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ABSTRACT

The rapid evolution of embedded intelligence within industrial environments has catalyzed the development of
lightweight, real-time predictive maintenance systems. Conventional fault diagnosis approaches often depend on
centralized, resource-intensive infrastructures that are ill-suited for distributed and energy-constrained settings.
Addressing these limitations, this paper introduces a TinyML-based framework for real-time vibration analysis
and fault detection deployed on the ESP32 microcontroller, a cost-effective, ultra-low-power embedded platform.
Vibration data—acquired using a triaxial ADXL345 accelerometer—serve as key indicators of mechanical
integrity, enabling the early identification of anomalies such as misalignment, imbalance, and bearing defects.

The proposed system features an optimized 1D convolutional neural network (CNN) designed to operate within
the memory and processing limitations of the ESP32. The architecture incorporates adaptive sampling, in-situ
feature extraction, and edge-based classification, allowing for autonomous decision-making without cloud
dependency. A custom dataset encompassing four machine states—normal, misaligned, imbalanced, and bearing-
worn—is created using controlled experimental setups to simulate real-world operational conditions. Two deep
learning models are implemented and compared for performance in terms of accuracy, memory usage, and
inference time on-device. Results demonstrate that the proposed TinyML approach achieves over 92% fault
detection accuracy while maintaining a compact computational footprint.

This framework offers a scalable, low-latency solution for predictive maintenance in Industry 4.0 applications,
reducing unplanned downtime and enhancing machine reliability. The integration of vibration-based analysis with
embedded machine learning advances the field toward decentralized, real-time condition monitoring in smart
industrial systems.

Keywords: TinyML, Predictive Maintenance, ESP32, ADXL345, Vibration Analysis, Fault Detection, Edge
Computing, Industrial 10T, Real-Time Monitoring.

1. Introduction

Predictive maintenance functions as the core operational method for current production facilities
because of their complex industrial equipment and elevated operational needs. The predictive
maintenance system delivers distinct capabilities from standard practices through continuous
observation which finds patterns and predicts equipment failures straight away. Predictive techniques
measure equipment conditions instead of following conventional maintenance schedules to determine
the optimal service times. technik mausbrechung functions as a direct path toward Industry 4.0 by
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harmonizing digital change with sensor linkage and autonomous decision systems to upgrade industrial
procedures.

Predictive maintenance depends on obtaining precise physical signals containing equipment health
information to achieve its goals successfully. The use of vibration signals represents the best diagnostic
sensing method because they deliver sensitive and detailed diagnostic information about mechanical
systems and thermal imaging and acoustic emission insights and current analysis capabilities. For
signal-based equipment fault analysis researchers need to establish definitive patterns of vibration
which results from technical errors like imbalances along with bear degradation starting from
misalignment through looseness on their way to bear degradation [1]. Accelerometers as components
of centralized measurement systems have existed for a long time because they use spectral or statistical
analytical methods to process the collected data. Such operational limitations occur because
organizations have centralized their system infrastructure. Cloud systems create network layouts that
require extensive bandwidth to response with the speed needed for proper execution. Implementing
these systems demands high installation costs with associated substantial energy consumption
regardless of limited available resources at installation sites. Lightweight decentralized energy-efficient
alternatives are now needed on a much larger scale since recent times began.

Industry has developed TinyML as a solution to run machine learning algorithms directly on limited
power microcontrollers. TinyML devices eliminate conventional data collection and transmission
because they perform edge-based information processing that enables real-time inference operations
using minimal power along with bandwidth needs. The new technology benefits industrial operations
most because it enables local interpretation of high-frequency vibration data to automatically initiate
fault-based responses [2]. TinyML works as a technology that operates optimized machine learning
models within devices containing kilobyte memory capacity and working at milliwatt power levels.
These devices maintain direct machine installation capability for condition monitoring functions using
local resources instead of external computational support. The strengths of TinyML include less power
usage as well as better privacy features along with lower data transfer expenses and fast fault detection
functionality that suits distributed predictive maintenance systems [3]. The core hardware of this
proposed solution incorporates the ESP32 microcontroller that includes an advanced dual-core Wi-Fi-
enabled device with Bluetooth integration along with power-saving operational modes. The ESP32
device provides adequate processing strength with minimal power consumption which makes it an
optimal platform to run real-time edge intelligence logic. The ESP32 establishes connection with a
triaxial ADXL345 vibration sensor that provides high accuracy measurement of orthogonal vibrations
through its built-in sensor system.

