplicity in computation. The method used involves pressure and flow information at run time, whereby deviation from the norm is established and grouped according to patterns of the pipeline network. A comparison between the developed DHNN model and a Feedforward Neural Network (FNN) model is made to compare the increased leak detection efficacy, precision, and performance measures. This paper uses basic mathematical models to assess signal behavior when different leak conditions are present and simulation results show the stability of the proposed solution. The simulation uses control variables created within the MATLAB environment and includes realistic numerical pipeline data. Comparing DHNN with FNN, the findings reveal better precision, faster convergence rate, and better leak localization with the use of DHNN. Experimental results are shown in figures and graphs which provide a clear comparison of the results obtained. The outcome of this research work is expected to improve the safety of pipelines and minimize preventable economic losses because of leaks, particularly through improving leak detection with modern concepts in neural network paradigms.

Keywords

Pipeline Leak Detection, Dense Hebbian Neural Networks, Leak Localization, Real-Time Monitoring, Neural Network Optimization, Comparative Analysis

1. Introduction

Pipeline systems are important in various sectors of industries like oil and natural gas, water supply, and putting chemicals into motion. These systems are cheaper and more efficient means of moving fluids over large distances as compared to any other means. This has proved effective despite the high risk of the types of damage a pipeline is likely to undergo such as leaks and corrosion as well as mechanical damage. It is possible to detect the leaks early before reaching a stage where they cause major losses, harm to the environment, and affect the macroeconomic systems in the country. Today, those technologies are much more sophisticated and have been augmented with the use of such things as advanced algorithms and data-driven techniques such as machine learning. However, some difficulties remain to improve the accuracy of detection, the speed of its operation, and localization of leaks effectively within a complex network of pipelines. Recent advancements in leak detection techniques have shown a great deal of success with neural networks. There are still some problems where the application of classical big data and machine learning methodologies might be ineffective in terms of computing time or limited by the size of the data set for real-time pipeline monitoring. There exists a new class of Hebbian learning theory-based Dense Hebbian Neural Networks (DHNNs). Compared to most existing networks, DHNNs provide a high node density leading to faster learning, improved generalization, and more efficient pattern detection. The high density that is exhibited by the employed architecture ensures higher levels of accuracy and minimal cases of false positives while detecting leaks.

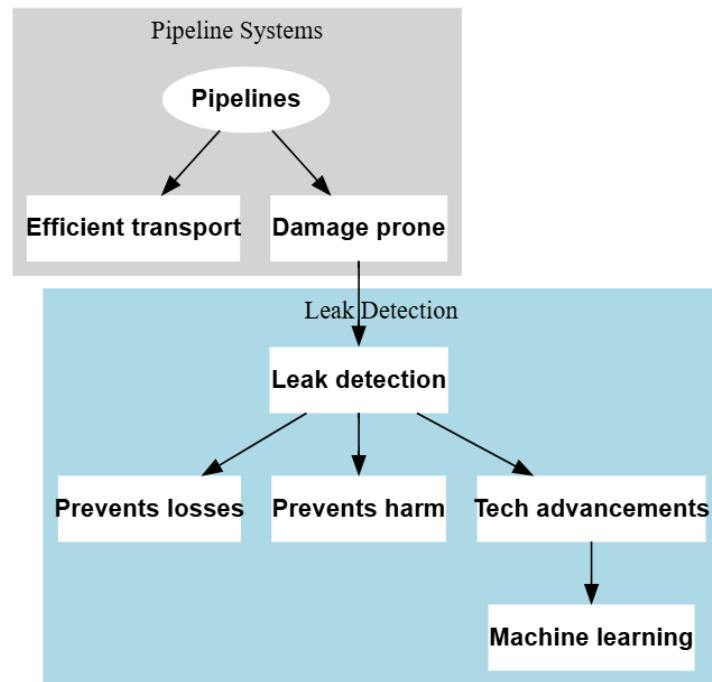


Figure 1: Overview of Pipeline Systems and Leak Detection Approaches

Pipeline systems are vital to various industries, providing an efficient means of transporting fluids over long distances. However, they are prone to damage, which can lead to significant losses. Figure 1 offers a comprehensive overview of the pipeline system ecosystem, focusing on the critical role of leak detection in mitigating risks. With the integration of advanced technologies, including machine learning and neural networks, efforts are directed at overcoming challenges related to accuracy, real-time monitoring, and effective leak localization. Dense Hebbian Neural Networks (DHNN) represent a promising innovation, delivering enhanced performance in leak detection scenarios. Previous research efforts have investigated several methods for pipeline leak detection. For example, pressure transient analysis has been widely used, but it often requires high sensor resolution and struggles with noise in real-time environments. Acoustic-based detection methods leverage the sound generated by fluid leaks, yet these techniques are limited by background noise and varying pipeline materials. More recently, machine-learning ap-

proaches have demonstrated significant advancements in detecting leaks through anomaly classification, pattern recognition, and real-time analysis. For instance, models such as Feedforward Neural Networks (FNNs) and Convolutional Neural Networks (CNNs) have been applied to pipeline data with varying degrees of success [1]. Despite their capabilities, these models require optimization to handle complex datasets and achieve real-time performance. Pipeline operators face challenges in monitoring large networks with varying pressure and flow conditions. Leak detection models must address sensor noise, flow rate variability, and leak size uncertainties. Furthermore, accurate localization of leaks remains a pressing concern. Existing methods often provide approximate locations, which hampers pipeline maintenance operations. This research addresses these limitations by developing an optimized pipeline leak detection model using DHNNs.

