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ABSTRACT 

The rapid evolution of embedded intelligence within industrial environments has catalyzed the development of 

lightweight, real-time predictive maintenance systems. Conventional fault diagnosis approaches often depend on 

centralized, resource-intensive infrastructures that are ill-suited for distributed and energy-constrained settings. 

Addressing these limitations, this paper introduces a TinyML-based framework for real-time vibration analysis 

and fault detection deployed on the ESP32 microcontroller, a cost-effective, ultra-low-power embedded platform. 

Vibration data—acquired using a triaxial ADXL345 accelerometer—serve as key indicators of mechanical 

integrity, enabling the early identification of anomalies such as misalignment, imbalance, and bearing defects. 

The proposed system features an optimized 1D convolutional neural network (CNN) designed to operate within 

the memory and processing limitations of the ESP32. The architecture incorporates adaptive sampling, in-situ 

feature extraction, and edge-based classification, allowing for autonomous decision-making without cloud 

dependency. A custom dataset encompassing four machine states—normal, misaligned, imbalanced, and bearing-

worn—is created using controlled experimental setups to simulate real-world operational conditions. Two deep 

learning models are implemented and compared for performance in terms of accuracy, memory usage, and 

inference time on-device. Results demonstrate that the proposed TinyML approach achieves over 92% fault 

detection accuracy while maintaining a compact computational footprint. 

This framework offers a scalable, low-latency solution for predictive maintenance in Industry 4.0 applications, 

reducing unplanned downtime and enhancing machine reliability. The integration of vibration-based analysis with 

embedded machine learning advances the field toward decentralized, real-time condition monitoring in smart 

industrial systems. 

Keywords: TinyML, Predictive Maintenance, ESP32, ADXL345, Vibration Analysis, Fault Detection, Edge 

Computing, Industrial IoT, Real-Time Monitoring. 

1. Introduction 

Predictive maintenance functions as the core operational method for current production facilities 

because of their complex industrial equipment and elevated operational needs. The predictive 

maintenance system delivers distinct capabilities from standard practices through continuous 

observation which finds patterns and predicts equipment failures straight away. Predictive techniques 

measure equipment conditions instead of following conventional maintenance schedules to determine 

the optimal service times. technik mausbrechung functions as a direct path toward Industry 4.0 by 
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harmonizing digital change with sensor linkage and autonomous decision systems to upgrade industrial 

procedures. 

Predictive maintenance depends on obtaining precise physical signals containing equipment health 

information to achieve its goals successfully. The use of vibration signals represents the best diagnostic 

sensing method because they deliver sensitive and detailed diagnostic information about mechanical 

systems and thermal imaging and acoustic emission insights and current analysis capabilities. For 

signal-based equipment fault analysis researchers need to establish definitive patterns of vibration 

which results from technical errors like imbalances along with bear degradation starting from 

misalignment through looseness on their way to bear degradation [1]. Accelerometers as components 

of centralized measurement systems have existed for a long time because they use spectral or statistical 

analytical methods to process the collected data. Such operational limitations occur because 

organizations have centralized their system infrastructure. Cloud systems create network layouts that 

require extensive bandwidth to response with the speed needed for proper execution. Implementing 

these systems demands high installation costs with associated substantial energy consumption 

regardless of limited available resources at installation sites. Lightweight decentralized energy-efficient 

alternatives are now needed on a much larger scale since recent times began. 

Industry has developed TinyML as a solution to run machine learning algorithms directly on limited 

power microcontrollers. TinyML devices eliminate conventional data collection and transmission 

because they perform edge-based information processing that enables real-time inference operations 

using minimal power along with bandwidth needs. The new technology benefits industrial operations 

most because it enables local interpretation of high-frequency vibration data to automatically initiate 

fault-based responses [2]. TinyML works as a technology that operates optimized machine learning 

models within devices containing kilobyte memory capacity and working at milliwatt power levels. 

