
International Journal on Computational Modelling Applications
Vol. 02, Iss. 02, S. No. 01, pp.1--17, June 2025

ISSN (Online): 3048-8516

ISSN (Online) : 3048-8516 1 IJCMA

Received: 10 March 2025, Accepted: 07 April 2025, Published: 08 May 2025

Digital Object Identifier: https://doi.org/10.63503/j.ijcma.2025.114

Research Article

Embedded TinyML for Predictive Maintenance: Vibration Analysis on

ESP32 with Real-Time Fault Detection in Industrial Equipment

Shubbham Gupta1, Shiv Naresh Shivhare2

1 University College Dublin, Dublin 4, Ireland

2 School of Computer Science Engineering and Technology, Bennett University, India

shubbham.gupta@ucdconnect.ie, shiv827@gmail.com

*Corresponding author: Shubbham Gupta, shubbham.gupta@ucdconnect.ie

ABSTRACT

The rapid evolution of embedded intelligence within industrial environments has catalyzed the development of

lightweight, real-time predictive maintenance systems. Conventional fault diagnosis approaches often depend on

centralized, resource-intensive infrastructures that are ill-suited for distributed and energy-constrained settings.

Addressing these limitations, this paper introduces a TinyML-based framework for real-time vibration analysis

and fault detection deployed on the ESP32 microcontroller, a cost-effective, ultra-low-power embedded platform.

Vibration data—acquired using a triaxial ADXL345 accelerometer—serve as key indicators of mechanical

integrity, enabling the early identification of anomalies such as misalignment, imbalance, and bearing defects.

The proposed system features an optimized 1D convolutional neural network (CNN) designed to operate within

the memory and processing limitations of the ESP32. The architecture incorporates adaptive sampling, in-situ

feature extraction, and edge-based classification, allowing for autonomous decision-making without cloud

dependency. A custom dataset encompassing four machine states—normal, misaligned, imbalanced, and bearing-

worn—is created using controlled experimental setups to simulate real-world operational conditions. Two deep

learning models are implemented and compared for performance in terms of accuracy, memory usage, and

inference time on-device. Results demonstrate that the proposed TinyML approach achieves over 92% fault

detection accuracy while maintaining a compact computational footprint.

This framework offers a scalable, low-latency solution for predictive maintenance in Industry 4.0 applications,

reducing unplanned downtime and enhancing machine reliability. The integration of vibration-based analysis with

embedded machine learning advances the field toward decentralized, real-time condition monitoring in smart

industrial systems.

Keywords: TinyML, Predictive Maintenance, ESP32, ADXL345, Vibration Analysis, Fault Detection, Edge

Computing, Industrial IoT, Real-Time Monitoring.

1. Introduction

Predictive maintenance functions as the core operational method for current production facilities

because of their complex industrial equipment and elevated operational needs. The predictive

maintenance system delivers distinct capabilities from standard practices through continuous

observation which finds patterns and predicts equipment failures straight away. Predictive techniques

measure equipment conditions instead of following conventional maintenance schedules to determine

the optimal service times. technik mausbrechung functions as a direct path toward Industry 4.0 by

Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 2 IJCMA

harmonizing digital change with sensor linkage and autonomous decision systems to upgrade industrial

procedures.

Predictive maintenance depends on obtaining precise physical signals containing equipment health

information to achieve its goals successfully. The use of vibration signals represents the best diagnostic

sensing method because they deliver sensitive and detailed diagnostic information about mechanical

systems and thermal imaging and acoustic emission insights and current analysis capabilities. For

signal-based equipment fault analysis researchers need to establish definitive patterns of vibration

which results from technical errors like imbalances along with bear degradation starting from

misalignment through looseness on their way to bear degradation [1]. Accelerometers as components

of centralized measurement systems have existed for a long time because they use spectral or statistical

analytical methods to process the collected data. Such operational limitations occur because

organizations have centralized their system infrastructure. Cloud systems create network layouts that

require extensive bandwidth to response with the speed needed for proper execution. Implementing

these systems demands high installation costs with associated substantial energy consumption

regardless of limited available resources at installation sites. Lightweight decentralized energy-efficient

alternatives are now needed on a much larger scale since recent times began.

Industry has developed TinyML as a solution to run machine learning algorithms directly on limited

power microcontrollers. TinyML devices eliminate conventional data collection and transmission

because they perform edge-based information processing that enables real-time inference operations

using minimal power along with bandwidth needs. The new technology benefits industrial operations

most because it enables local interpretation of high-frequency vibration data to automatically initiate

fault-based responses [2]. TinyML works as a technology that operates optimized machine learning

models within devices containing kilobyte memory capacity and working at milliwatt power levels.