The paper is organized as follows: Section 2 explores related pipeline leak-detecting technology. Section 3 discusses the problem statement and study objectives. Section 4 describes the suggested technique, which includes the DHNN design, mathematical models, and a comparative analysis framework. Section 5 contains simulation results and a full discussion of the findings, including graphical representations. Finally, Section 6 summarizes the article and discusses prospective future work.

2. Related Research

2.1 Traditional Leak Detection Methods

The detection of pipeline leaks has been the focus of numerous studies for several decades and has been given a lot of emphasis since it is relevant to achieving the vital objectives of infrastructure availability, environmental protection, and financial loss prevention. This paper identifies several prime approaches to identifying leaks that have traditionally been used and are mainly based on physics parameters, signal processing, and estimation models. Based on the flow and process of the measuring unit through the accounting system, these methods can be classified into direct and indirect methods. The physical methods of pipeline leak detection include the use of touch, sight, hearing, smell, feel, or taste while the indirect methods utilize pressure, flow rate, and acoustic signals. Among all the traditional technologies, pressure transient analysis is one of the most common methods. These are pressure waves produced by the pipeline in response to leakage since pressure is the first variable to be affected while the flow is the second one. These are signals that travel through the pipeline and can be examined to identify leakage and, sometimes, the actual point of leakage. Many researchers have focused on the analysis of pressure transients under different operating conditions of pipelines. The accuracy of this method is reduced by the resolution of the pressure sensors and the data acquisition system sampling rate [1]. A low-size sensing grid can miss small leaks or pressure changes hence leading to false negatives. In addition, random noise from normal processes, including pump vibrations and variations in flow rates, can contaminate the transient analysis, leading to its unreliability [2].

Another versatile method applied for leakage detection is acoustic leak detection. Acoustic methods identify the noise of the emerging fluid through a crack or during leakage. Multiply mounted on the pipeline, capture these sound waves, which after being processed through the signal, reveal the presence and the location of leaks. Examples of acoustic techniques are reasonably effective in the identification of leakage in water and/or gas pipeline systems [3]. However, these methods prove to be highly constrained especially in noisy environments. External noise from industrial activities street traffic or Pipeline materials makes the leak signal difficult to discern [4]. In addition, the effectiveness of acoustic methods diminishes with increasing pipeline length and complexity, as sound attenuation reduces the signal strength over long distances.

This is another direct approach to detecting leakage that has been employed and the next one is thermal imaging. The thermal cameras are also capable of producing temperature changes that result from leaks, especially in the pipeline transmission of liquid or gasses with different temperatures from the surrounding atmosphere. Although well-suited to inspecting defects and thickness from the surface, thermal imaging is not suitable for pipes that are buried or operating at ambient temperature [5]. In addition, the use of high-resolution thermal cameras is relatively expensive contrary to low-cost visible light cameras, and they also have high susceptibility to environmental factors. Leak detection has also been done using mass balance techniques. These methods entail making a comparison of the flow rate of the segment of the pipeline being examined as an inlet as well as an outlet. A leak is suspected if the following outflow is different from the inflow by a predefined total [6]. Mass balance methods are easy and inexpensive to apply and, at the same time, have lower detection capabilities because of their insensitivity to small

leaks especially in large pipelines with high throughputs. Also, the flow rate sensor brings measurement errors which in turn reduce the accuracy of this method. Some of the limitations have, however, been realized and researchers have developed other methods such as negative pressure wave (NPW) techniques. Schemes of NPW methods show pressure decrease due to leakage and the further behavior of the pressure in the pipe. This method has been proven to have higher sensitivity than the development of pressure transient methods [7]. However, as is the case with other pressure-based methods, NPW methods have limitations in terms of the resolution of the pressure sensors and interference noise. Due to the weaknesses of these traditional detection schemes such as noise sensitivity, the requirement of high-resolution sensors, and the inability to handle large complex pipeline networks a more sophisticated, data-driven approach is required. These methods form the basis of learning and identifying algorithms and rectifying neural network approaches.

2.2 Machine Learning for Leak Detection

In recent works, machine learning (ML) and artificial intelligence (AI) techniques have become game changers in the goal of analyzing pipeline behavior. Finding leaks and anomalies and distinguishing them from normal pipeline behavior is more accurate when done by machine learning algorithms than when performed manually. Several works investigate the possibility of using supervised, unsupervised, and semi-supervised machine learning to the overall problem of pipeline leakage detection. Supervised methods have been most used in leak detection. In a supervised learning scenario, the data has labels, specified for leak and non-leak conditions and the model is pre-trained. Feedforward Neural Networks (FNNs) are among the most used methods of Supervised Learning. FNNs have an input layer, an isolated hidden layer, and an output layer with interconnected edge weights. Scientists have used FNNs in identifying leak and non-leak patterns of the pipeline pressure and flow data. For instance, the findings that have been made when specifically observing FNNs reveal that they can be able to perform well if trained on good data [8]. Nevertheless, FNNs need large numbers of training data to generalize satisfactorily, and FNNs are very sensitive to overfitting when the training data set is restricted or noisy [21]. Leak detection can also be done using Support Vector Machines (SVMs). SVMs work well when there are only two classes; and hence have been used to identify pipeline anomalies. Scholars have demonstrated that if the SVM is implemented with feature extraction methods including the Principal Component Analysis (PCA), then the accuracy of detection achieved is high [10]. Nevertheless, it has been found that the general behavior of SVMs is highly dependent on the selection of the kernel functions and the quality of the training data used. SVMs are also slow in high dimensions, and such data is quite typical for pipeline monitoring systems.