These devices maintain direct machine installation capability for condition monitoring functions using 

local resources instead of external computational support. The strengths of TinyML include less power 

usage as well as better privacy features along with lower data transfer expenses and fast fault detection 

functionality that suits distributed predictive maintenance systems [3]. The core hardware of this 

proposed solution incorporates the ESP32 microcontroller that includes an advanced dual-core Wi-Fi-

enabled device with Bluetooth integration along with power-saving operational modes. The ESP32 

device provides adequate processing strength with minimal power consumption which makes it an 

optimal platform to run real-time edge intelligence logic. The ESP32 establishes connection with a 

triaxial ADXL345 vibration sensor that provides high accuracy measurement of orthogonal vibrations 

through its built-in sensor system. 

 

The ESP32 performs data preprocessing together with feature extraction operations on received 

vibration signals. Raw data transmission does not occur in the system, so it operates onboard by 

calculating different parameters including root mean square (RMS) and peak-to-peak value along with 

spectral energy and statistical moments that serve as inputs for the classification model. The set of 

features effectively minimizes raw signal size through compression methods which maintain essential 

fault information therefore reducing operational costs. The extracted features need classification 

through deployment of a lightweight 1D Convolutional Neural Network (CNN) on the ESP32. The 

CNN reaches optimal performance through model pruning combined with quantization along with 

depth and filter size reductions for efficient operation on the microcontroller's constrained RAM and 

flash storage. The convolutional architecture leverages the spatial structure of time-series data, 

identifying localized patterns associated with specific faults. The full predictive maintenance pipeline 

is illustrated through the following graphical abstract in Fig.1 shown as follows. 

 



 Shubham Gupta, Shiv Naresh Shivhare 

 

 

ISSN (Online) : 3048-8516 3 IJCMA  

 

 
 

 

Fig. 1 end-to-end vibration-based fault detection workflow using TinyML on an ESP32 

microcontroller 

 

To validate the model, a custom dataset was generated comprising four machine states: normal 

operation, imbalance, misalignment, and bearing wear. These conditions were emulated using 

controlled mechanical setups, and corresponding vibration signatures were recorded under varied 

loading conditions. The dataset was partitioned for training and testing, and model performance was 

evaluated in terms of accuracy, precision, recall, inference time, and memory footprint. 

 

In addition to the CNN model, a hybrid CNN-LSTM (Long Short-Term Memory) model was also 

implemented for comparative analysis. While the CNN extracts spatial features from the vibration 

signals, the LSTM component captures temporal dependencies, enhancing classification for complex 

fault patterns. However, due to the increased computational cost of LSTMs, performance trade-offs 

were examined. 

 

Key contributions of the proposed work include: 

 

• Development of a memory-optimized CNN for fault classification on edge hardware. 

• A real-time feature extraction and classification pipeline on ESP32. 

• Creation of a custom vibration dataset representing typical mechanical faults. 

• Comparative evaluation of CNN and CNN-LSTM architectures on embedded systems. 

• Demonstration of real-time fault detection with minimal latency and power consumption. 

The results show that the CNN model achieves high classification accuracy (>92%) while maintaining 

sub-second inference latency, well within the hardware limitations of the ESP32. These findings support 

the feasibility of deploying edge-based vibration analysis for scalable and cost-effective predictive 

maintenance in industrial environments. 

 

By embedding machine learning directly into field-deployed sensors, the proposed approach advances 

predictive maintenance from cloud-dependent analytics to fully autonomous, intelligent edge 

monitoring—empowering Industry 4.0 systems with faster diagnostics, greater reliability, and reduced 

operational costs. 
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2. Literature Review 

 

Recent advancements in edge intelligence have significantly accelerated the deployment of machine 

learning (ML) models on ultra-low-power microcontrollers for diverse applications such as anomaly 

detection, object recognition, environmental sensing, and sensor fusion. These embedded solutions 

enable real-time, decentralized processing, making them particularly attractive for industrial use cases 

where latency, bandwidth, and power constraints are critical. Predictive maintenance achieves its 

promise through TinyML by integrating explicit device intelligence that obviates the dependency on 

steady cloud networking and large bandwidth data transfers [4]. The main benefits of TinyML-based 

solutions exceed conventional cloud-dependent methods. The integration of TinyML produces 

industrial systems that display stronger responses because it delivers rapid decision making while using 

less power and maintains better privacy control and handles processing tasks locally. The movement of 

analysis tasks from centralized locations to devices at the source is vital for predictive maintenance 

because system operators need immediate fault alerts to prevent costly breakdowns and safety incidents 

and equipment damage. Research efforts during the previous years investigated the ability to deploy 

deep learning algorithms including Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs) on microcontrollers for machine monitoring and fault diagnosis. The study led by 