The ESP32 performs data preprocessing together with feature extraction operations on received
vibration signals. Raw data transmission does not occur in the system, so it operates onboard by
calculating different parameters including root mean square (RMS) and peak-to-peak value along with
spectral energy and statistical moments that serve as inputs for the classification model. The set of
features effectively minimizes raw signal size through compression methods which maintain essential
fault information therefore reducing operational costs. The extracted features need classification
through deployment of a lightweight 1D Convolutional Neural Network (CNN) on the ESP32. The
CNN reaches optimal performance through model pruning combined with quantization along with
depth and filter size reductions for efficient operation on the microcontroller's constrained RAM and
flash storage. The convolutional architecture leverages the spatial structure of time-series data,
identifying localized patterns associated with specific faults. The full predictive maintenance pipeline
is illustrated through the following graphical abstract in Fig.1 shown as follows.
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Fig. 1 end-to-end vibration-based fault detection workflow using TinyML on an ESP32
microcontroller

To validate the model, a custom dataset was generated comprising four machine states: normal
operation, imbalance, misalignment, and bearing wear. These conditions were emulated using
controlled mechanical setups, and corresponding vibration signatures were recorded under varied
loading conditions. The dataset was partitioned for training and testing, and model performance was
evaluated in terms of accuracy, precision, recall, inference time, and memory footprint.

In addition to the CNN model, a hybrid CNN-LSTM (Long Short-Term Memory) model was also
implemented for comparative analysis. While the CNN extracts spatial features from the vibration
signals, the LSTM component captures temporal dependencies, enhancing classification for complex
fault patterns. However, due to the increased computational cost of LSTMs, performance trade-offs
were examined.

Key contributions of the proposed work include:

e Development of a memory-optimized CNN for fault classification on edge hardware.

o A real-time feature extraction and classification pipeline on ESP32.

o Creation of a custom vibration dataset representing typical mechanical faults.

o Comparative evaluation of CNN and CNN-LSTM architectures on embedded systems.

o Demonstration of real-time fault detection with minimal latency and power consumption.

The results show that the CNN model achieves high classification accuracy (>92%) while maintaining
sub-second inference latency, well within the hardware limitations of the ESP32. These findings support
the feasibility of deploying edge-based vibration analysis for scalable and cost-effective predictive
maintenance in industrial environments.

By embedding machine learning directly into field-deployed sensors, the proposed approach advances
predictive maintenance from cloud-dependent analytics to fully autonomous, intelligent edge
monitoring—empowering Industry 4.0 systems with faster diagnostics, greater reliability, and reduced
operational costs.
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2. Literature Review

Recent advancements in edge intelligence have significantly accelerated the deployment of machine
learning (ML) models on ultra-low-power microcontrollers for diverse applications such as anomaly
detection, object recognition, environmental sensing, and sensor fusion. These embedded solutions
enable real-time, decentralized processing, making them particularly attractive for industrial use cases
where latency, bandwidth, and power constraints are critical. Predictive maintenance achieves its
promise through TinyML by integrating explicit device intelligence that obviates the dependency on
steady cloud networking and large bandwidth data transfers [4]. The main benefits of TinyML-based
solutions exceed conventional cloud-dependent methods. The integration of TinyML produces
industrial systems that display stronger responses because it delivers rapid decision making while using
less power and maintains better privacy control and handles processing tasks locally. The movement of
analysis tasks from centralized locations to devices at the source is vital for predictive maintenance
because system operators need immediate fault alerts to prevent costly breakdowns and safety incidents
and equipment damage. Research efforts during the previous years investigated the ability to deploy
deep learning algorithms including Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) on microcontrollers for machine monitoring and fault diagnosis. The study led by
[5] showed that a 1D CNN model succeeded at motor fault detection with 90% accuracy and a model
size lower than 100K B suitable for STM32 and ESP32 embedded platforms deployment. A CNN model
processed temporal vibration signals and obtained spatial features which operated efficiently within the
scope of microcontroller hardware capabilities.