These devices maintain direct machine installation capability for condition monitoring functions using

local resources instead of external computational support. The strengths of TinyML include less power

usage as well as better privacy features along with lower data transfer expenses and fast fault detection

functionality that suits distributed predictive maintenance systems [3]. The core hardware of this

proposed solution incorporates the ESP32 microcontroller that includes an advanced dual-core Wi-Fi-

enabled device with Bluetooth integration along with power-saving operational modes. The ESP32

device provides adequate processing strength with minimal power consumption which makes it an

optimal platform to run real-time edge intelligence logic. The ESP32 establishes connection with a

triaxial ADXL345 vibration sensor that provides high accuracy measurement of orthogonal vibrations

through its built-in sensor system.

The ESP32 performs data preprocessing together with feature extraction operations on received

vibration signals. Raw data transmission does not occur in the system, so it operates onboard by

calculating different parameters including root mean square (RMS) and peak-to-peak value along with

spectral energy and statistical moments that serve as inputs for the classification model. The set of

features effectively minimizes raw signal size through compression methods which maintain essential

fault information therefore reducing operational costs. The extracted features need classification

through deployment of a lightweight 1D Convolutional Neural Network (CNN) on the ESP32. The

CNN reaches optimal performance through model pruning combined with quantization along with

depth and filter size reductions for efficient operation on the microcontroller's constrained RAM and

flash storage. The convolutional architecture leverages the spatial structure of time-series data,

identifying localized patterns associated with specific faults. The full predictive maintenance pipeline

is illustrated through the following graphical abstract in Fig.1 shown as follows.

 Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 3 IJCMA

Fig. 1 end-to-end vibration-based fault detection workflow using TinyML on an ESP32

microcontroller

To validate the model, a custom dataset was generated comprising four machine states: normal

operation, imbalance, misalignment, and bearing wear. These conditions were emulated using

controlled mechanical setups, and corresponding vibration signatures were recorded under varied

loading conditions. The dataset was partitioned for training and testing, and model performance was

evaluated in terms of accuracy, precision, recall, inference time, and memory footprint.

In addition to the CNN model, a hybrid CNN-LSTM (Long Short-Term Memory) model was also

implemented for comparative analysis. While the CNN extracts spatial features from the vibration

signals, the LSTM component captures temporal dependencies, enhancing classification for complex

fault patterns. However, due to the increased computational cost of LSTMs, performance trade-offs

were examined.

Key contributions of the proposed work include:

• Development of a memory-optimized CNN for fault classification on edge hardware.

• A real-time feature extraction and classification pipeline on ESP32.

• Creation of a custom vibration dataset representing typical mechanical faults.

• Comparative evaluation of CNN and CNN-LSTM architectures on embedded systems.

• Demonstration of real-time fault detection with minimal latency and power consumption.

The results show that the CNN model achieves high classification accuracy (>92%) while maintaining

sub-second inference latency, well within the hardware limitations of the ESP32. These findings support

the feasibility of deploying edge-based vibration analysis for scalable and cost-effective predictive

maintenance in industrial environments.

By embedding machine learning directly into field-deployed sensors, the proposed approach advances

predictive maintenance from cloud-dependent analytics to fully autonomous, intelligent edge

monitoring—empowering Industry 4.0 systems with faster diagnostics, greater reliability, and reduced

operational costs.

Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 4 IJCMA

2. Literature Review

Recent advancements in edge intelligence have significantly accelerated the deployment of machine

learning (ML) models on ultra-low-power microcontrollers for diverse applications such as anomaly

detection, object recognition, environmental sensing, and sensor fusion. These embedded solutions

enable real-time, decentralized processing, making them particularly attractive for industrial use cases

where latency, bandwidth, and power constraints are critical. Predictive maintenance achieves its

promise through TinyML by integrating explicit device intelligence that obviates the dependency on

steady cloud networking and large bandwidth data transfers [4]. The main benefits of TinyML-based

solutions exceed conventional cloud-dependent methods. The integration of TinyML produces

industrial systems that display stronger responses because it delivers rapid decision making while using

less power and maintains better privacy control and handles processing tasks locally. The movement of

analysis tasks from centralized locations to devices at the source is vital for predictive maintenance

because system operators need immediate fault alerts to prevent costly breakdowns and safety incidents

and equipment damage. Research efforts during the previous years investigated the ability to deploy

deep learning algorithms including Convolutional Neural Networks (CNNs) and Recurrent Neural

Networks (RNNs) on microcontrollers for machine monitoring and fault diagnosis. The study led by

[5] showed that a 1D CNN model succeeded at motor fault detection with 90% accuracy and a model

size lower than 100KB suitable for STM32 and ESP32 embedded platforms deployment. A CNN model

processed temporal vibration signals and obtained spatial features which operated efficiently within the

scope of microcontroller hardware capabilities.

The deployment of such models encounters performance barriers on equipment with minimal resources.

The main constraint in this system concerns the complex relationship between model sophistication and

hardware system performance. Real-time embedded applications benefit less from Long Short-Term

Memory layers because they require excessive memory and computational resources [6]. The

implementation of LSTM units results in bigger RAM capacity and slower processing times beyond

acceptable levels for low-power embedded systems.

