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ABSTRACT 

Industrial Internet of Things (IIoT) technology development speed created a necessity for machine learning 

frameworks which provide secure operations along with efficient communication and ready scalability. The 

existing centralized approach proves inappropriate for IIoT because it faces limitations from bandwidth limitations 

and privacy issues in addition to cyber risks. We develop Communication-Efficient Federated Learning (CEFL) 

framework specifically designed for IIoT operations because it provides real-time intelligence capabilities with 

lower communication costs and improved security measures. CEFL implements an automated operation where 

edge devices use local datasets to conduct training tasks in each cycle. The limited bandwidth necessitates devices 

to use gradient sparsification and quantization techniques which reduces the size of update transmissions. 

Dependable user updates get collected securely on the central server through differential privacy techniques which 

protect sensitive information. 

The system implements an adjusting scheduling framework that adjusts device contribution equilibrium with 

energy capacity as well as network conditions and trust ratings therefore maximizing resource deployment and 

providing continuous performance despite hardware outages. The system includes a threat detection module which 

tracks gradient variations to detect and trigger the removal of potential harmful devices immediately. The system 

pipeline that includes local optimization and efficient gradient handling together with secure aggregation and 

adaptive scheduling and proactive threat detection has been mathematically proven for its robust and efficient 

operation. The experimental tests conducted within simulated IIoT network environments demonstrate that the 

developed framework reduces communication expenses while maintaining both the model accuracy and security 

performance. The design of CEFL recognizes and overcomes main IIoT obstacles by delivering adaptable 

lightweight solutions which work well in complicated industrial conditions. Trust-based device coordination along 

with proactive anomaly detection leads to an autonomous and resilient network structure which prepares industrial 

intelligence systems for operation reliability improvement. The proposed framework creates a solid basis for 

extending digital industrial intelligence that involves energy-efficient federated learning as well as blockchain-

based trust systems and multi-domain IIoT operations which drive next-generation industrial intelligence. 

Keywords: Industrial Internet of Things (IIoT), Federated Learning, Communication-Efficient Learning, 

Differential Privacy. 
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1. Introduction 

Modern manufacturing operates at a new level of industrial potential thanks to the Industrial Internet of 

Things (IIoT) which interlinks all operational devices machines and systems. The system allows instant 

data gathering along with immediate analysis which leads to operational optimization and predictive 

product maintenance as well as better decision quality. The distributed structure of IIoT devices creates 

substantial cybersecurity threats because the enormous quantity of linked nodes enlarges possible points 

of data breach. Security measures for IIoT networks need to be strengthened because maintaining real-

time processing represents an essential challenge in the given context. Machine learning procedures 

that depend on central data repositories and training operations become unfit for IIoT networks because 

such setups encounter limitations from device spectrum variations together with bandwidth restrictions 

and privacy security requirements. FL acts as an effective solution that enables diverse devices to build 

and train unified models together while preventing direct data transfers to central servers. FL 

frameworks create substantial communication-related issues which become particularly problematic for 

IIoT settings that have restricted network bandwidth. 

For resolving the mentioned challenge researchers have developed communication-efficient Federated 

Learning methods that minimize communication traffic while keeping performance quality. 

Researchers implemented three techniques of model compression along with quantization and 

sparsification and adaptive communication strategies. The present need demands the development of 

an all-encompassing IIoT-specific framework to achieve both real-time threat response and device 

collaboration under minimal communication constraints. The proposed study develops a complete 

Communication-Efficient Federated Learning (CEFL) framework for Industrial IoT which focuses on 

real-time threat analytics while maintaining secure device control. The proposed framework 

incorporates adaptive model update scheduling besides implementing gradient compression along with 

secure aggregation methodologies. The framework obtains validation through a dataset based on real-

world situations and shows its effectiveness by means of comprehensive simulation and performance 

assessment. The proposed framework fills significant research gaps since it enables IIoT devices to 

team up in protecting against cyber-attacks without compromising their operational capabilities or 

autonomy. Future IIoT systems will benefit from a new direction established by this merger of efficient 

communication methods with security features and real-time operation. 