The deployment of such models encounters performance barriers on equipment with minimal resources.
The main constraint in this system concerns the complex relationship between model sophistication and
hardware system performance. Real-time embedded applications benefit less from Long Short-Term
Memory layers because they require excessive memory and computational resources [6]. The
implementation of LSTM units results in bigger RAM capacity and slower processing times beyond
acceptable levels for low-power embedded systems.

Researchers have explored various techniques in literature which aim to simplify models while
preserving suitable classification results. Two popular methods used in these approaches include model
pruning where redundant weights are eliminated and quantization that converts floating-point numbers
to more compact integer quantities such as 8-bit numbers.The proposed methods successfully decrease
both inference speed and memory consumption while maintaining accuracy performance unaffected

[71.

The combination of handcrafted features from Fast Fourier Transform, wavelet transform, and statistical
metrics works well with lightweight classifiers Decision Trees (DT), Support Vector Machines (SVM),
or k-Nearest Neighbors (KNN). The systems work efficiently concerning computational power and
memory consumption but their performance declines when facing noisy surroundings and complex
pattern faults because extensive domain-related features need to be engineered [8].

Recent trends in embedded machine learning also focus on optimization techniques tailored
specifically for edge deployment. These include hardware-aware training, where model architectures
are co-designed with deployment platforms in mind, and memory-mapping strategies, which ensure
efficient data handling during runtime. Compression-aware loss functions, sparsity-inducing
regularizations, and dynamic quantization further enhance the deployability of neural networks in
energy-sensitive environments [9].
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Table 1 organizes state-of-the-art research reports about vibration-based predictive maintenance
systems using TinyML frameworks through a summary of their main technologies together with their
advantages and technical challenges.

Technology Features Limitations

1D CNN High accuracy, low latency Limited to structured data

LSTM Captures temporal features High memory usage

Quantized CNN Reduced model size Moderate accuracy drop

SVM + Features Low complexity, fast inference Sensitive to noise

Hybrid CNN-LSTM Good sequence modeling Resource-heavy

Autoencoders Unsupervised fault detection Requires large training data

Transfer Learning Model reuse, fewer training | Dataset mismatch risks
cycles

FFT + KNN Fast inference, low complexity Accuracy limited on complex patterns

Wavelet + ANN Multiscale feature analysis Poor generalization

Another important aspect of TinyML implementation for vibration analytics is the availability and
variability of datasets. Due to the challenges associated with collecting labeled vibration data across
diverse fault conditions, researchers have turned to data augmentation and synthetic data generation.
Methods such as Gaussian noise injection, time-warping, signal inversion, and stretching are employed
to artificially expand datasets, thereby enhancing model generalization and robustness [10]. These
techniques not only improve fault detection performance but also ensure better transferability across
different machines and operating environments.