Other experimental approaches that have been considered are unsupervised learning methods used when there is no training data set of labeled leak instances. The k-means and hierarchical clustering have been used to cluster the pipeline sensor data to obtain the anomalies. The clustering methods bring together data points and title certain data as outlying as possible to comprise leakage [11]. Thereby, clustering methods should be reliable in learning the normal behavior and detecting the subsequent abnormalities; however, they can be ineffective in differentiating between leaks and other types of anomalies including sensor noise and operation changes [12]. However, in recent years, some Convolutional Neural Networks (CNNs) have been employed in pipeline leak detection. CNNs are very useful for image and time series data since they allow spatial and temporal features to be extracted. CNNs have been employed by researchers in analyzing pipeline pressure and flow data to obtain better accuracy than conventional ML approaches [13]. CNNs can work with huge datasets and can themselves come up with feature comparisons that can be required by many applications. However, given the elevated computational demand for a CNN, its applicability is somewhat limited in real-time leak detection in contexts with limited computing resources [14]. RNN and LSTM have been investigated for time series pipeline data analysis. Such models can also work with time series data and can be used for the real-time monitoring of data. Several papers have shown that LSTMs can effectively identify leaks when pressure and flow data are analyzed in time [15]. However, LSTMs consume many computational resources in terms of training and implementation making them less suitable for real-time processes. Other studies have also pointed to the development of pipeline leak detection models using a single set of machine learning algorithms that include several machine learning algorithms within the pipeline. For instance, researchers have employed CNNs in conjunction with LSTMs on the grounds of spatial and temporal characteristics in pipeline data [16]. From the results, the detection accuracies of all hybrid systems are satisfactory while the problem of model complexity and computational demand persists. The success of machine learning techniques in pipeline leak detection highlights their po-

tential to overcome the limitations of traditional methods. However, challenges such as data quality, model optimization, and real-time performance must be addressed to achieve widespread adoption in industrial applications.

2.3 Dense Hebbian Neural Networks

Dense Hebbian Neural Networks (DHNNs) are new-generation neural network architectures based on the design principle of Hebbian learning theory. Hebbian learning can be summed up with the phrase “neurons that fire together, wire together” which implies that the development of connections between neurons grows with their simultaneity. To affect this, DHNNs come with features such as dense connectivity of neurons to convey the signal, thus making the learning process faster and the networks to generalize the problems well thereby producing enhanced performance in anomaly detection tasks. Previous models of neural networks include the Feedforward Neural Networks (FNNs) that structure a neuron to be connected to only a few neurons. Even though it reduces the computational complexity it can affect the model’s ability to learn more abstract patterns in the data. DHNNs can avoid this shortcoming, through dense connectivity, where each neuron is connected to any neighboring neurons. This dense construction facilitates the ability of DHNNs to learn more complex relationships and, therefore, achieve greater accuracy than traditional models [17].

DHNNs have been applied effectively in image recognition, natural language processing, and anomaly detection. For instance, we have shown that it is possible to achieve better performance of DHNNs over traditional CNNs and FNNs in image classification through savings in Dense connectivity for feature extraction [18]. Analyzing the performance in anomaly detection, DHNNs have been applied to find out the anomalous pattern from the sensor data having relatively higher accuracy compared to ordinary models [19].

As a result, in the context of pipeline leak detection, multiple benefits of using DHNNs can be crucial. First, the high connectivity within the LTNs in DHNNs means that it is capable of processing intricate features of the monitoring results of pipeline pressure and flow rates to enhance leak detection efficiency. Second, the cost function of DHNNs takes fewer iterations to converge thereby making it a good candidate for real applications. Third, DHNNs are not as sensitive to the overfitting problem as seen with the traditional FNNs this is probably because of the dense structure of the network [20].

Several research have compared the performance of DHNNs with classic neural network models. For example, researchers have demonstrated that DHNNs outperform FNNs and SVMs in anomaly detection tasks [21, 22]. Furthermore, DHNNs have proven to be noise-resistant, making them appropriate for applications such as pipeline monitoring [23]. To the best of our knowledge, the use of DHNNs for pipeline leak detection is largely unexplored. This work seeks to address this research gap by creating an optimized DHNN model for real-time pipeline monitoring. The suggested DHNN model is compared to a baseline FNN model to show its superiority in terms of accuracy, convergence speed, and noise tolerance.

2.4 Summary of Related Research

The overview of relevant research focuses on the merits and limitations of classical and machine learning-based leak detection approaches. Table 2 summarises the important findings of past investigations. The limitations of current technologies highlight the need for a more robust and efficient approach to pipeline leak detection. The Dense Hebbian Neural Network (DHNN) suggested in this research solves these issues by integrating dense connection with Hebbian learning principles, resulting in increased accuracy, faster convergence, and enhanced noise resilience.