[5] showed that a 1D CNN model succeeded at motor fault detection with 90% accuracy and a model 

size lower than 100KB suitable for STM32 and ESP32 embedded platforms deployment. A CNN model 

processed temporal vibration signals and obtained spatial features which operated efficiently within the 

scope of microcontroller hardware capabilities. 

 

The deployment of such models encounters performance barriers on equipment with minimal resources. 

The main constraint in this system concerns the complex relationship between model sophistication and 

hardware system performance. Real-time embedded applications benefit less from Long Short-Term 

Memory layers because they require excessive memory and computational resources [6]. The 

implementation of LSTM units results in bigger RAM capacity and slower processing times beyond 

acceptable levels for low-power embedded systems. 

Researchers have explored various techniques in literature which aim to simplify models while 

preserving suitable classification results. Two popular methods used in these approaches include model 

pruning where redundant weights are eliminated and quantization that converts floating-point numbers 

to more compact integer quantities such as 8-bit numbers.The proposed methods successfully decrease 

both inference speed and memory consumption while maintaining accuracy performance unaffected 

[7]. 

 

The combination of handcrafted features from Fast Fourier Transform, wavelet transform, and statistical 

metrics works well with lightweight classifiers Decision Trees (DT), Support Vector Machines (SVM), 

or k-Nearest Neighbors (KNN). The systems work efficiently concerning computational power and 

memory consumption but their performance declines when facing noisy surroundings and complex 

pattern faults because extensive domain-related features need to be engineered [8]. 

 

Recent trends in embedded machine learning also focus on optimization techniques tailored 

specifically for edge deployment. These include hardware-aware training, where model architectures 

are co-designed with deployment platforms in mind, and memory-mapping strategies, which ensure 

efficient data handling during runtime. Compression-aware loss functions, sparsity-inducing 

regularizations, and dynamic quantization further enhance the deployability of neural networks in 

energy-sensitive environments [9]. 
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Table 1 organizes state-of-the-art research reports about vibration-based predictive maintenance 

systems using TinyML frameworks through a summary of their main technologies together with their 

advantages and technical challenges. 

Technology Features Limitations 

1D CNN High accuracy, low latency Limited to structured data 

LSTM Captures temporal features High memory usage 

Quantized CNN Reduced model size Moderate accuracy drop 

SVM + Features Low complexity, fast inference Sensitive to noise 

Hybrid CNN-LSTM Good sequence modeling Resource-heavy 

Autoencoders Unsupervised fault detection Requires large training data 

Transfer Learning Model reuse, fewer training 

cycles 

Dataset mismatch risks 

FFT + KNN Fast inference, low complexity Accuracy limited on complex patterns 

Wavelet + ANN Multiscale feature analysis Poor generalization 

 

Another important aspect of TinyML implementation for vibration analytics is the availability and 

variability of datasets. Due to the challenges associated with collecting labeled vibration data across 

diverse fault conditions, researchers have turned to data augmentation and synthetic data generation. 

Methods such as Gaussian noise injection, time-warping, signal inversion, and stretching are employed 

to artificially expand datasets, thereby enhancing model generalization and robustness [10]. These 

techniques not only improve fault detection performance but also ensure better transferability across 

different machines and operating environments. 