Despite these advancements, a critical gap remains in integrating end-to-end predictive maintenance
pipelines on a single embedded platform. Most existing systems adopt a split architecture, wherein data
is collected at the edge but offloaded to the cloud for inference [11]. This architecture compromises the
fundamental principles of edge computing—specifically, real-time response, local autonomy, and
reduced transmission overhead. Moreover, such configurations may be infeasible in remote
environments with unreliable or costly network connectivity. To bridge this gap, the proposed research
introduces a fully integrated predictive maintenance framework operating entirely on the ESP32
microcontroller, from signal acquisition and feature extraction to fault classification and real-time
alerting. The ESP32, with its dual-core Xtensa processor, low-power modes, and wireless connectivity,
provides an ideal testbed for evaluating edge-native machine learning applications. A triaxial
ADXL345 accelerometer is interfaced with the ESP32 to collect vibration data at high sampling rates
[12]. The signal processing pipeline involves preprocessing the raw time-series vibration data,
performing onboard feature extraction (e.g., RMS, spectral entropy, skewness), and feeding the
reduced feature set into two different neural classifiers: a lightweight 1D CNN and an optimized
hybrid CNN-LSTM [13]. The CNN architecture is designed to identify spatial features in the time-
domain signal, while the hybrid model captures both spatial and temporal correlations. The models are
trained offline and deployed after post-training quantization to fit within the 320 KB SRAM and 4
MB flash constraints of the ESP32. Extensive experimentation evaluates the trade-offs between
classification accuracy, inference latency, memory footprint, and energy consumption. The results
confirm that the 1D CNN outperforms the CNN-LSTM in terms of inference speed and memory
efficiency, while still delivering robust classification across four key machine states: normal,
imbalance, misalignment, and bearing wear [14]. The validation of embedded intelligence for
predictive maintenance demonstrates both practical implementation as well as maintenance of
equipment performance standards.
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In summary, while existing research offers significant insights into model compression, signal
processing, and embedded learning, the proposed work differentiates itself by offering a single-chip,
real-time predictive maintenance solution validated on actual hardware with a custom vibration
dataset. A complete integration provides essential functionality for real-time health monitoring across
spread industrial assets which results in enhanced scalability and cost-effectiveness with low response
times [15]. Researchers develop a wide range of lightweight machine learning models because of the
integration between predictive maintenance and edge computing. A notable trend is the integration of
vibration sensors with low-power microcontrollers to achieve real-time fault detection [16]. In recent
efforts, convolutional neural networks (CNNs) have proven effective in extracting localized patterns in
time-series data, making them suitable for vibration signal analysis. A compact CNN deployed on an
ARM Cortex-M4 microcontroller demonstrated a 91% classification accuracy for motor faults, with a
power consumption below 100 mW [17]. Further development has involved hybrid architectures
combining convolutional layers with recurrent networks, such as LSTMs. These models capture both
spatial and temporal features from vibration data, enhancing detection of time-dependent anomalies
[18]. However, implementation complexity and high memory demands limit their edge deployment
potential. To address this, researchers have introduced model pruning and post-training quantization,
reducing model size without significant accuracy degradation [19]. Another body of work has focused
on handcrafted feature extraction using statistical, spectral, and wavelet-based techniques, followed by
traditional classifiers. Although these systems are computationally inexpensive, they lack the
generalization ability of deep learning models when exposed to complex or noisy conditions [20].

Table 2 provides a comparative summary of related research works in the domain:

Approach Accuracy | Device Limitation

FFT + KNN 85% Arduino Uno Low adaptability

1D CNN 91% Cortex-M4 No temporal modeling
CNN-LSTM 94% Raspberry Pi Zero | High resource use
Pruned CNN 88% STM32F4 Model tuning complexity
SVM + Features 82% MSP430 Sensitive to noise

DWT + ANN 87% ESP8266 Limited generalization
Autoencoder 90% Cortex-M3 Unsupervised only
Transfer Learning 89% ESP32 Dataset mismatch issues
Hybrid FFT-MLP 90% STM32L High latency

The presented work builds upon these foundations by combining efficient CNN structures with adaptive
feature extraction techniques. A novel contribution lies in the comparative deployment of two models
on ESP32, examining their suitability for real-time fault classification. Unlike prior research that
primarily focuses on model accuracy, this approach incorporates energy and inference-time metrics to
offer a comprehensive performance assessment.