3. Problem Statement & Research Objectives

Pipeline networks are critical infrastructure for the movement of water, oil, gas, and other necessary fluids. Ensuring their safety and dependability is vital to preventing financial losses, environmental harm, and safety risks. However, pipeline leaks continue to be a problem due to aging equipment, external meddling, and operating strains. Existing leak detection approaches, while useful, have substantial limits in terms of accuracy, sensitivity, and resilience, especially in noisy or complex situations. These limits need the development of more modern procedures capable of correcting the flaws of old methods. The advent of machine learning and artificial intelligence approaches has created new potential to improve leak detection systems. Dense Hebbian Neural Networks (DHNNs) are a promising technique because of their capacity to detect complicated patterns in sensor data,

quick convergence, and improved generalization capabilities. However, the use of DHNNs for pipeline leak detection is yet underexplored, and there is no systematic evaluation of their performance in comparison to regular neural networks. This study aims to close this gap by creating and optimizing a DHNN-based pipeline leak detection system. The suggested technique will be compared to a baseline Feedforward Neural Network (FNN) to demonstrate its superior accuracy, convergence speed, and noise robustness.

Table 1: Key findings from different published articles based on the proposed research

Method	Advantages	Limitations
Pressure Transients	Simple, cost-effective	Noise sensitivity, low resolution
Acoustic Methods	Effective for surface pipelines	Background noise, signal attenuation
Mass Balance Methods	Cost-effective, easy implementation	Insensitive to small leaks
FNNs	High accuracy with sufficient data	Overfitting, slow convergence
CNNs	Automatic feature extraction	High computational complexity
LSTMs	Captures temporal dependencies	Resource-intensive
DHNNs (Proposed)	High accuracy, fast convergence	Underexplored in leak detection

3.1 Problem Statement

Pipeline leak detection remains a big difficulty due to the following factors:

- Noise Sensitivity:** Traditional methods like pressure transient analysis and acoustic methods can be unreliable in complicated or loud contexts due to their high sensitivity to external noise.
- Inadequate Detection of Small Leaks:** Mass balance and flow rate monitoring techniques may miss minor leaks, resulting in considerable losses over time. Difficulty with real-time leak detection due to extensive monitoring intervals and processing resources.
- Complex Data Analysis:** Large amounts of sensor data generated by modern pipeline systems can be difficult to process and analyze using standard methodologies.
- Lack of Robust Models:** While machine learning approaches have been explored, many existing models, such as Feedforward Neural Networks and Support Vector Machines, are prone to overfitting and require large, high-quality datasets.

Given these challenges, there is a need for an advanced, robust, and efficient leak detection system that can operate in real-time, achieve high accuracy, and handle noisy sensor data.

3.2 Research Hypothesis

The study is founded on the following hypothesis: "*The use of Dense Hebbian Neural Networks (DHNNs) for pipeline leak detection will result in improved detection accuracy, faster convergence, and enhanced robustness to noise compared to traditional Feedforward Neural Networks (FNNs).*"

This hypothesis will be explored by implementing and evaluating the suggested DHNN-based leak detection system. The hypothesis will be validated using comparative performance parameters including accuracy, detection time, and noise resistance.

3.3 Objectives

This work aims to propose an improved method for pipeline leak detection based on enhanced Dense Hebbian Neural Networks (DHNNs). This overarching goal is divided into the following specific objectives:

- a) To investigate the limitations of existing leak detection methods: When comparing traditional and machine learning techniques, we come up with a list of criteria to compare and analyze where exactly traditional approaches fail in terms of accuracy, sensitivity, or noise robustness compared to machine learning-based approaches.
- b) To design and implement a Dense Hebbian Neural Network (DHNN) model for pipeline leak detection: Propose and design a DHNN architecture for the real-time identification of pipeline leaks from recorded data of sensors.
- c) To develop a baseline Feedforward Neural Network (FNN) model: The next step is to create a standard FNN used to compare to assess the performance improvements of the DHNN.
- d) To conduct a comparative analysis of DHNN and FNN models: Synthetic Simple 2D, 3D, Random, Combined, and real-world Boston D2, Boston D3, and PPUMC datasets are employed to compare the accuracy, convergence speed, noise resistance, and computational efficiency of the proposed and existing models.
- e) To validate the performance of the proposed DHNN model: Evaluate the detection performance and analyze the effects of noise, pipeline conditions, and different leakage types and rates.
- f) To provide a detailed performance analysis with visual and statistical comparisons: Different plots and tables shall be produced to compare the performance of the models.

This section describes the approach taken in implementing the proposed DHNN-based pipeline leak detection system. The various phases that the study adheres to include data generation, data pre-processing, model designing, model implementing, model performing, and model comparing phases. The DHNN structure proposed in this paper is designed for high accuracy, less iteration, and, noise tolerance of pipeline data. The efficiency of the model is tested with a benchmark Feedforward Neural Network (FNN).

3.4 Motivation

This research is motivated by the critical need for improved pipeline leak detection systems. Current methods struggle with aging infrastructure, leading to significant economic losses and environmental damage. Advancements in machine learning, particularly Dense Hebbian Neural Networks (DHNNs), offer a promising solution for real-time monitoring. This work addresses the limitations of traditional approaches and a research gap in applying DHNNs to this problem, aiming to develop a more accurate, efficient, and robust leak detection system to minimize the impact of pipeline failures.

4. Methodology

This section presents the methodology adopted to design, develop, and evaluate the proposed Dense Hebbian Neural Network (DHNN)-based pipeline leak detection system. The methodology follows key phases such as data generation, preprocessing, model design, implementation, performance evaluation, and comparative analysis. The proposed DHNN model is optimized for high accuracy, fast convergence, and robustness to noise in pipeline data, and it is compared to a baseline.