Researchers have explored various techniques in literature which aim to simplify models while

preserving suitable classification results. Two popular methods used in these approaches include model

pruning where redundant weights are eliminated and quantization that converts floating-point numbers

to more compact integer quantities such as 8-bit numbers.The proposed methods successfully decrease

both inference speed and memory consumption while maintaining accuracy performance unaffected

[7].

The combination of handcrafted features from Fast Fourier Transform, wavelet transform, and statistical

metrics works well with lightweight classifiers Decision Trees (DT), Support Vector Machines (SVM),

or k-Nearest Neighbors (KNN). The systems work efficiently concerning computational power and

memory consumption but their performance declines when facing noisy surroundings and complex

pattern faults because extensive domain-related features need to be engineered [8].

Recent trends in embedded machine learning also focus on optimization techniques tailored

specifically for edge deployment. These include hardware-aware training, where model architectures

are co-designed with deployment platforms in mind, and memory-mapping strategies, which ensure

efficient data handling during runtime. Compression-aware loss functions, sparsity-inducing

regularizations, and dynamic quantization further enhance the deployability of neural networks in

energy-sensitive environments [9].

 Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 5 IJCMA

Table 1 organizes state-of-the-art research reports about vibration-based predictive maintenance

systems using TinyML frameworks through a summary of their main technologies together with their

advantages and technical challenges.

Technology Features Limitations

1D CNN High accuracy, low latency Limited to structured data

LSTM Captures temporal features High memory usage

Quantized CNN Reduced model size Moderate accuracy drop

SVM + Features Low complexity, fast inference Sensitive to noise

Hybrid CNN-LSTM Good sequence modeling Resource-heavy

Autoencoders Unsupervised fault detection Requires large training data

Transfer Learning Model reuse, fewer training

cycles

Dataset mismatch risks

FFT + KNN Fast inference, low complexity Accuracy limited on complex patterns

Wavelet + ANN Multiscale feature analysis Poor generalization

Another important aspect of TinyML implementation for vibration analytics is the availability and

variability of datasets. Due to the challenges associated with collecting labeled vibration data across

diverse fault conditions, researchers have turned to data augmentation and synthetic data generation.

Methods such as Gaussian noise injection, time-warping, signal inversion, and stretching are employed

to artificially expand datasets, thereby enhancing model generalization and robustness [10]. These

techniques not only improve fault detection performance but also ensure better transferability across

different machines and operating environments.

Despite these advancements, a critical gap remains in integrating end-to-end predictive maintenance

pipelines on a single embedded platform. Most existing systems adopt a split architecture, wherein data

is collected at the edge but offloaded to the cloud for inference [11]. This architecture compromises the

fundamental principles of edge computing—specifically, real-time response, local autonomy, and

reduced transmission overhead. Moreover, such configurations may be infeasible in remote

environments with unreliable or costly network connectivity. To bridge this gap, the proposed research

introduces a fully integrated predictive maintenance framework operating entirely on the ESP32

microcontroller, from signal acquisition and feature extraction to fault classification and real-time

alerting. The ESP32, with its dual-core Xtensa processor, low-power modes, and wireless connectivity,

provides an ideal testbed for evaluating edge-native machine learning applications. A triaxial

ADXL345 accelerometer is interfaced with the ESP32 to collect vibration data at high sampling rates

[12]. The signal processing pipeline involves preprocessing the raw time-series vibration data,

performing onboard feature extraction (e.g., RMS, spectral entropy, skewness), and feeding the

reduced feature set into two different neural classifiers: a lightweight 1D CNN and an optimized

hybrid CNN-LSTM [13]. The CNN architecture is designed to identify spatial features in the time-

domain signal, while the hybrid model captures both spatial and temporal correlations. The models are

trained offline and deployed after post-training quantization to fit within the 320 KB SRAM and 4

MB flash constraints of the ESP32. Extensive experimentation evaluates the trade-offs between

classification accuracy, inference latency, memory footprint, and energy consumption. The results

confirm that the 1D CNN outperforms the CNN-LSTM in terms of inference speed and memory

efficiency, while still delivering robust classification across four key machine states: normal,

imbalance, misalignment, and bearing wear [14]. The validation of embedded intelligence for

predictive maintenance demonstrates both practical implementation as well as maintenance of

equipment performance standards.

Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 6 IJCMA

In summary, while existing research offers significant insights into model compression, signal

processing, and embedded learning, the proposed work differentiates itself by offering a single-chip,

real-time predictive maintenance solution validated on actual hardware with a custom vibration

dataset. A complete integration provides essential functionality for real-time health monitoring across

spread industrial assets which results in enhanced scalability and cost-effectiveness with low response

times [15]. Researchers develop a wide range of lightweight machine learning models because of the

integration between predictive maintenance and edge computing. A notable trend is the integration of

vibration sensors with low-power microcontrollers to achieve real-time fault detection [16]. In recent

efforts, convolutional neural networks (CNNs) have proven effective in extracting localized patterns in

time-series data, making them suitable for vibration signal analysis. A compact CNN deployed on an

ARM Cortex-M4 microcontroller demonstrated a 91% classification accuracy for motor faults, with a

power consumption below 100 mW [17]. Further development has involved hybrid architectures

combining convolutional layers with recurrent networks, such as LSTMs. These models capture both

spatial and temporal features from vibration data, enhancing detection of time-dependent anomalies

[18]. However, implementation complexity and high memory demands limit their edge deployment

potential. To address this, researchers have introduced model pruning and post-training quantization,

reducing model size without significant accuracy degradation [19]. Another body of work has focused

on handcrafted feature extraction using statistical, spectral, and wavelet-based techniques, followed by

traditional classifiers. Although these systems are computationally inexpensive, they lack the

generalization ability of deep learning models when exposed to complex or noisy conditions [20].

Table 2 provides a comparative summary of related research works in the domain:

Approach Accuracy Device Limitation

FFT + KNN 85% Arduino Uno Low adaptability

1D CNN 91% Cortex-M4 No temporal modeling

CNN-LSTM 94% Raspberry Pi Zero High resource use

Pruned CNN 88% STM32F4 Model tuning complexity

SVM + Features 82% MSP430 Sensitive to noise

DWT + ANN 87% ESP8266 Limited generalization

Autoencoder 90% Cortex-M3 Unsupervised only

Transfer Learning 89% ESP32 Dataset mismatch issues

Hybrid FFT-MLP 90% STM32L High latency

The presented work builds upon these foundations by combining efficient CNN structures with adaptive

feature extraction techniques. A novel contribution lies in the comparative deployment of two models

on ESP32, examining their suitability for real-time fault classification. Unlike prior research that

primarily focuses on model accuracy, this approach incorporates energy and inference-time metrics to

offer a comprehensive performance assessment.

3. Problem Statement and Research Objectives

The growing prevalence of mechanical failures in industrial equipment, coupled with the inadequacy

of centralized diagnostic systems, necessitates a shift toward embedded intelligence for predictive

maintenance. Vibration signals offer a rich source of information about equipment health, yet

conventional systems either lack the responsiveness or require prohibitively high-power consumption.

The central problem addressed in the proposed research is the absence of an end-to-end, edge-native

vibration analysis solution that balances accuracy, latency, and resource efficiency. Most prior

 Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 7 IJCMA

implementations are either limited to data acquisition or rely on partial cloud-based inference, creating

dependencies and latency issues.

Research Objectives

1. To design a low-complexity deep learning model optimized for vibration signal classification

under real-time constraints.

2. To deploy the model on an ESP32 microcontroller, enabling on-device fault detection with

minimal latency.

3. To evaluate and compare the performance of two different TinyML architectures—1D CNN

and CNN-LSTM—on the same dataset and hardware.

4. To create an internal dataset representing diverse machine fault conditions and assess model

robustness across scenarios.

5. To ensure fault classification occurs within the memory and computational limits of edge

hardware while preserving accuracy.

4. Methodology

The proposed fault detection framework is designed to operate entirely on an ESP32-based embedded

platform, integrating vibration signal acquisition, preprocessing, feature extraction, and real-time

classification using TinyML models. This end-to-end pipeline ensures low-latency and resource-aware

predictive maintenance suitable for deployment in industrial environments.

Fig.2 depicts the full operational flow of the ESP32-based TinyML framework for vibration-based fault

detection

Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 8 IJCMA

4.1 Signal Acquisition

The process begins with the real-time acquisition of vibration data using a triaxial MEMS

accelerometer. The sensor captures signals at a fixed sampling frequency 𝑓𝑠, selected to preserve fault-

relevant information while avoiding unnecessary data overhead. Let 𝑥(𝑡) denote the time-domain

vibration signal captured from one axis at discrete time 𝑡. The acquired signal is then segmented for

subsequent processing.

4.2 Preprocessing

To prepare the raw vibration signals for analysis, normalization is applied to reduce the effect of

amplitude variability and enhance learning stability. The normalized signal 𝑥𝑛𝑜𝑟𝑚(𝑡) is computed as

Eq(1):

𝑥𝑛𝑜𝑟𝑚(𝑡) =
𝑥(𝑡)−𝜇

𝜎
 (1)

where 𝜇 and 𝜎 are the mean and standard deviation of the signal window, respectively.

Next, a Fast Fourier Transform (FFT) is applied to transform the normalized signal into the frequency

domain, capturing periodic patterns and spectral characteristics crucial for fault identification and the

normalized signal is defined as Eq(2):

𝑋(𝑓) = ∑ 𝑥(𝑡) ⋅ 𝑒−𝑗2𝜋𝑓𝑡/𝑁𝑁−1

𝑡=0
 (2)

where 𝑁 is the number of samples in the signal window.