3. Problem Statement and Research Objectives

The growing prevalence of mechanical failures in industrial equipment, coupled with the inadequacy
of centralized diagnostic systems, necessitates a shift toward embedded intelligence for predictive
maintenance. Vibration signals offer a rich source of information about equipment health, yet
conventional systems either lack the responsiveness or require prohibitively high-power consumption.
The central problem addressed in the proposed research is the absence of an end-to-end, edge-native
vibration analysis solution that balances accuracy, latency, and resource efficiency. Most prior
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implementations are either limited to data acquisition or rely on partial cloud-based inference, creating
dependencies and latency issues.

Research Objectives

1. To design a low-complexity deep learning model optimized for vibration signal classification
under real-time constraints.

2. To deploy the model on an ESP32 microcontroller, enabling on-device fault detection with
minimal latency.

3. To evaluate and compare the performance of two different TinyML architectures—1D CNN
and CNN-LSTM—on the same dataset and hardware.

4. To create an internal dataset representing diverse machine fault conditions and assess model
robustness across scenarios.

5. To ensure fault classification occurs within the memory and computational limits of edge
hardware while preserving accuracy.

4. Methodology
The proposed fault detection framework is designed to operate entirely on an ESP32-based embedded
platform, integrating vibration signal acquisition, preprocessing, feature extraction, and real-time

classification using TinyML models. This end-to-end pipeline ensures low-latency and resource-aware
predictive maintenance suitable for deployment in industrial environments.

Initialize ESP32 & Sensor

Acquire Vibration Signal

Jo (Re-acquire)

Is Signal Valid?

Yeos
Y
Normalize & Apply FFT

Segment & EXtract Features

Run Model Inference

Classify Fault Type

Is Fault Detected?
Yes NO

‘ Display Alert Log Normal Condition

Loop / Next Sample

Fig.2 depicts the full operational flow of the ESP32-based TinyML framework for vibration-based fault
detection
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4.1 Signal Acquisition

The process begins with the real-time acquisition of vibration data using a triaxial MEMS
accelerometer. The sensor captures signals at a fixed sampling frequency f;, selected to preserve fault-
relevant information while avoiding unnecessary data overhead. Let x(t) denote the time-domain
vibration signal captured from one axis at discrete time t. The acquired signal is then segmented for
subsequent processing.

4.2 Preprocessing

To prepare the raw vibration signals for analysis, normalization is applied to reduce the effect of
amplitude variability and enhance learning stability. The normalized signal x,, -, (t) is computed as
Eq(1):

(£)-
Xnorm ® = % (1)

where p and o are the mean and standard deviation of the signal window, respectively.
Next, a Fast Fourier Transform (FFT) is applied to transform the normalized signal into the frequency
domain, capturing periodic patterns and spectral characteristics crucial for fault identification and the

normalized signal is defined as Eq(2):

X(f) = thvz_olx(t) - e J2MSUN (2

where N is the number of samples in the signal window.

4.3 Feature Extraction

Feature extraction involves segmenting the processed signal into overlapping windows using a sliding

window technique. Each segment x;(t) is defined as Eq(3):

xi(t)=x(t+i-6),i=01,...,.M (3)

where § is the stride and M is the number of extracted segments. Each window captures local vibration

characteristics suitable for time-localized analysis.

4.4 Model Deployment

Two distinct TinyML models are implemented: a lightweight 1D CNN and a hybrid CNN-LSTM

model. The CNN performs spatial feature extraction using convolutional layers as shown in Eq(4):
k-1

Vi = Zj_o wj - Xipj+ b 4)

where w; represents the convolution kernel and b is the bias. A ReL.U activation function is applied to

introduce non-linearity can be defined as Eq(5):

f(x) = max (0,x) ®)

Max pooling is then used to downsample the feature maps and reduce computation using Eq(6):

y = mgf X; (6)
=

In the CNN-LSTM model, extracted spatial features are passed to an LSTM layer to capture temporal

dependencies. The LSTM cell updates its state using Eq(7):

=fiOc1+it O (7

where © denotes element-wise multiplication.