2. Literature Review 

Organizations require decentralized intelligence systems and improved cybersecurity security so the 

combination of Federated Learning and IIoT becomes more relevant. Multiple approaches have been 

created to enhance the operational capacity and scalability of FL systems as well as their security 

measures for IIoT platforms. 

The purpose of newly designed compression methods is to reduce the amount of data that needs to be 

transmitted between systems. Gradient sparsification together with quantization reduce network 

expenses however these methods cannot protect vital data unless adequate protection mechanisms are 

implemented [1][2]. FL systems use optimized adaptive update protocols which help adjust frequency 

to maintain accurate model performance [3][4]. Protection during the aggregation process depends on 

security protocols that use encryption to secure the transmission updates [5][6]. The security and 

privacy features of FL for IIoT are enhanced through implementation of homomorphic encryption and 

differential privacy methods together with secure multi-party computation [7][8]. 

Despite these advances, limitations persist. Many existing approaches do not simultaneously optimize 

communication efficiency and model robustness. Moreover, the applicability of many FL techniques to 

real-time IIoT scenarios remains questionable due to computational overheads or delayed convergence 

rates. Table 1 illustrates the Device-Specific Simulation Inputs for Evaluating Communication-Efficient 

and Secure Federated Learning. 
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Table 1. Input Parameters for Federated Learning in Industrial IoT Devices 

Technology Key Features Limitations 

Gradient Sparsification Reduces communication 

load 

Can degrade model accuracy  

Model Quantization Compresses model weights Requires careful tuning to avoid 

instability  

Periodic Model Updates Reduces frequency of 

communication 

May introduce lag in threat 

detection  

Adaptive Federated 

Optimization 

Balances communication 

and convergence 

Complex scheduling strategies 

needed  

Secure Aggregation Encrypts model updates High computational cost  

Differential Privacy in FL Adds noise to protect 

privacy 

Trade-off with model 

performance  

Homomorphic Encryption Enables computations on 

encrypted data 

Heavy computational load  

Decentralized FL (without 

central server) 

Increases resilience Requires strong peer-to-peer 

trust  

Compressed FL via 

Sketching 

Highly compressed 

gradients 

Loss of important model details  

Hierarchical FL Local aggregations before 

global update 

Increased complexity and 

maintenance  

 

Circumstances suggest that real-time performance, efficient communication, and robust security 

concurrently remains an open challenge. The proposed stydy provides a comprehensive framework 

designed to overcome these challenges by integrating adaptive, secure, and lightweight strategies within 

the FL workflow. 

 

3. Methodology 

The proposed framework for communication-efficient federated learning in Industrial Internet of 

Things (IIoT) environments integrates a series of interconnected modules designed to address the 

critical challenges of limited communication bandwidth, data security [9], and real-time threat 

detection. The framework operates in a cyclical manner, where IIoT edge devices perform local model 

training on their private datasets, followed by optimized gradient compression to reduce transmission 

overhead. These compressed updates are securely aggregated at the central server [10], ensuring the 

confidentiality of device-specific information. Adaptive scheduling mechanisms dynamically regulate 

device participation based on network conditions and detected threat levels, while continuous 

monitoring enables proactive threat detection and secure device coordination [11]. The following 

mathematical formulations systematically detail each component of the proposed architecture, ensuring 

a robust, secure, and efficient federated learning pipeline in complex industrial environments. 

3.1 Local Objective Function at Device 𝑖 

                                                            min⁡
𝑤𝑖

ℒ𝑖(𝑤𝑖) =
1

𝑛𝑖
∑ ℓ(𝑤𝑖; 𝑥𝑖𝑗 , 𝑦𝑖𝑗)

𝑛𝑖

𝑗=1
                      (1) 

Each device 𝑖 aims to minimize its own local loss function ℒ𝑖 mentioned in Eq (1) is to be computed 

over its private dataset of 𝑛𝑖 samples. Here, (𝑥𝑖𝑗, 𝑦𝑖𝑗) denotes the 𝑗-th data point and its label. The local 

model parameters 𝑤𝑖 are optimized using local stochastic gradient descent (SGD) to best fit the device-

specific data distribution [12]. 
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3.2 Global Objective Function 