4.3 Feature Extraction

Feature extraction involves segmenting the processed signal into overlapping windows using a sliding

window technique. Each segment 𝑥𝑖(𝑡) is defined as Eq(3):

𝑥𝑖(𝑡) = 𝑥(𝑡 + 𝑖 ⋅ 𝛿), 𝑖 = 0,1, . . . , 𝑀 (3)

where 𝛿 is the stride and 𝑀 is the number of extracted segments. Each window captures local vibration

characteristics suitable for time-localized analysis.

4.4 Model Deployment

Two distinct TinyML models are implemented: a lightweight 1D CNN and a hybrid CNN-LSTM

model. The CNN performs spatial feature extraction using convolutional layers as shown in Eq(4):

𝑦𝑖 = ∑ 𝑤𝑗 ⋅ 𝑥𝑖+𝑗 + 𝑏
𝑘−1

𝑗=0
 (4)

where 𝑤𝑗 represents the convolution kernel and 𝑏 is the bias. A ReLU activation function is applied to

introduce non-linearity can be defined as Eq(5):

𝑓(𝑥) = max (0, 𝑥) (5)

Max pooling is then used to downsample the feature maps and reduce computation using Eq(6):

𝑦 = max
𝑖=1

𝑛
𝑥𝑖 (6)

In the CNN-LSTM model, extracted spatial features are passed to an LSTM layer to capture temporal

dependencies. The LSTM cell updates its state using Eq(7):

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐̃𝑡 (7)

where ⊙ denotes element-wise multiplication.

4.5 Classification and Evaluation

The final layer of both models is a Softmax classifier producing class probabilities, which can be defined

as Eq(8):

𝑃(𝑦 = 𝑘 ∣ 𝑥) =
𝑒𝑧𝑘

∑ 𝑒
𝑧𝑗

𝐾

𝑗=1

 (8)

where 𝐾 is the number of fault classes.

Model training is guided by the categorical cross-entropy loss shown in Eq(9):

𝐿 = − ∑ 𝑦𝑖log (𝑦̂𝑖)
𝐶

𝑖=1
 (9)

 Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 9 IJCMA

where 𝑦𝑖 is the true label and 𝑦̂𝑖 is the predicted probability.

Classification performance is assessed using (Eq(10)) standard accuracy :

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (10)

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 denote true positives, true negatives, false positives, and false negatives,

respectively. Both models are trained offline, quantized using post-training quantization to 8-bit

integers, and then deployed on the ESP32. The implementation leverages efficient model storage and

execution frameworks to ensure real-time operation within the memory and processing constraints of

the device.

4.6 Pseudocode for Real-Time Fault Detection

Algorithm: Real-Time Fault Detection

Input: Vibration signal x(t)

Output: Fault type classification

1: Initialize ESP32, load pre-trained TinyML model

2: Loop:

3: Acquire vibration data from accelerometer

4: Normalize signal → x_norm(t)

5: Compute FFT → X(f)

6: Segment signal with sliding window

7: Extract features for each window

8: Run inference on TinyML model

9: Output fault label if detected

10: End Loop

5. Experimental Results & Analysis

The effectiveness of the proposed embedded TinyML framework was evaluated using a custom-built

internal dataset tailored for predictive maintenance scenarios. The dataset captured vibration signals

under various machine states, including normal operation and induced fault conditions such as bearing

defects, shaft misalignment, and rotor imbalance. Controlled experimental setups allowed for accurate

simulation of fault types while ensuring consistency in environmental and operating parameters. This

setup facilitated a realistic evaluation of model accuracy, responsiveness, memory utilization, and

energy efficiency. Two different deep learning models—1D Convolutional Neural Network (1D

CNN) and a hybrid CNN-LSTM architecture—were implemented and tested across the same dataset

and ESP32 hardware to assess their comparative suitability for embedded vibration-based fault

detection.

Key Notes:

• Total Samples: 10 distinct recordings (each representing a condition under a specific load and

fault scenario).

• Sampling Rate: Fixed at 1 kHz, ensuring time precision for vibration signal analysis.

Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 10 IJCMA

• Duration: Each sample spans 10 seconds, leading to a consistent 10,000 datapoints per

sample.

• Preprocessing: Signals were normalized and segmented for input into both the 1D CNN and

CNN-LSTM models, with window sizes set to 256 samples and an overlap of 50%.

Table 3: Curated Vibration Dataset for Embedded TinyML Fault Classification

Sampl

e ID

Condition Load

Level

Fault Type Samplin

g Rate

(Hz)

Duratio

n (s)