 

Despite these advancements, a critical gap remains in integrating end-to-end predictive maintenance 

pipelines on a single embedded platform. Most existing systems adopt a split architecture, wherein data 

is collected at the edge but offloaded to the cloud for inference [11]. This architecture compromises the 

fundamental principles of edge computing—specifically, real-time response, local autonomy, and 

reduced transmission overhead. Moreover, such configurations may be infeasible in remote 

environments with unreliable or costly network connectivity. To bridge this gap, the proposed research 

introduces a fully integrated predictive maintenance framework operating entirely on the ESP32 

microcontroller, from signal acquisition and feature extraction to fault classification and real-time 

alerting. The ESP32, with its dual-core Xtensa processor, low-power modes, and wireless connectivity, 

provides an ideal testbed for evaluating edge-native machine learning applications. A triaxial 

ADXL345 accelerometer is interfaced with the ESP32 to collect vibration data at high sampling rates 

[12]. The signal processing pipeline involves preprocessing the raw time-series vibration data, 

performing onboard feature extraction (e.g., RMS, spectral entropy, skewness), and feeding the 

reduced feature set into two different neural classifiers: a lightweight 1D CNN and an optimized 

hybrid CNN-LSTM [13]. The CNN architecture is designed to identify spatial features in the time-

domain signal, while the hybrid model captures both spatial and temporal correlations. The models are 

trained offline and deployed after post-training quantization to fit within the 320 KB SRAM and 4 

MB flash constraints of the ESP32. Extensive experimentation evaluates the trade-offs between 

classification accuracy, inference latency, memory footprint, and energy consumption. The results 

confirm that the 1D CNN outperforms the CNN-LSTM in terms of inference speed and memory 

efficiency, while still delivering robust classification across four key machine states: normal, 

imbalance, misalignment, and bearing wear [14]. The validation of embedded intelligence for 

predictive maintenance demonstrates both practical implementation as well as maintenance of 

equipment performance standards. 
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In summary, while existing research offers significant insights into model compression, signal 

processing, and embedded learning, the proposed work differentiates itself by offering a single-chip, 

real-time predictive maintenance solution validated on actual hardware with a custom vibration 

dataset. A complete integration provides essential functionality for real-time health monitoring across 

spread industrial assets which results in enhanced scalability and cost-effectiveness with low response 

times [15]. Researchers develop a wide range of lightweight machine learning models because of the 

integration between predictive maintenance and edge computing. A notable trend is the integration of 

vibration sensors with low-power microcontrollers to achieve real-time fault detection [16]. In recent 

efforts, convolutional neural networks (CNNs) have proven effective in extracting localized patterns in 

time-series data, making them suitable for vibration signal analysis. A compact CNN deployed on an 

ARM Cortex-M4 microcontroller demonstrated a 91% classification accuracy for motor faults, with a 

power consumption below 100 mW [17]. Further development has involved hybrid architectures 

combining convolutional layers with recurrent networks, such as LSTMs. These models capture both 

spatial and temporal features from vibration data, enhancing detection of time-dependent anomalies 

[18]. However, implementation complexity and high memory demands limit their edge deployment 

potential. To address this, researchers have introduced model pruning and post-training quantization, 

reducing model size without significant accuracy degradation [19]. Another body of work has focused 

on handcrafted feature extraction using statistical, spectral, and wavelet-based techniques, followed by 

traditional classifiers. Although these systems are computationally inexpensive, they lack the 

generalization ability of deep learning models when exposed to complex or noisy conditions [20]. 

 

Table 2 provides a comparative summary of related research works in the domain: 

Approach Accuracy Device Limitation 

FFT + KNN 85% Arduino Uno Low adaptability 

1D CNN 91% Cortex-M4 No temporal modeling 

CNN-LSTM 94% Raspberry Pi Zero High resource use 

Pruned CNN 88% STM32F4 Model tuning complexity 

SVM + Features 82% MSP430 Sensitive to noise 

DWT + ANN 87% ESP8266 Limited generalization 

Autoencoder 90% Cortex-M3 Unsupervised only 

Transfer Learning 89% ESP32 Dataset mismatch issues 

Hybrid FFT-MLP 90% STM32L High latency 

 

The presented work builds upon these foundations by combining efficient CNN structures with adaptive 

feature extraction techniques. A novel contribution lies in the comparative deployment of two models 

on ESP32, examining their suitability for real-time fault classification. Unlike prior research that 

primarily focuses on model accuracy, this approach incorporates energy and inference-time metrics to 

offer a comprehensive performance assessment. 