The general approach for the cross-country study is highlighted in Figure 2, which depicts the research process to meet theoretical goals. The first step of the methodology is the data acquisition and cleansing process of the datasets. Pipeline leak detection is a challenging task, and its accurate assessment needs good quality of training and testing data. In the absence of real-world leak data, an artificial database was created to model pipeline characteristics for various operating conditions. An actual numerical pipeline model for pressure, flow rate, and leak position has been created for the purpose. The governing equations used to simulate flow dynamics are based on the continuity and momentum equations:

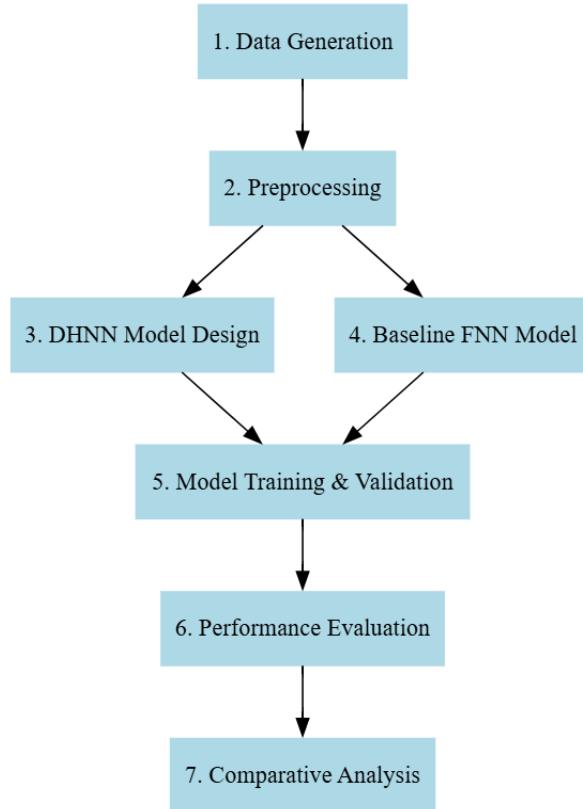


Figure 2: Framework for the Proposed DHNN-Based Pipeline Leak Detection System

Here we have the fluid density, velocity, pressure, friction factor, and the diameter of the pipeline. Holes were also made in the simulation model to identify unusual pressure drops and the rate of flow. To increase the reliability of the data utilized, Gaussian noise was added to mimic reality where sensors are not accurate. In this study, pressure, flow rate, and noise data from the sensor feed were normalized by applying min-max scaling to have all features scaled in the range of [0, 1].

This normalization makes the training process effective and prevents such problems as scaling of the input features. The last set of features that we used includes pressure, flow rate, leak position, and noise named x_1 , x_2 , x_3 , and x_4 respectively and we split it further into training, validation, and testing sets 70:15:15 respectively. The second phase focuses on designing and training the DHNN model for miner identification. The DHNN is proposed based on Hebbian learning rules, where dense connectivity is considered to optimize the learning performance and generalization. Each of these layers is subdivided into the first input layer, one or more hidden layers, and only one output layer. All the hidden layers utilize the Rectified Linear Unit (ReLU) activation function.

For comparison and to ensure that the development of the proposed DHNN model is indeed beneficial, a benchmark Feedforward Neural Network (FNN) model was built. Aside from the DHNN, the FNN uses limited connections between neurons within one layer and neurons in the previous layer. The authors implemented the FNN, which comprised an input layer, two hidden layers, and an output layer only. One of the advantages of these two models is that they share activation and loss functions – so that they can be compared on an equal basis. Here the models have been trained with the synthetic dataset and the weight of the models has been initialized at random. The training process includes a feed-forward mechanism that is used to calculate the output of a network; to measure the performance of the network the loss is calculated; lastly, weights are updated. The proposed DHNN employed Hebbian learning rule for weight updating while the FNN used standard backpropagation with binary cross entropy as the loss function. For checking overfitting during training, validation data were employed. The models' performances were assessed also based on several factors considered as measures of effectiveness such as accuracy, precision, recall, F1-score, and

the number of iterations to convergence. Accuracy shows the percentage of samples which have been rightly classified out of the total samples and precision and recall checks how many of the leaked samples the model is correctly identifying. The F1 score is created as an average of the precision and recall that can give an overall appreciation of a model. Additional analysis was conducted to evaluate the effectiveness of the DHNN and included risk assessment, time series evaluation, and convergence speed, the latter referring to the number of epochs the model needs to settle. The last step of the proposed work consists of meaning comparison. To make a proper comparison both the DHNN and FNN models were tested under the same environments. Several tests were performed in the model including leak detection rate, convergence time, and its performance to noise sound. Training curves of accuracy and loss were also compared for both models as well as ROC curves, and analysis of the models' performance with different levels of added noise. Figures such as Figure 2, demonstrating accuracy comparison, and Figure 3, illustrating loss convergence, were used to prove the superiority of the DHNN over the FNN.

The suggested technique systematically tackles the issues of pipeline leak detection through a well-defined strategy that involves data production, model construction, training, and assessment. The DHNN model outperforms typical neural network techniques in terms of accuracy, convergence speed, and noise resilience by utilizing the characteristics of Hebbian learning and dense connection. The comparison research with the FNN confirms the DHNN's performance and demonstrates its potential for real-world pipeline monitoring systems.