Data

Point

s

Signal

Characteristic

s

S001 Normal Low None 1000 10 10,00

0

Low

amplitude,

consistent

periodic signal

S002 Normal Mediu

m

None 1000 10 10,00

0

Moderate

amplitude,

harmonic

waveform

S003 Normal High None 1000 10 10,00

0

Higher

amplitude, no

sharp transients

S004 Bearing

Fault

Mediu

m

Outer race

defect

1000 10 10,00

0

High frequency

spikes,

irregular peaks

S005 Bearing

Fault

High Inner race

defect

1000 10 10,00

0

Cyclical

transient

bursts, distinct

spectral lines

S006 Misalignmen

t

Mediu

m

Shaft offset 1000 10 10,00

0

Phase shift in

periodic

waveform

S007 Misalignmen

t

High Angular

misalignmen

t

1000 10 10,00

0

Non-uniform

phase delay,

amplitude

modulation

S008 Imbalance Low Rotor mass

offset

1000 10 10,00

0

Sinusoidal rise

in base

frequency

amplitude

S009 Imbalance High Severe

imbalance

1000 10 10,00

0

Amplified

fundamental

frequency,

resonance

peaks

S010 Mixed

Condition

Varying Multi-fault

injection

1000 10 10,00

0

Superimposed

signal

characteristics

 Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 11 IJCMA

5.1 Input Data Visualization

Vibration signals were sampled at a consistent rate of 1 kHz across all operational scenarios. Fig.3

illustrates a time-domain waveform captured from a normal operating condition, highlighting the

regularity and low-amplitude behavior expected in the absence of mechanical faults.

Fig.3 Time-Domain Signal (Normal Condition)

(A smooth, periodic vibration signal with minimal

anomalies.)

To uncover frequency-specific patterns associated with different fault types, the Fast Fourier Transform

(FFT) was applied. This transformation revealed dominant harmonic components characteristic of each

mechanical fault. For instance, a bearing fault typically introduces high-frequency spikes due to the

repetitive impact of defective bearing surfaces. Fig.4 showcases this spectral behavior.

Fig.4. FFT Plot for Bearing Fault

(Increased amplitude around 350–500 Hz,

indicating structural defects.)

5.2 Real-Time Inference Analysis

Both models were trained offline on the curated dataset using supervised learning techniques and

quantized to 8-bit integer format to comply with ESP32 memory and computation constraints. Post-

quantization, the models were deployed on the ESP32 microcontroller for real-time classification.

Table 4 outlines the comparative performance of the models in terms of inference accuracy, latency,

memory usage, and power consumption:

Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 12 IJCMA

Table 4: Comparative Inference Metrics on ESP32

Metric 1D CNN CNN-LSTM

Accuracy (%) 91.4 93.6

Inference Time (ms) 13 26

Flash Memory Usage (KB) 172 268

RAM Usage (KB) 52 84

Power Consumption (mW) 93 115

While the CNN-LSTM model achieved marginally higher classification accuracy (93.6%), this gain

came at the cost of increased latency (26 ms) and resource consumption, making it less suited for ultra-

low-power scenarios. The 1D CNN model, in contrast, offered a faster inference time of 13 ms and

consumed approximately 20% less power, indicating greater compatibility with constrained edge

devices. Fig.5 illustrates the real-time classification outputs of both models over a continuous vibration

signal stream. The models reliably identified the transitions between fault states and normal operation

in an online setting.

Fig.5 Real-Time Fault Classification Over Time

(Both models show consistent detection, with CNN-LSTM providing slightly smoother

transitions

5.3 Confusion Matrix Evaluation

Fig.6 and 7 present the confusion matrices for both models across the four classification categories:

Normal, Bearing Fault, Misalignment, and Imbalance. These matrices reveal detailed performance

insights, especially in fault-specific precision.

Fig.6 Confusion Matrix – 1D CNN

 Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 13 IJCMA

Fig.7 Confusion Matrix – CNN-LSTM

The CNN-LSTM model displayed superior performance in detecting misalignment, which often

manifests as gradual phase shifts in the signal—captured more effectively by the temporal memory of

the LSTM. The 1D CNN, however, yielded a slightly higher true positive rate for bearing faults,

likely due to its effective spatial feature learning from high-frequency patterns in the signal.

5.4 Training and Validation Curves

To analyze model convergence and generalization, training and validation metrics were plotted across

epochs. Both models were trained for 40 epochs with early stopping enabled based on validation loss.

Fig.8 Training Accuracy – CNN vs. CNN-LSTM

Fig.9 Training Loss – CNN vs. CNN-LSTM

Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 14 IJCMA

While both models converged well, the CNN-LSTM architecture achieved marginally higher training

accuracy and notably lower validation loss, suggesting enhanced generalization capacity and reduced

overfitting. This improved performance is attributed to the recurrent component's ability to capture

time-dependent fault progression features.

5.5 Energy and Memory Analysis

Given the constraints of embedded deployment, a detailed profile of energy and memory consumption

was conducted. Fig.10 illustrates the average energy consumed per inference cycle.

Fig.10 Energy Consumption per Inference

(CNN consumes ~20% less energy per inference

than CNN-LSTM.)

The 1D CNN model’s lean architecture translated to lower flash and RAM usage (172 KB and 52 KB,

respectively) and minimal power draw (~93 mW). These features make it especially suitable for

deployment in battery-powered or intermittently powered industrial monitoring nodes. In contrast,

the CNN-LSTM model, though slightly more accurate, required significantly more memory and power,

making it better suited for scenarios where accuracy outweighs energy constraints.