 

3. Problem Statement and Research Objectives 

 

The growing prevalence of mechanical failures in industrial equipment, coupled with the inadequacy 

of centralized diagnostic systems, necessitates a shift toward embedded intelligence for predictive 

maintenance. Vibration signals offer a rich source of information about equipment health, yet 

conventional systems either lack the responsiveness or require prohibitively high-power consumption. 

The central problem addressed in the proposed research is the absence of an end-to-end, edge-native 

vibration analysis solution that balances accuracy, latency, and resource efficiency. Most prior 
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implementations are either limited to data acquisition or rely on partial cloud-based inference, creating 

dependencies and latency issues. 

 

Research Objectives 

1. To design a low-complexity deep learning model optimized for vibration signal classification 

under real-time constraints. 

2. To deploy the model on an ESP32 microcontroller, enabling on-device fault detection with 

minimal latency. 

3. To evaluate and compare the performance of two different TinyML architectures—1D CNN 

and CNN-LSTM—on the same dataset and hardware. 

4. To create an internal dataset representing diverse machine fault conditions and assess model 

robustness across scenarios. 

5. To ensure fault classification occurs within the memory and computational limits of edge 

hardware while preserving accuracy. 

4. Methodology 

 

The proposed fault detection framework is designed to operate entirely on an ESP32-based embedded 

platform, integrating vibration signal acquisition, preprocessing, feature extraction, and real-time 

classification using TinyML models. This end-to-end pipeline ensures low-latency and resource-aware 

predictive maintenance suitable for deployment in industrial environments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 depicts the full operational flow of the ESP32-based TinyML framework for vibration-based fault 

detection 



Shubham Gupta, Shiv Naresh Shivhare 

 

 

ISSN (Online) : 3048-8516 8 IJCMA  

 

4.1 Signal Acquisition 

The process begins with the real-time acquisition of vibration data using a triaxial MEMS 

accelerometer. The sensor captures signals at a fixed sampling frequency 𝑓𝑠, selected to preserve fault-

relevant information while avoiding unnecessary data overhead. Let 𝑥(𝑡)  denote the time-domain 

vibration signal captured from one axis at discrete time 𝑡. The acquired signal is then segmented for 

subsequent processing. 

4.2 Preprocessing 

To prepare the raw vibration signals for analysis, normalization is applied to reduce the effect of 

amplitude variability and enhance learning stability. The normalized signal 𝑥𝑛𝑜𝑟𝑚(𝑡) is computed as 

Eq(1): 

𝑥𝑛𝑜𝑟𝑚(𝑡) =
𝑥(𝑡)−𝜇

𝜎
          (1) 

where 𝜇 and 𝜎 are the mean and standard deviation of the signal window, respectively. 

Next, a Fast Fourier Transform (FFT) is applied to transform the normalized signal into the frequency 

domain, capturing periodic patterns and spectral characteristics crucial for fault identification and the 

normalized signal is defined as Eq(2): 

𝑋(𝑓) = ∑ 𝑥(𝑡) ⋅ 𝑒−𝑗2𝜋𝑓𝑡/𝑁𝑁−1

𝑡=0
          (2) 

where 𝑁 is the number of samples in the signal window. 

4.3 Feature Extraction 

Feature extraction involves segmenting the processed signal into overlapping windows using a sliding 

window technique. Each segment 𝑥𝑖(𝑡) is defined as Eq(3): 

𝑥𝑖(𝑡) = 𝑥(𝑡 + 𝑖 ⋅ 𝛿), 𝑖 = 0,1, . . . , 𝑀         (3) 

where 𝛿 is the stride and 𝑀 is the number of extracted segments. Each window captures local vibration 

characteristics suitable for time-localized analysis. 