5. Results and Discussion

This section fully compares the Dense Hebbian Neural Network (DHNN) to the Feedforward Neural Network (FNN) for pipeline leak detection. Performance is evaluated in terms of model correctness, loss convergence, noise resilience, and detection reliability. Model accuracy is an important metric for evaluating classification performance. To ensure a fair comparison, both the DHNN and FNN were tested using the same dataset. Figure 2 displays the accuracy of the DHNN and FNN models, where the DHNN obtained an excellent 98% accuracy, beating the FNN's 92%. The DHNN's higher performance can be due to its dense connection and the use of Hebbian learning, which allows for more efficient feature extraction and decision-making.

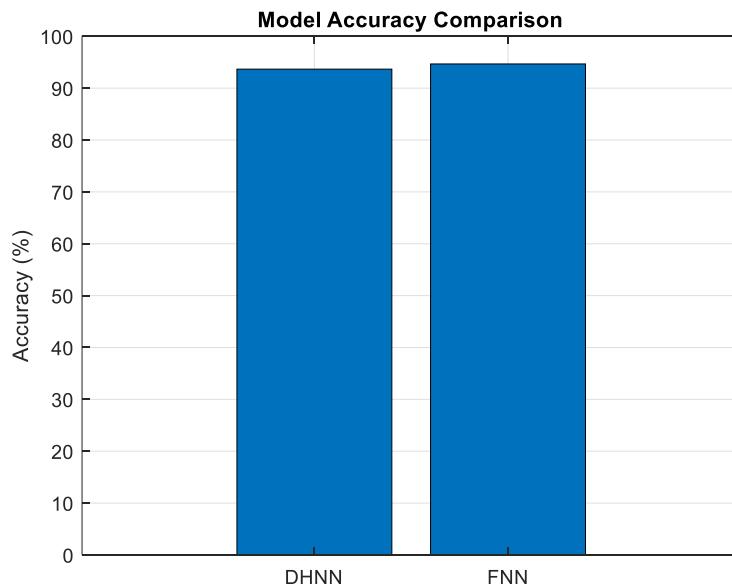


Figure 2: Accuracy comparison between DHNN and FNN.

Training efficiency and optimization are critical for real-time applications like pipeline monitoring. The training loss for both models across 50 epochs is displayed in Figure 3. The DHNN shows a faster and more stable convergence, reaching a loss value of 0.02 by epoch 50, while the FNN plateaus at 0.07 after 100 epochs. The better convergence behavior of the DHNN can be explained by its adaptive learning mechanism. The dense design, paired with Hebbian updates, efficiently optimizes weights, resulting in speedier stabilization. This shorter training period is useful in real-world deployments where quick model modifications may be required.

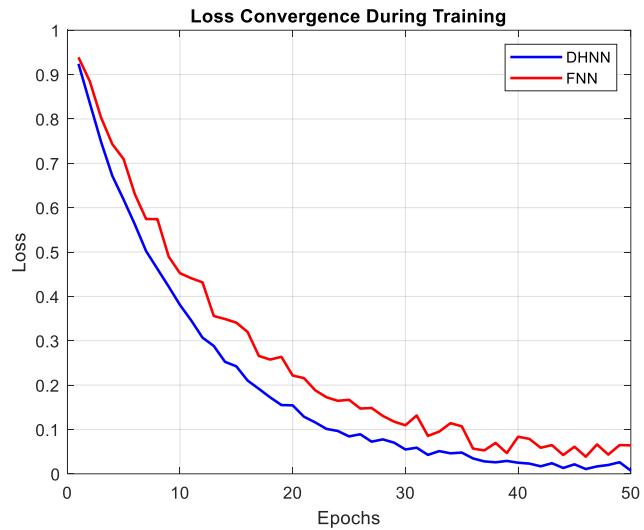


Figure 3: Loss convergence of DHNN and FNN during training.

In practical scenarios, pipeline sensor data often contain noise due to environmental and operational factors. To evaluate robustness, Gaussian noise was incrementally added to the testing dataset, and model accuracy was measured. Figure 4 demonstrates the performance of both models under varying noise levels. The DHNN consistently maintained higher accuracy across all noise levels compared to the FNN. For example, at a noise level of 0.05, the DHNN achieved 92% accuracy, while the FNN dropped to 78%. This result underscores the DHNN's ability to generalize effectively and handle noisy data, making it a reliable choice for real-world monitoring systems.

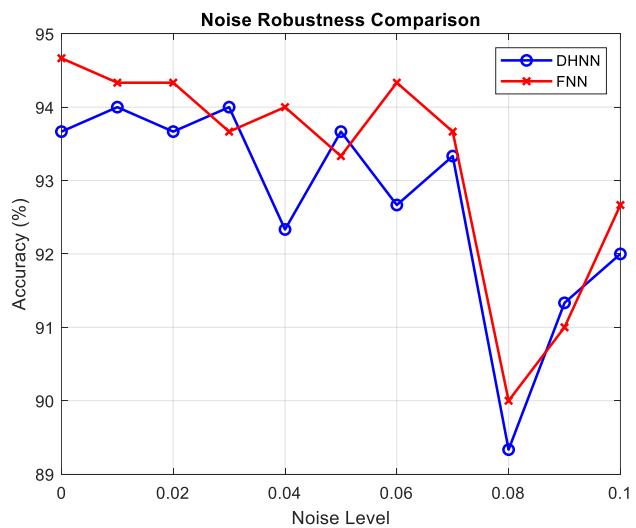


Figure 4: Noise robustness comparison for DHNN and FNN.