5.6 Quantitative Analysis Summary

The trade-offs between model accuracy, resource usage, and latency are summarized in Table 5:

Table 5: Summary of Performance Metrics

Parameter 1D CNN CNN-LSTM

Accuracy (%) 91.4 93.6

Precision 0.91 0.93

Recall 0.89 0.94

F1-Score 0.90 0.935

Inference Time (ms) 13 26

Memory Usage (KB) 224 352

The CNN-LSTM model excels in precision and recall, especially beneficial in critical applications

where false negatives must be minimized. On the other hand, the 1D CNN balances performance with

efficient execution, making it ideal for resource-constrained deployments that demand faster and

more energy-aware decision-making.

 Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 15 IJCMA

Both models represent valid implementation pathways for predictive maintenance, but future decisions

will rely on the requirements between energy efficiency and improved fault detection capabilities of

individual application contexts.

6. Conclusion

The project proved the capability to implement vibration examination through TinyML technology for

industrial equipment fault identification by utilizing an ESP32 microcontroller. The study tested 1D

CNN and CNN-LSTM models for understanding operational speed constraints related to computational

resource requirements in embedded systems. Due to its reduced memory usage and power

characteristics the 1D CNN model delivered comparable results to other models thus making it suitable

for limited-resource deployment situations. This precision and accuracy of CNN-LSTM required higher

memory utilization and extended inference processes thus making it suitable primarily for mission-

critical fault detection systems. The trained models received different operational fault data points

containing bearing defects and misalignment and imbalance samples. The research confirmed that

TinyML provides real-time capability for processing vibration signals through constrained power

devices. Testing on the ESP32 proved that the applied models delivered usable predictive maintenance

system solutions within the hardware resource limitations.

The research contributes to scientific knowledge about deep learning along with edge computing by

presenting insights regarding real-time industrial system implementations that showcase low latency.

Additional improvements should aim to reformulate model designs, so operations become more

efficient with no impact on prediction accuracy. A combination of local and cloud computing

processing through hybrid solutions should be investigated for complex fault needs or extensive

deployment requirements. The addition of temperature sensors alongside acoustic sensors would

strengthen the reliability of fault detection systems. The model would become more versatile through

the addition of industrial equipment variants alongside diverse fault conditions in its training data.

Funding source

None.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] Chen, H. Y., & Lee, C. H. (2020). Vibration signals analysis by explainable artificial intelligence

(XAI) approach: Application on bearing faults diagnosis. IEEE Access, 8, 134246-134256. doi:

10.1109/ACCESS.2020.3006491

[2] Chaudhari, B. S., Ghorpade, S. N., Zennaro, M., & Paškauskas, R. (Eds.). (2024). TinyML for Edge

Intelligence in IoT and LPWAN Networks. Elsevier. https://doi.org/10.1016/C2023-0-00166-2

[3] Katib, I., Albassam, E., Sharaf, S. A., & Ragab, M. (2025). Safeguarding IoT consumer devices:

Deep learning with TinyML driven real-time anomaly detection for predictive maintenance. Ain

Shams Engineering Journal, 16(2), 103281. https://doi.org/10.1016/j.asej.2025.103281

[4] Qian, G., Lu, S., Pan, D., Tang, H., Liu, Y., & Wang, Q. (2019). Edge computing: A promising

framework for real-time fault diagnosis and dynamic control of rotating machines using multi-

sensor data. IEEE Sensors Journal, 19(11), 4211-4220. doi: 10.1109/JSEN.2019.2899396

https://doi.org/10.1016/C2023-0-00166-2
https://doi.org/10.1016/j.asej.2025.103281

Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 16 IJCMA

[5] Liu, S., Ha, D. S., Shen, F., & Yi, Y. (2021). Efficient neural networks for edge devices. Computers

& Electrical Engineering, 92, 107121. https://doi.org/10.1016/j.compeleceng.2021.107121

[6] Kumar, S. R., & Devakumar, J. (2023). Recurrent neural network based sensor fault detection and

isolation for nonlinear systems: Application in PWR. Progress in Nuclear Energy, 163, 104836.

https://doi.org/10.1016/j.pnucene.2023.104836

[7] Navardi, M., Humes, E., & Mohsenin, T. (2022, December). E2edgeai: Energy-efficient edge

computing for deployment of vision-based dnns on autonomous tiny drones. In 2022 IEEE/ACM

7th Symposium on Edge Computing (SEC) (pp. 504-509). IEEE. doi:

10.1109/SEC54971.2022.00077

[8] Wu, Y., Ianakiev, K., & Govindaraju, V. (2002). Improved k-nearest neighbor

classification. Pattern recognition, 35(10), 2311-2318. https://doi.org/10.1016/S0031-

3203(01)00132-7

[9] Dantas, P. V., Sabino da Silva Jr, W., Cordeiro, L. C., & Carvalho, C. B. (2024). A comprehensive

review of model compression techniques in machine learning. Applied Intelligence, 54(22),