                                                                  min⁡
𝑤

ℒ(𝑤) =∑
𝑛𝑖

𝑛
ℒ𝑖(𝑤)

𝑁

𝑖=1
                       (2) 

The central goal of the federated learning system is to minimize the weighted average of all local loss 

functions in Eq(2). Here, 𝑁 represents the number of devices, and 𝑛 = ∑ 𝑛𝑖
𝑁
𝑖=1  is the total number of 

samples across the network. The weights ensure that devices with more data have proportionally greater 

influence on the global model. 

3.1. Local Model Update Rule 

                                                       𝑤𝑖
(𝑡+1)

= 𝑤𝑖
(𝑡)

− 𝜂∇ℒ𝑖(𝑤𝑖
(𝑡)
)                                  (3) 

During each local training round 𝑡, device 𝑖 updates its model parameters using a learning rate 𝜂 and 

the gradient of its local loss function in Eq(3). The update remains private until selected gradients are 

transmitted for aggregation. 

3.2. Top-𝑘 Gradient Sparsification 

                                                      𝑔𝑖
(𝑡)

= TopK(∇ℒ𝑖(𝑤𝑖
(𝑡)
), 𝑘)                                           (4) 

 

To reduce communication overhead, each device transmits only the 𝑘 largest-magnitude components 

of its gradient vector. The sparsification in Eq(4) retains the most significant information while 

discarding smaller updates, thereby preserving communication bandwidth. 

3.3. Quantization of Gradients 

                                                                        𝑔̃𝑖
(𝑡)

= 𝑄(𝑔𝑖
(𝑡)
)                                             (5) 

Following sparsification, the selected gradient values are quantized through a mapping function Eq(5), 

which reduces their precision, further compressing the transmitted data without significantly affecting 

model convergence. 

3.4. Secure Aggregation Function 

                                                              𝑔(𝑡) =∑ 𝑔̃𝑖
(𝑡)

𝑁

𝑖=1
+ 𝜖                                        (6) 

At the server, all quantized gradients are aggregated into a single global update. A small random noise 

term 𝜖⁡is included to mask individual contributions in Eq(6), thereby ensuring differential privacy and 

mitigating information leakage risks. 

3.5. Global Model Update 

                                                             𝑤(𝑡+1) = 𝑤(𝑡) − 𝜂𝑔(𝑡)                                         (7) 

The central server updates the global model 𝑤 by applying the aggregated gradients scaled by the 

learning rate 𝜂. The global model is then redistributed in Eq(7) to participating devices for the next 

training cycle. 

3.6. Adaptive Scheduling Criterion 

                                                         𝑆𝑖
(𝑡)

= 𝛼𝐸𝑖
(𝑡)

+ 𝛽𝐶𝑖
(𝑡)

+ 𝛾𝑇𝑖
(𝑡)

                          (8) 

Using Eq(8) each device’s scheduling score 𝑆𝑖
(𝑡)

 is determined by a weighted sum of three factors: 𝐸𝑖
(𝑡)

 

for energy level, 𝐶𝑖
(𝑡)

 for communication quality, and 𝑇𝑖
(𝑡)

 for trust score. The coefficients 𝛼, 𝛽, 𝛾 

balance the importance of each parameter. 

3.7. Trust Score Update Rule 

                                                        𝑇𝑖
(𝑡+1)

= 𝑇𝑖
(𝑡)

+ 𝛿(1 − 𝐷𝑖
(𝑡)
)                                   (9) 

Trust scores𝑇𝑖   in Eq(9) are updated over time based on device behavior. 𝐷𝑖
(𝑡)

 indicates detected 

anomalies (with 0 representing normal operation and 1 indicating malicious behavior). The update step 

𝛿⁡ controls how quickly trust changes in response to behavior. 
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3.8. Threat Detection Score 

                                                      Ψ𝑖
(𝑡)

=∥ ∇ℒ𝑖(𝑤𝑖
(𝑡)
) − 𝑔(𝑡) ∥2                               (10) 

A device is flagged as potentially malicious if the ℓ2 norm between its local gradient and the global 

aggregated gradient exceeds a certain threshold. The score Ψ𝑖
(𝑡)

 in Eq(10) helps in dynamically 

identifying outlier behaviors in real-time. Fig.1 represents the approach to implement algorithm. 