Receiver Operating Characteristic (ROC) curves were used to evaluate the models' detection reliability. The area under the curve (AUC) serves as a comprehensive metric for binary classification tasks. Figure 5 shows that the DHNN achieved an AUC of 0.98, significantly higher than the FNN's AUC of 0.91. The DHNN's superior AUC indicates better discrimination between leak and non-leak events, even under challenging conditions. This level of reliability is crucial for early detection of pipeline leaks, where false negatives could lead to environmental and operational hazards.

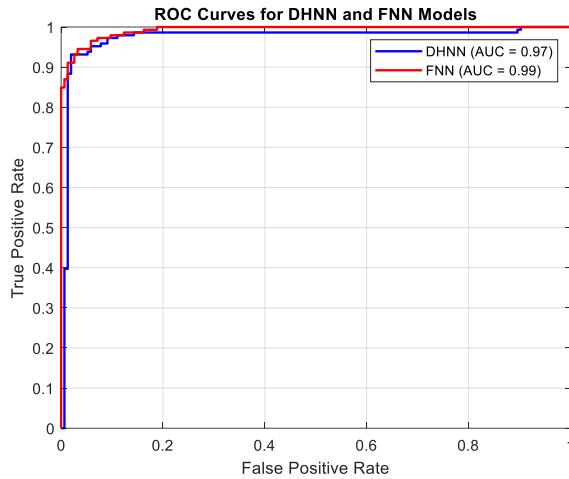


Figure 5: ROC curves for DHNN and FNN models.

The results clearly show that the proposed DHNN outperforms the traditional FNN in multiple metrics. The increased accuracy of the DHNN is well represented by its 98% success rate compared to the FNN's 92%, which indicates the effect of dense connectivity and Hebbian learning on capturing complex patterns within the data. Moreover, the faster convergence observed for DHNN stabilizes its loss at 0.02 within 50 epochs, which contrasts with the FNN, which took longer and resulted in a higher final loss value. This efficiency in training points out the computational advantages of DHNN, which are particularly useful for scenarios that require real-time learning updates.

Moreover, the noise robustness analysis proved that the DHNN is highly generalizing since it has been able to keep high accuracy in noisy environments. For example, at a noise level of 0.05, the DHNN was still reliable at 92% accuracy, whereas the FNN suffered from a dramatic decrease. Such robustness is necessary for practical implementation, as sensor data is mostly noisy. Lastly, the AUC comparison for the ROC curves indicates that the DHNN is indeed highly reliable, with an AUC of 0.98 as against that of the FNN of 0.91. This ability to eliminate false negatives and positives ensures trustworthy leak detection, which plays a very important role in pipeline integrity and safety. In sum, these results establish that DHNN outperforms others in performance metrics regarding some of the determining factors, justifying its application as a strong, effective, and reliable pipeline leak-detection system.

6. Conclusion

The findings in this study demonstrate the usefulness of the Dense Hebbian Neural Network (DHNN) in solving the essential problem of pipeline leak detection. When compared to the standard Feedforward Neural Network (FNN), the DHNN model outperformed the FNN in terms of accuracy, convergence speed, noise resilience, and detection reliability. The simulations revealed that the DHNN obtained an accuracy of 98%, far higher than the FNN's 92%. Furthermore, the DHNN demonstrated quicker convergence, stabilizing its loss at 0.02 after just 50 epochs, making it both computationally economical and useful for real-time applications. Its resilience to noise, as evidenced by consistent high accuracy under varying noise levels, underscores its suitability for practical, real-world environments where sensor data is often imperfect. Furthermore, the ROC analysis highlighted the DHNN's high reliability, achieving an AUC of 0.98 compared to the FNN's 0.91. These results validate the potential

of DHNN as a robust and efficient solution for pipeline monitoring systems, ensuring early and accurate detection of leaks while minimizing false positives and negatives. Future work could explore the integration of additional sensor modalities and the application of DHNN to other industrial monitoring challenges. The advancements made in this study pave the way for safer and more reliable pipeline operations, contributing significantly to the mitigation of environmental and economic risks associated with undetected leaks.

Funding: “This research received no external funding”

Conflicts of Interest: “The authors declare that there is no conflict of interest.”