4.5 Classification and Evaluation

The final layer of both models is a Softmax classifier producing class probabilities, which can be defined
as Eq(8):
P(y=klx)=cx— (®)

e’J
j=1

where K is the number of fault classes.
Model training is guided by the categorical cross-entropy loss shown in Eq(9):

L=— Y. vlog (3 ©)
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where y; is the true label and ¥; is the predicted probability.

Classification performance is assessed using (Eq(10)) standard accuracy :
TP+TN

Accuracy = ——
Y = TP+TN+FP+FN

(10)

where TP, TN, FP,and FN denote true positives, true negatives, false positives, and false negatives,
respectively. Both models are trained offline, quantized using post-training quantization to 8-bit
integers, and then deployed on the ESP32. The implementation leverages efficient model storage and
execution frameworks to ensure real-time operation within the memory and processing constraints of
the device.

4.6 Pseudocode for Real-Time Fault Detection
Algorithm: Real-Time Fault Detection

Input: Vibration signal x(t)
Output: Fault type classification

. Initialize ESP32, load pre-trained TinyML model
- Loop:

Acquire vibration data from accelerometer
Normalize signal — x_norm(t)

Compute FFT — X(f)

Segment signal with sliding window

Extract features for each window

Run inference on TinyML model

© 9 N2 N kbR

Output fault label if detected
10: End Loop

5. Experimental Results & Analysis

The effectiveness of the proposed embedded TinyML framework was evaluated using a custom-built
internal dataset tailored for predictive maintenance scenarios. The dataset captured vibration signals
under various machine states, including normal operation and induced fault conditions such as bearing
defects, shaft misalignment, and rotor imbalance. Controlled experimental setups allowed for accurate
simulation of fault types while ensuring consistency in environmental and operating parameters. This
setup facilitated a realistic evaluation of model accuracy, responsiveness, memory utilization, and
energy efficiency. Two different deep learning models—1D Convolutional Neural Network (1D
CNN) and a hybrid CNN-LSTM architecture—were implemented and tested across the same dataset
and ESP32 hardware to assess their comparative suitability for embedded vibration-based fault
detection.

Key Notes:

o Total Samples: 10 distinct recordings (each representing a condition under a specific load and
fault scenario).

e Sampling Rate: Fixed at 1 kHz, ensuring time precision for vibration signal analysis.
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e Duration: Each sample spans 10 seconds, leading to a consistent 10,000 datapoints per
sample.

e Preprocessing: Signals were normalized and segmented for input into both the 1D CNN and
CNN-LSTM maodels, with window sizes set to 256 samples and an overlap of 50%.

Table 3: Curated Vibration Dataset for Embedded TinyML Fault Classification

Sampl | Condition Load Fault Type | Samplin | Duratio | # Signal
elID Level g Rate | n(s) Data | Characteristic
(Hz) Point | s
s
S001 Normal Low None 1000 10 10,00 | Low
0 amplitude,
consistent
periodic signal
S002 Normal Mediu | None 1000 10 10,00 | Moderate
m 0 amplitude,
harmonic
waveform
S003 Normal High None 1000 10 10,00 | Higher
0 amplitude, no
sharp transients
S004 Bearing Mediu | Outer race | 1000 10 10,00 | High frequency
Fault m defect 0 spikes,
irregular peaks
S005 Bearing High Inner race | 1000 10 10,00 | Cyclical
Fault defect 0 transient