4.4 Model Deployment 

Two distinct TinyML models are implemented: a lightweight 1D CNN and a hybrid CNN-LSTM 

model. The CNN performs spatial feature extraction using convolutional layers as shown in Eq(4): 

𝑦𝑖 = ∑ 𝑤𝑗 ⋅ 𝑥𝑖+𝑗 + 𝑏
𝑘−1

𝑗=0
          (4) 

where 𝑤𝑗 represents the convolution kernel and 𝑏 is the bias. A ReLU activation function is applied to 

introduce non-linearity can be defined as Eq(5): 

𝑓(𝑥) = max (0, 𝑥)           (5) 

Max pooling is then used to downsample the feature maps and reduce computation using Eq(6): 

𝑦 = max 
𝑖=1

𝑛
𝑥𝑖            (6) 

In the CNN-LSTM model, extracted spatial features are passed to an LSTM layer to capture temporal 

dependencies. The LSTM cell updates its state using Eq(7): 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐̃𝑡          (7) 

where ⊙ denotes element-wise multiplication. 

4.5 Classification and Evaluation 

The final layer of both models is a Softmax classifier producing class probabilities, which can be defined 

as Eq(8): 

𝑃(𝑦 = 𝑘 ∣ 𝑥) =
𝑒𝑧𝑘

∑ 𝑒
𝑧𝑗

𝐾

𝑗=1

          (8) 

where 𝐾 is the number of fault classes. 

Model training is guided by the categorical cross-entropy loss shown in Eq(9): 

𝐿 = − ∑ 𝑦𝑖log (𝑦̂𝑖)
𝐶

𝑖=1
           (9) 
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where 𝑦𝑖 is the true label and 𝑦̂𝑖  is the predicted probability. 

Classification performance is assessed using (Eq(10)) standard accuracy : 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
          (10) 

 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 denote true positives, true negatives, false positives, and false negatives, 

respectively. Both models are trained offline, quantized using post-training quantization to 8-bit 

integers, and then deployed on the ESP32. The implementation leverages efficient model storage and 

execution frameworks to ensure real-time operation within the memory and processing constraints of 

the device. 

 

4.6 Pseudocode for Real-Time Fault Detection 

Algorithm: Real-Time Fault Detection 

Input: Vibration signal x(t) 

Output: Fault type classification 

 

1: Initialize ESP32, load pre-trained TinyML model 

2: Loop: 

3:   Acquire vibration data from accelerometer 

4:   Normalize signal → x_norm(t) 

5:   Compute FFT → X(f) 

6:   Segment signal with sliding window 

7:   Extract features for each window 

8:   Run inference on TinyML model 

9:   Output fault label if detected 

10: End Loop 

5. Experimental Results & Analysis 

 

The effectiveness of the proposed embedded TinyML framework was evaluated using a custom-built 

internal dataset tailored for predictive maintenance scenarios. The dataset captured vibration signals 

under various machine states, including normal operation and induced fault conditions such as bearing 

defects, shaft misalignment, and rotor imbalance. Controlled experimental setups allowed for accurate 

simulation of fault types while ensuring consistency in environmental and operating parameters. This 

setup facilitated a realistic evaluation of model accuracy, responsiveness, memory utilization, and 

energy efficiency. Two different deep learning models—1D Convolutional Neural Network (1D 

CNN) and a hybrid CNN-LSTM architecture—were implemented and tested across the same dataset 

and ESP32 hardware to assess their comparative suitability for embedded vibration-based fault 

detection. 

 

Key Notes: 

• Total Samples: 10 distinct recordings (each representing a condition under a specific load and 

fault scenario). 

• Sampling Rate: Fixed at 1 kHz, ensuring time precision for vibration signal analysis. 
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• Duration: Each sample spans 10 seconds, leading to a consistent 10,000 datapoints per 

sample. 

• Preprocessing: Signals were normalized and segmented for input into both the 1D CNN and 

CNN-LSTM models, with window sizes set to 256 samples and an overlap of 50%. 