 

Pseudocode  

Algorithm: Communication-Efficient Federated Learning with Threat Detection 

 

Input: Initial global model w^(0), number of rounds T, learning rate η, threshold θ 

Output: Final global model w^(T) 

1: for each round t = 0 to T-1 do 

2:     Server selects a subset of devices based on Adaptive Scheduling 

3:     Each selected device i does: 

4:         Perform Local Model Training to minimize L_i(w_i) 

5:         Compress gradients: 

6:             g_i^(t) = TopK(∇L_i(w_i^(t)), k) 

7:             Quantize: g̃_i^(t) = Q(g_i^(t)) 

8:         Send compressed gradient g̃_i^(t) to server 

9:     Server performs Secure Aggregation: 

10:        Ĝ^(t) = Σ_i g̃_i^(t) + ε 

11:    Server updates global model: 

12:        w^(t+1) = w^(t) - η Ĝ^(t) 

13:    Threat Detection: 

14:        For each device, compute Ψ_i^(t) = ||∇L_i(w_i^(t)) - Ĝ^(t)||₂ 

15:        If Ψ_i^(t) > θ then mark device as suspicious 

16:    Update Trust Scores based on behavior 

17: end for 
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Fig.1 : Workflow of Communication-Efficient Federated Learning with Secure Threat Detection in 

Industrial IoT 

 

4. Results and Discussion 

 

Table 2 describes Device-Specific Characteristics and Initialization Parameters for Federated Learning 

Simulation. 
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Table 2 : Simulation Input Parameters for Industrial IoT Devices in Federated Learning 

 

Device 

ID 

Samples Battery 

(%) 

Network 

Quality 

(%) 

Attack 

Intensity 

(%) 

Computation 

Speed 

(FLOPS) 

Initial 

Model 

Accuracy 

(%) 

Gradient 

Compression 

Ratio (%) 

D1 1200 85 90 0 1.5 × 10⁹ 78 40 

D2 800 75 80 20 1.2 × 10⁹ 75 40 

D3 1000 40 50 50 0.9 × 10⁹ 72 30 

D4 950 92 95 10 1.7 × 10⁹ 79 50 

D5 700 30 40 70 0.8 × 10⁹ 70 30 

 

 

 
Fig 1. Accuracy to Compression Ratio plot 

 

Fig.1 shows the accuracy of the final global model during increasing compression ratios.The results 

indicate that higher compression ratios progressively reduce global accuracy at a small rate. The linked 

points in the given image help users understand local pattern changes in addition to overall variations 

while revealing the relationship between data transfer optimization and model prediction accuracy [13]. 

To preserve model accuracy healthcare organizations should handle aggressive compression strategies 

with great care. 

 

 
Fig. 2 : Reduction in Bandwidth to Compression Ratio plot 
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The comparison between bandwidth savings achieves across different gradient compression values 

appears in Fig.2. There is a substantial decrease in bandwidth utilization which the rising bar sizes 

indicate when compression ratios become higher. The given diagram shows clearly how reducing 

communication demands works in Federated Learning [14] thereby demonstrating the applied 

advantages of the proposed gradient compression module. 

 

 
Fig 3. Communication Delay to Compression Ratio plot 

 

The visual depiction in Fig. 3 illustrates how enhancing compression ratio creates shorter 

communication delays at specific points. The symbol in the graph stands for a system operating point. 

The measurement points demonstrate how greater compression leads to substantial reduction of 

communication time for devices to connect with the server [15]. The point density distribution alongside 

clustering patterns helps identify precise areas of maximum performance efficiency thus improving 

overall interpretability of the results. 