11804-11844. https://doi.org/10.1007/s10489-024-05747-w

[10] Ficco, M., Guerriero, A., Milite, E., Palmieri, F., Pietrantuono, R., & Russo, S. (2024). Federated

learning for IoT devices: Enhancing TinyML with on-board training. Information Fusion, 104,

102189. https://doi.org/10.1016/j.inffus.2023.102189

[11] Mendula, M., Bellavista, P., Levorato, M., & de Guevara Contreras, S. L. (2025). A novel

middleware for adaptive and efficient split computing for real-time object detection. Pervasive and

Mobile Computing, 108, 102028. https://doi.org/10.1016/j.pmcj.2025.102028

[12] Kioko, P. C. K., Abuodha, S., Mwero, J., & Kuria, Z. (2023). Experimental assessment of train-

induced soil vibration characteristics using Arduino-based accelerometers. Cogent

Engineering, 10(2), 2245201. https://doi.org/10.1080/23311916.2023.2245201

[13] Ranganathan, G., Fernando, X., & Fuqian, S. (2021). Inventive Communication and

Computational Technologies. https://doi.org/10.1007/978-981-97-7710-5

[14] Iannelli, P., Angeletti, F., Gasbarri, P., Panella, M., & Rosato, A. (2022). Deep learning-based

Structural Health Monitoring for damage detection on a large space antenna. Acta

Astronautica, 193, 635-643. https://doi.org/10.1016/j.actaastro.2021.08.003

[15] Neupane, D., Bouadjenek, M. R., Dazeley, R., & Aryal, S. (2025). Data-driven machinery fault

diagnosis: A comprehensive review. Neurocomputing, 129588.

https://doi.org/10.1016/j.neucom.2025.129588

[16] Aldin, H. N. S., Ghods, M. R., Nayebipour, F., & Torshiz, M. N. (2024). A comprehensive review

of energy harvesting and routing strategies for IoT sensors sustainability and communication

technology. Sensors International, 5, 100258. https://doi.org/10.1016/j.sintl.2023.100258

[17] Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks:

an overview and application in radiology. Insights into imaging, 9, 611-629.

https://doi.org/10.1007/s13244-018-0639-9

[18] Djenouri, Y., Belbachir, A. N., Cano, A., & Belhadi, A. (2024). Spatio-temporal visual learning

for home-based monitoring. Information Fusion, 101, 101984.

https://doi.org/10.1016/j.inffus.2023.101984

[19] Bibi, U., Mazhar, M., Sabir, D., Butt, M. F. U., Hassan, A., Ghazanfar, M. A., ... & Abdul, W.

(2024). Advances in Pruning and Quantization for Natural Language Processing. IEEE

Access. doi: 10.1109/ACCESS.2024.3465631

[20] Wu, Y., Sicard, B., & Gadsden, S. A. (2024). Physics-informed machine learning: A

comprehensive review on applications in anomaly detection and condition monitoring. Expert

Systems with Applications, 124678. https://doi.org/10.1016/j.eswa.2024.124678

https://doi.org/10.1016/j.compeleceng.2021.107121
https://doi.org/10.1016/j.pnucene.2023.104836
https://doi.org/10.1016/S0031-3203(01)00132-7
https://doi.org/10.1016/S0031-3203(01)00132-7
https://doi.org/10.1007/s10489-024-05747-w
https://doi.org/10.1016/j.inffus.2023.102189
https://doi.org/10.1016/j.pmcj.2025.102028
https://doi.org/10.1080/23311916.2023.2245201
https://doi.org/10.1007/978-981-97-7710-5
https://doi.org/10.1016/j.actaastro.2021.08.003
https://doi.org/10.1016/j.neucom.2025.129588
https://doi.org/10.1016/j.sintl.2023.100258
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1016/j.inffus.2023.101984
https://doi.org/10.1016/j.eswa.2024.124678

 Shubham Gupta, Shiv Naresh Shivhare

ISSN (Online) : 3048-8516 17 IJCMA

[21] Sandeep Singh Sikarwar. (2025). Computation Intelligence Techniques for Security in IoT

Devices. International Journal on Computational Modelling Applications, 2(1), 15–27.

https://doi.org/10.63503/j.ijcma.2025.48

[22] Rohan Vaghela, & Jigar Sarda. (2025). Optimized Symmetric Positive Definite Neural Networks:

A Novel Approach to Weather Prediction . International Journal on Computational Modelling

Applications, 2(1), 1–14. https://doi.org/10.63503/j.ijcma.2025.47

[23] Prakhar Mittal, & Rahul Malik. (2025). Optimized Physics-Informed Neural Network Framework

for Wild Animal Activity Detection and Classification with Real Time Alert Message

Generation. International Journal on Computational Modelling Applications, 2(1), 42–52.

https://doi.org/10.63503/j.ijcma.2025.50

https://doi.org/10.63503/j.ijcma.2025.48
https://doi.org/10.63503/j.ijcma.2025.47