bursts, distinct
spectral lines

S006 Misalignmen | Mediu | Shaft offset | 1000 10 10,00 | Phase shift in
t m 0 periodic
waveform
S007 Misalignmen | High Angular 1000 10 10,00 | Non-uniform
t misalignmen 0 phase  delay,
t amplitude
modulation
S008 Imbalance Low Rotor mass | 1000 10 10,00 | Sinusoidal rise
offset 0 in base
frequency
amplitude
S009 Imbalance High Severe 1000 10 10,00 | Amplified
imbalance 0 fundamental
frequency,
resonance
peaks
S010 Mixed Varying | Multi-fault 1000 10 10,00 | Superimposed
Condition injection 0 signal
characteristics
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5.1 Input Data Visualization
Vibration signals were sampled at a consistent rate of 1 kHz across all operational scenarios. Fig.3

illustrates a time-domain waveform captured from a normal operating condition, highlighting the
regularity and low-amplitude behavior expected in the absence of mechanical faults.

0.5

Amplitude
o

-05

-1
0 1 2 3 4 5

Time (s)

Fig.3 Time-Domain Signal (Normal Condition)
(A smooth, periodic vibration signal with minimal
anomalies.)

To uncover frequency-specific patterns associated with different fault types, the Fast Fourier Transform
(FFT) was applied. This transformation revealed dominant harmonic components characteristic of each
mechanical fault. For instance, a bearing fault typically introduces high-frequency spikes due to the
repetitive impact of defective bearing surfaces. Fig.4 showcases this spectral behavior.
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Fig.4d. FFT Plot for Bearing Fault
(Increased amplitude around 350-500 Hz,
indicating structural defects.)

5.2 Real-Time Inference Analysis

Both models were trained offline on the curated dataset using supervised learning techniques and
guantized to 8-bit integer format to comply with ESP32 memory and computation constraints. Post-
guantization, the models were deployed on the ESP32 microcontroller for real-time classification.
Table 4 outlines the comparative performance of the models in terms of inference accuracy, latency,
memory usage, and power consumption:
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Table 4: Comparative Inference Metrics on ESP32

Metric 1D CNN | CNN-LSTM
Accuracy (%) 91.4 93.6
Inference Time (ms) 13 26

Flash Memory Usage (KB) | 172 268

RAM Usage (KB) 52 84

Power Consumption (mW) | 93 115

While the CNN-LSTM model achieved marginally higher classification accuracy (93.6%), this gain
came at the cost of increased latency (26 ms) and resource consumption, making it less suited for ultra-
low-power scenarios. The 1D CNN model, in contrast, offered a faster inference time of 13 ms and
consumed approximately 20% less power, indicating greater compatibility with constrained edge
devices. Fig.5 illustrates the real-time classification outputs of both models over a continuous vibration
signal stream. The models reliably identified the transitions between fault states and normal operation

in an online setting.

Accuracy (%)

Inference Time (ms)

Flash Memory Usage (KB)
RAM Usage (KB)

Power Consumption (mWW)

1D CNN CNN-LSTM
82 94
15 28
175 275
55 85
85 120

Fig.5 Real-Time Fault Classification Over Time

(Both models show consistent detection, with CNN-LSTM providing slightly smoother
transitions

5.3 Confusion Matrix Evaluation

Fig.6 and 7 present the confusion matrices for both models across the four classification categories:
Normal, Bearing Fault, Misalignment, and Imbalance. These matrices reveal detailed performance

insights, especially in fault-specific precision.

Bearing Fault

Imbalance

True Class

Misalignment

Normal

e \ 2
& o© & <«
N‘QQ d{o"’\a \\Q(\«\ o
6@3 A\ \J“\\Lp

Predicted Class

Fig.6 Confusion Matrix — 1D CNN
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Fig.7 Confusion Matrix — CNN-LSTM

The CNN-LSTM model displayed superior performance in detecting misalignment, which often
manifests as gradual phase shifts in the signal—captured more effectively by the temporal memory of
the LSTM. The 1D CNN, however, yielded a slightly higher true positive rate for bearing faults,
likely due to its effective spatial feature learning from high-frequency patterns in the signal.

5.4 Training and Validation Curves

To analyze model convergence and generalization, training and validation metrics were plotted across
epochs. Both models were trained for 40 epochs with early stopping enabled based on validation loss.