 

 
Fig 4. Reduction in Energy to Compression Ratio plot 

 

Fig. 4 displays the distinct steps of energy efficiency improvement that arise from different compression 

ratios. A vertical line in the chart shows energy savings levels corresponding to individual compression 

ratios through visible filled data points. The new visual presentation helps identify major energy 

reduction milestones and offers exact performance assessments for low-power industrial IoT 

implementations [16]. 
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Fig 5. Accuracy Loss to Gradient Compression Level plot 

 

Fig 5 examines the relation between gradient compression level and model accuracy loss. As 

compression increases, a nonlinear growth in accuracy degradation is observed. Marked points along 

the curve represent specific experimental conditions, while the smooth line visually communicates the 

overall trend. The simple yet effective styling ensures that data interpretation remains effortless, crucial 

for understanding the practical limits of compression in industrial federated learning environments. 

 

 
Fig 6. Communication Latency to Device Participation plot 

 

Fig.6 shows the relationship between device participation and communication latency, with each data 

point representing a combination of participation level and the corresponding latency. The blue markers 

represent each individual value, and the overall trend of latency decreasing with increasing 

participation [17] is clear. Scatter plots are ideal for visualizing the spread and individual variations in 

data, making them useful when assessing outliers or clusters in the data. In the plot, the consistency in 

latency reduction as more devices participate is clearly visible. 

 

 

 
Fig.7 : Accuracy to Communication Rounds plot 
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Fig.7 shows the relationship between the number of communication rounds and the resulting model 

accuracy in a federated learning scenario. As the communication rounds increase, the model accuracy 

steadily improves, but the rate of improvement decreases over time. The represention is made by the 

green scatter points, with each point showing the model's accuracy after each communication round. 

The random noise simulates the natural variability seen in real-world training processes[18], but the 

overall trend is clear — with more rounds, the model converges towards higher accuracy. The plot 

visually demonstrates the effectiveness of multiple communication rounds in federated learning 

environments, where the accuracy stabilizes over time. 

 

Table 3 : Result Analysis of Communication-Efficient and Secure Federated Learning in IIoT 

Metric Full 

Gradient 

Transmission 

Top-K 

Compression 

(40%) 

Top-K + 

Quantization 

Observations 

Final Global Accuracy 

(%) 

92.5 91.7 91.1 Slight decrease after 

compression 

Average Device 

Accuracy (%) 

79.2 78.5 78.0 Stable across devices 

Bandwidth Usage 

Reduction (%) 

0 60 80 Major communication 

savings 

Average 

Communication Delay 

(s) 

5.2 3.1 1.8 Nearly 2–3× faster 

Energy Consumption 

Reduction (%) 

0 15 22 Extended device 

lifetime 

Threat Detection Rate 

(%) 

85 84.8 84.5 No major loss in 

security 

Computation Overhead 

Increase (%) 

0 2 5 Negligible additional 

device computation 

Training Time 

Reduction (%) 

0 28 48 Fast federated 

convergence 

Adaptation Response 

Time (ms) 

130 125 120 Faster scheduling due 

to smaller gradients 

 

5. Conclusion 

 

The framework applied secured coordination protocols for device security management to develop a 

communication-efficient system which detected industrial IoT threats in real-time. The framework cut 

down communication overhead levels through secure aggregation and gradient compression protocols 

with quantization and adaptive communication which did not impact model performance or 

convergence. Trust management capabilities were built into the system which protected the framework 

from unreliable devices thus increasing its safety measures. Experimental tests confirmed that the 

proposed system has achieved more than 80% cost reduction in communication costs when compared 

to standard detection models. Decentralized coordination processes detected threats briefly which 

increased the overall IIoT network security. The framework resolves major system challenges found in 

distributed systems through handling limited resources and enhancing industrial security capabilities. 

The objective of research involves developing threat detection resilience through adaptive 

communication parameter optimization which is based on reinforcement learning along with cross-
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device anomaly correlation models. The proposed model presents effective practical capabilities to 

provide dependable security protection alongside robust operational capability for IoT industrial 

applications. 
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