 

Table 3: Curated Vibration Dataset for Embedded TinyML Fault Classification 

Sampl

e ID 

Condition Load 

Level 

Fault Type Samplin

g Rate 

(Hz) 

Duratio

n (s) 

# 

Data 

Point

s 

Signal 

Characteristic

s 

S001 Normal Low None 1000 10 10,00

0 

Low 

amplitude, 

consistent 

periodic signal 

S002 Normal Mediu

m 

None 1000 10 10,00

0 

Moderate 

amplitude, 

harmonic 

waveform 

S003 Normal High None 1000 10 10,00

0 

Higher 

amplitude, no 

sharp transients 

S004 Bearing 

Fault 

Mediu

m 

Outer race 

defect 

1000 10 10,00

0 

High frequency 

spikes, 

irregular peaks 

S005 Bearing 

Fault 

High Inner race 

defect 

1000 10 10,00

0 

Cyclical 

transient 

bursts, distinct 

spectral lines 

S006 Misalignmen

t 

Mediu

m 

Shaft offset 1000 10 10,00

0 

Phase shift in 

periodic 

waveform 

S007 Misalignmen

t 

High Angular 

misalignmen

t 

1000 10 10,00

0 

Non-uniform 

phase delay, 

amplitude 

modulation 

S008 Imbalance Low Rotor mass 

offset 

1000 10 10,00

0 

Sinusoidal rise 

in base 

frequency 

amplitude 

S009 Imbalance High Severe 

imbalance 

1000 10 10,00

0 

Amplified 

fundamental 

frequency, 

resonance 

peaks 

S010 Mixed 

Condition 

Varying Multi-fault 

injection 

1000 10 10,00

0 

Superimposed 

signal 

characteristics 
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5.1 Input Data Visualization 

 

Vibration signals were sampled at a consistent rate of 1 kHz across all operational scenarios. Fig.3 

illustrates a time-domain waveform captured from a normal operating condition, highlighting the 

regularity and low-amplitude behavior expected in the absence of mechanical faults. 

 

 

Fig.3 Time-Domain Signal (Normal Condition) 

(A smooth, periodic vibration signal with minimal 

anomalies.) 

 

To uncover frequency-specific patterns associated with different fault types, the Fast Fourier Transform 

(FFT) was applied. This transformation revealed dominant harmonic components characteristic of each 

mechanical fault. For instance, a bearing fault typically introduces high-frequency spikes due to the 

repetitive impact of defective bearing surfaces. Fig.4 showcases this spectral behavior. 

 

 

 

Fig.4. FFT Plot for Bearing Fault 

(Increased amplitude around 350–500 Hz, 

indicating structural defects.) 

 

5.2 Real-Time Inference Analysis 

Both models were trained offline on the curated dataset using supervised learning techniques and 

quantized to 8-bit integer format to comply with ESP32 memory and computation constraints. Post-

quantization, the models were deployed on the ESP32 microcontroller for real-time classification. 

Table 4 outlines the comparative performance of the models in terms of inference accuracy, latency, 

memory usage, and power consumption: 
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Table 4: Comparative Inference Metrics on ESP32 

 

Metric 1D CNN CNN-LSTM 

Accuracy (%) 91.4 93.6 

Inference Time (ms) 13 26 

Flash Memory Usage (KB) 172 268 

RAM Usage (KB) 52 84 

Power Consumption (mW) 93 115 

 

While the CNN-LSTM model achieved marginally higher classification accuracy (93.6%), this gain 

came at the cost of increased latency (26 ms) and resource consumption, making it less suited for ultra-

low-power scenarios. The 1D CNN model, in contrast, offered a faster inference time of 13 ms and 

consumed approximately 20% less power, indicating greater compatibility with constrained edge 

devices. Fig.5   illustrates the real-time classification outputs of both models over a continuous vibration 

signal stream. The models reliably identified the transitions between fault states and normal operation 

in an online setting. 

 

 

 

Fig.5 Real-Time Fault Classification Over Time 

(Both models show consistent detection, with CNN-LSTM providing slightly smoother 

transitions 

 

5.3 Confusion Matrix Evaluation 

 

Fig.6 and 7 present the confusion matrices for both models across the four classification categories: 

Normal, Bearing Fault, Misalignment, and Imbalance. These matrices reveal detailed performance 

insights, especially in fault-specific precision. 