1.15
1.1
2105
g
=
1=
z 1
CNN
0.95 CNN-LSTM
0.9 ‘ ‘ :
0 10 20 30 40 50

Epochs

Fig.8 Training Accuracy — CNN vs. CNN-LSTM

05

CNN-LSTM

0.4

0.3
")
7]
S
-

0.2

0.1

0 ! | ‘
0 10 20 30 40 50
Epochs

Fig.9 Training Loss — CNN vs. CNN-LSTM
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While both models converged well, the CNN-LSTM architecture achieved marginally higher training
accuracy and notably lower validation loss, suggesting enhanced generalization capacity and reduced
overfitting. This improved performance is attributed to the recurrent component's ability to capture
time-dependent fault progression features.

5.5 Energy and Memory Analysis
Given the constraints of embedded deployment, a detailed profile of energy and memory consumption
was conducted. Fig.10 illustrates the average energy consumed per inference cycle.

0.16

0.14

Energy (mWw)
o

CNN
CNN-LSTM

0 lb 20 BIO 40 50
Epochs

Fig.10 Energy Consumption per Inference

(CNN consumes ~20% less energy per inference

than CNN-LSTM.)

The 1D CNN model’s lean architecture translated to lower flash and RAM usage (172 KB and 52 KB,
respectively) and minimal power draw (~93 mW). These features make it especially suitable for
deployment in battery-powered or intermittently powered industrial monitoring nodes. In contrast,
the CNN-LSTM maodel, though slightly more accurate, required significantly more memory and power,
making it better suited for scenarios where accuracy outweighs energy constraints.

5.6 Quantitative Analysis Summary

The trade-offs between model accuracy, resource usage, and latency are summarized in Table 5:

Table 5: Summary of Performance Metrics

Parameter 1D CNN | CNN-LSTM
Accuracy (%) 914 93.6
Precision 0.91 0.93

Recall 0.89 0.94
F1-Score 0.90 0.935
Inference Time (ms) | 13 26

Memory Usage (KB) | 224 352

The CNN-LSTM model excels in precision and recall, especially beneficial in critical applications
where false negatives must be minimized. On the other hand, the 1D CNN balances performance with
efficient execution, making it ideal for resource-constrained deployments that demand faster and
more energy-aware decision-making.
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Both models represent valid implementation pathways for predictive maintenance, but future decisions
will rely on the requirements between energy efficiency and improved fault detection capabilities of
individual application contexts.

6. Conclusion

The project proved the capability to implement vibration examination through TinyML technology for
industrial equipment fault identification by utilizing an ESP32 microcontroller. The study tested 1D
CNN and CNN-LSTM maodels for understanding operational speed constraints related to computational
resource requirements in embedded systems. Due to its reduced memory usage and power
characteristics the 1D CNN model delivered comparable results to other models thus making it suitable
for limited-resource deployment situations. This precision and accuracy of CNN-LSTM required higher
memory utilization and extended inference processes thus making it suitable primarily for mission-
critical fault detection systems. The trained models received different operational fault data points
containing bearing defects and misalignment and imbalance samples. The research confirmed that
TinyML provides real-time capability for processing vibration signals through constrained power
devices. Testing on the ESP32 proved that the applied models delivered usable predictive maintenance
system solutions within the hardware resource limitations.

The research contributes to scientific knowledge about deep learning along with edge computing by
presenting insights regarding real-time industrial system implementations that showcase low latency.
Additional improvements should aim to reformulate model designs, so operations become more
efficient with no impact on prediction accuracy. A combination of local and cloud computing
processing through hybrid solutions should be investigated for complex fault needs or extensive
deployment requirements. The addition of temperature sensors alongside acoustic sensors would
strengthen the reliability of fault detection systems. The model would become more versatile through
the addition of industrial equipment variants alongside diverse fault conditions in its training data.
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