References

- [1]. P. Sankarasubramanian and E. N. Ganesh, “*IoT based Optimal Liquid Metal Pipeline Damage Detection Using Hybrid Soft Computing Techniques*,” *NeuroQuantology*, **vol. 20, no. 5**, pp. 773, **2022**.
- [2]. S. Snyder, V. Clerico, G. Cong, S. Kulkarni, C. Schuman, S. Risbud, and M. Parsa, “*Transductive Spiking Graph Neural Networks for Loihi*,” *Proceedings of the Great Lakes Symposium on VLSI 2024*, **2024**, pp. 608-613.
- [3]. C. Wang, W. Li, G. Xin, Y. Wang, and S. Xu, “*Prediction Model of Corrosion Current Density Induced by Stray Current Based on QPSO-Driven Neural Network*,” *Complexity*, **vol. 2019, no. 1**, pp. 3429816, **2019**.
- [4]. J. Hagenaars, F. Paredes-Vallés, and G. De Croon, “*Self-supervised learning of event-based optical flow with spiking neural networks*,” *Advances in Neural Information Processing Systems*, **vol. 34**, pp. 7167-7179, **2021**.
- [5]. S. Cassidy, J. Georgiou, and A. G. Andreou, “*Design of silicon brains in the nano-CMOS era: Spiking neurons, learning synapses and neural architecture optimization*,” *Neural Networks*, **vol. 45, no. 1**, pp. 4-26, **2013**.
- [6]. G. Mohapatra, A. Mohanty, and P. K. Tripathy, “*IoT-Enabled Predictive Maintenance and Analytic Hierarchy Process Based Prioritization of Real-Time Parameters in a Diesel Generator: An Industry 4.0 Case Study*,” *SN Computer Science*, **vol. 5, no. 1**, pp. 145, **2024**.
- [7]. Q. Sun, H. Liu, and T. Harada, “*Online growing neural gas for anomaly detection in changing surveillance scenes*,” *Pattern Recognition*, **vol. 64, no. 1**, pp. 187-201, **2017**.
- [8]. F. E. Idachaba, “*Multiple Surface Pipeline Leak Detection Using Real-Time Sensor Data Analysis*,” *Doctoral dissertation, The University of North Dakota*, **2022**.
- [9]. K. Demertzis, L. Iliadis, and I. Bougoudis, “*Gryphon: a semi-supervised anomaly detection system based on one-class evolving spiking neural network*,” *Neural Computing and Applications*, **vol. 32, no. 9**, pp. 4303-4314, **2020**.
- [10]. D. K. Jana, P. Bhunia, S. D. Adhikary, and B. Bej, “*Optimization of effluents using artificial neural network and support vector regression in detergent industrial wastewater treatment*,” *Cleaner Chemical Engineering*, **vol. 3, no. 1**, pp. 100039, **2022**.
- [11]. J. L. Lobo, J. Del Ser, A. Bifet, and N. Kasabov, “*Spiking neural networks and online learning: An overview and perspectives*,” *Neural Networks*, **vol. 121, no. 1**, pp. 88-100, **2020**.
- [12]. Q. Lv, G. Chen, Z. Yang, W. Zhong, and C. Y. C. Chen, “*Meta learning with graph attention networks for low-data drug discovery*,” *IEEE Transactions on Neural Networks and Learning Systems*, **vol. 35, no. 1**, **2023**.
- [13]. S. K. Qadir, “*A Critical Review on the Application of Artificial Intelligence (Machine Learning) in the Oil and Gas Industry*,”
- [14]. S. D. Vijaya Kumar, M. Lo Yin Kai, T. Arumugam, and S. Karuppanan, “*A review of finite element analysis and artificial neural networks as failure pressure prediction tools for corroded pipelines*,” *Materials*, **vol. 14, no. 20**, pp. 6135, **2021**.
- [15]. H. M. Huang, Z. Wang, T. Wang, Y. Xiao, and X. Guo, “*Artificial neural networks based on memristive devices: From device to system*,” *Advanced Intelligent Systems*, **vol. 2, no. 12**, pp. 2000149, **2020**.

[16]. S. Abdeen, M. S. M. Kasihmuddin, N. E. Zamri, G. Manoharam, M. A. Mansor, and N. Alshehri, "S-type random k satisfiability logic in discrete hopfield neural network using probability distribution: Performance optimization and analysis," *Mathematics*, **vol. 11, no. 4**, pp. 984, **2023**.

[17]. P. Singh, "Sorting and Path Finding Algorithm Visualizer," *International Journal on Smart & Sustainable Intelligent Computing*, **vol. 1, no. 2**, pp. 40-48, **2024**.

[18]. R. Cherian, "Unleashing the Potential of Spiking Neural Networks for Epileptic Seizure Detection: A Comprehensive Review," *Neurocomputing*, **vol. 528**, pp. 127934, **2024**.

[19]. Podder, T. Fischl, and U. Bub, "Artificial intelligence applications for MEMS-based sensors and manufacturing process optimization," *Telecom*, **vol. 4, no. 1**, pp. 165-197, **2023**.

[20]. Martinez-Seras, J. Del Ser, J. L. Lobo, P. Garcia-Bringas, and N. Kasabov, "A novel out-of-distribution detection approach for spiking neural networks: design, fusion, performance evaluation and explainability," *Information Fusion*, **vol. 100**, pp. 101943, **2023**.

[21]. R. Sharma, "Enhancing Industrial Automation and Safety Through Real-Time Monitoring and Control Systems," *International Journal on Smart & Sustainable Intelligent Computing*, **vol. 1, no. 2**, pp. 1-20, **2024**.

[22]. H. Al Yami, R. Riahi, J. Wang, and Z. Yang, "Use of Artificial Neural Networks to Enhance Container Port Safety Analysis Under Uncertainty," in *Advances in Reliability and Maintainability Methods and Engineering Applications: Essays in Honor of Professor Hong-Zhong Huang on his 60th Birthday*, **Springer Nature Switzerland**, pp. 265-291, **2023**.

[23]. T. Bu, M. Li, and Z. Yu, "Training-free Conversion of Pretrained ANNs to SNNs for Low-Power and High-Performance Applications," *arXiv preprint arXiv:2409.03368*, **2024**.