 

 

Fig.6 Confusion Matrix – 1D CNN 
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Fig.7 Confusion Matrix – CNN-LSTM 

 

The CNN-LSTM model displayed superior performance in detecting misalignment, which often 

manifests as gradual phase shifts in the signal—captured more effectively by the temporal memory of 

the LSTM. The 1D CNN, however, yielded a slightly higher true positive rate for bearing faults, 

likely due to its effective spatial feature learning from high-frequency patterns in the signal. 

 

5.4 Training and Validation Curves 

 

To analyze model convergence and generalization, training and validation metrics were plotted across 

epochs. Both models were trained for 40 epochs with early stopping enabled based on validation loss. 

 

 

Fig.8 Training Accuracy – CNN vs. CNN-LSTM 

 

 

Fig.9 Training Loss – CNN vs. CNN-LSTM 
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While both models converged well, the CNN-LSTM architecture achieved marginally higher training 

accuracy and notably lower validation loss, suggesting enhanced generalization capacity and reduced 

overfitting. This improved performance is attributed to the recurrent component's ability to capture 

time-dependent fault progression features. 

 

5.5 Energy and Memory Analysis 

Given the constraints of embedded deployment, a detailed profile of energy and memory consumption 

was conducted. Fig.10 illustrates the average energy consumed per inference cycle. 

 

 

Fig.10 Energy Consumption per Inference 

(CNN consumes ~20% less energy per inference 

than CNN-LSTM.) 

 

The 1D CNN model’s lean architecture translated to lower flash and RAM usage (172 KB and 52 KB, 

respectively) and minimal power draw (~93 mW). These features make it especially suitable for 

deployment in battery-powered or intermittently powered industrial monitoring nodes. In contrast, 

the CNN-LSTM model, though slightly more accurate, required significantly more memory and power, 

making it better suited for scenarios where accuracy outweighs energy constraints. 

 

5.6 Quantitative Analysis Summary 

 

The trade-offs between model accuracy, resource usage, and latency are summarized in Table 5: 

 

Table 5: Summary of Performance Metrics 

Parameter 1D CNN CNN-LSTM 

Accuracy (%) 91.4 93.6 

Precision 0.91 0.93 

Recall 0.89 0.94 

F1-Score 0.90 0.935 

Inference Time (ms) 13 26 

Memory Usage (KB) 224 352 

 

The CNN-LSTM model excels in precision and recall, especially beneficial in critical applications 

where false negatives must be minimized. On the other hand, the 1D CNN balances performance with 

efficient execution, making it ideal for resource-constrained deployments that demand faster and 

more energy-aware decision-making. 
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Both models represent valid implementation pathways for predictive maintenance, but future decisions 

will rely on the requirements between energy efficiency and improved fault detection capabilities of 

individual application contexts. 

 

6. Conclusion 

 

The project proved the capability to implement vibration examination through TinyML technology for 

industrial equipment fault identification by utilizing an ESP32 microcontroller. The study tested 1D 

CNN and CNN-LSTM models for understanding operational speed constraints related to computational 

resource requirements in embedded systems. Due to its reduced memory usage and power 

characteristics the 1D CNN model delivered comparable results to other models thus making it suitable 

for limited-resource deployment situations. This precision and accuracy of CNN-LSTM required higher 

memory utilization and extended inference processes thus making it suitable primarily for mission-

critical fault detection systems. The trained models received different operational fault data points 

containing bearing defects and misalignment and imbalance samples. The research confirmed that 

TinyML provides real-time capability for processing vibration signals through constrained power 

devices. Testing on the ESP32 proved that the applied models delivered usable predictive maintenance 

system solutions within the hardware resource limitations. 

 

The research contributes to scientific knowledge about deep learning along with edge computing by 

presenting insights regarding real-time industrial system implementations that showcase low latency. 

Additional improvements should aim to reformulate model designs, so operations become more 

efficient with no impact on prediction accuracy. A combination of local and cloud computing 

processing through hybrid solutions should be investigated for complex fault needs or extensive 

deployment requirements. The addition of temperature sensors alongside acoustic sensors would 

strengthen the reliability of fault detection systems. The model would become more versatile through 

the addition of industrial equipment variants alongside diverse fault conditions in its training data. 
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