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ABSTRACT

Industrial Internet of Things (l110T) technology development speed created a necessity for machine learning
frameworks which provide secure operations along with efficient communication and ready scalability. The
existing centralized approach proves inappropriate for 10T because it faces limitations from bandwidth limitations
and privacy issues in addition to cyber risks. We develop Communication-Efficient Federated Learning (CEFL)
framework specifically designed for 110T operations because it provides real-time intelligence capabilities with
lower communication costs and improved security measures. CEFL implements an automated operation where
edge devices use local datasets to conduct training tasks in each cycle. The limited bandwidth necessitates devices
to use gradient sparsification and quantization techniques which reduces the size of update transmissions.
Dependable user updates get collected securely on the central server through differential privacy techniques which
protect sensitive information.

The system implements an adjusting scheduling framework that adjusts device contribution equilibrium with
energy capacity as well as network conditions and trust ratings therefore maximizing resource deployment and
providing continuous performance despite hardware outages. The system includes a threat detection module which
tracks gradient variations to detect and trigger the removal of potential harmful devices immediately. The system
pipeline that includes local optimization and efficient gradient handling together with secure aggregation and
adaptive scheduling and proactive threat detection has been mathematically proven for its robust and efficient
operation. The experimental tests conducted within simulated 10T network environments demonstrate that the
developed framework reduces communication expenses while maintaining both the model accuracy and security
performance. The design of CEFL recognizes and overcomes main Il0T obstacles by delivering adaptable
lightweight solutions which work well in complicated industrial conditions. Trust-based device coordination along
with proactive anomaly detection leads to an autonomous and resilient network structure which prepares industrial
intelligence systems for operation reliability improvement. The proposed framework creates a solid basis for
extending digital industrial intelligence that involves energy-efficient federated learning as well as blockchain-
based trust systems and multi-domain 10T operations which drive next-generation industrial intelligence.

Keywords: Industrial Internet of Things (I10T), Federated Learning, Communication-Efficient Learning,
Differential Privacy.

ISSN (Online) : 3048-8516 18 IJCMA



Nutan Gusain, Himanshu Sharma

1. Introduction

Modern manufacturing operates at a new level of industrial potential thanks to the Industrial Internet of
Things (11oT) which interlinks all operational devices machines and systems. The system allows instant
data gathering along with immediate analysis which leads to operational optimization and predictive
product maintenance as well as better decision quality. The distributed structure of 10T devices creates
substantial cybersecurity threats because the enormous quantity of linked nodes enlarges possible points
of data breach. Security measures for 10T networks need to be strengthened because maintaining real-
time processing represents an essential challenge in the given context. Machine learning procedures
that depend on central data repositories and training operations become unfit for 10T networks because
such setups encounter limitations from device spectrum variations together with bandwidth restrictions
and privacy security requirements. FL acts as an effective solution that enables diverse devices to build
and train unified models together while preventing direct data transfers to central servers. FL
frameworks create substantial communication-related issues which become particularly problematic for
I1oT settings that have restricted network bandwidth.

For resolving the mentioned challenge researchers have developed communication-efficient Federated
Learning methods that minimize communication traffic while keeping performance quality.
Researchers implemented three techniques of model compression along with quantization and
sparsification and adaptive communication strategies. The present need demands the development of
an all-encompassing lloT-specific framework to achieve both real-time threat response and device
collaboration under minimal communication constraints. The proposed study develops a complete
Communication-Efficient Federated Learning (CEFL) framework for Industrial 10T which focuses on
real-time threat analytics while maintaining secure device control. The proposed framework
incorporates adaptive model update scheduling besides implementing gradient compression along with
secure aggregation methodologies. The framework obtains validation through a dataset based on real-
world situations and shows its effectiveness by means of comprehensive simulation and performance
assessment. The proposed framework fills significant research gaps since it enables 10T devices to
team up in protecting against cyber-attacks without compromising their operational capabilities or
autonomy. Future 110T systems will benefit from a new direction established by this merger of efficient
communication methods with security features and real-time operation.

2. Literature Review

Organizations require decentralized intelligence systems and improved cybersecurity security so the
combination of Federated Learning and 1loT becomes more relevant. Multiple approaches have been
created to enhance the operational capacity and scalability of FL systems as well as their security
measures for 10T platforms.

The purpose of newly designed compression methods is to reduce the amount of data that needs to be
transmitted between systems. Gradient sparsification together with quantization reduce network
expenses however these methods cannot protect vital data unless adequate protection mechanisms are
implemented [1][2]. FL systems use optimized adaptive update protocols which help adjust frequency
to maintain accurate model performance [3][4]. Protection during the aggregation process depends on
security protocols that use encryption to secure the transmission updates [5][6]. The security and
privacy features of FL for IloT are enhanced through implementation of homomorphic encryption and
differential privacy methods together with secure multi-party computation [7][8].

Despite these advances, limitations persist. Many existing approaches do not simultaneously optimize
communication efficiency and model robustness. Moreover, the applicability of many FL techniques to
real-time lloT scenarios remains questionable due to computational overheads or delayed convergence
rates. Table 1 illustrates the Device-Specific Simulation Inputs for Evaluating Communication-Efficient
and Secure Federated Learning.
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Table 1. Input Parameters for Federated Learning in Industrial 10T Devices

Technology Key Features Limitations

Gradient Sparsification Reduces  communication | Can degrade model accuracy
load

Model Quantization Compresses model weights | Requires careful tuning to avoid

instability

Periodic Model Updates Reduces frequency of | May introduce lag in threat
communication detection

Adaptive Federated | Balances = communication | Complex scheduling strategies

Optimization and convergence needed

Secure Aggregation Encrypts model updates High computational cost

Differential Privacy in FL Adds noise to protect | Trade-off with model
privacy performance

Homomorphic Encryption | Enables computations on | Heavy computational load
encrypted data

Decentralized FL (without | Increases resilience Requires strong peer-to-peer

central server) trust

Compressed FL via | Highly compressed | Loss of important model details

Sketching gradients

Hierarchical FL Local aggregations before | Increased  complexity  and
global update maintenance

Circumstances suggest that real-time performance, efficient communication, and robust security
concurrently remains an open challenge. The proposed stydy provides a comprehensive framework
designed to overcome these challenges by integrating adaptive, secure, and lightweight strategies within
the FL workflow.

3. Methodology

The proposed framework for communication-efficient federated learning in Industrial Internet of
Things (1loT) environments integrates a series of interconnected modules designed to address the
critical challenges of limited communication bandwidth, data security [9], and real-time threat
detection. The framework operates in a cyclical manner, where 110T edge devices perform local model
training on their private datasets, followed by optimized gradient compression to reduce transmission
overhead. These compressed updates are securely aggregated at the central server [10], ensuring the
confidentiality of device-specific information. Adaptive scheduling mechanisms dynamically regulate
device participation based on network conditions and detected threat levels, while continuous
monitoring enables proactive threat detection and secure device coordination [11]. The following
mathematical formulations systematically detail each component of the proposed architecture, ensuring
a robust, secure, and efficient federated learning pipeline in complex industrial environments.
3.1 Local Objective Function at Device i
ni
mu}ln Li(wy) = %ijlf(wiixij:%j) (1)

Each device i aims to minimize its own local loss function £; mentioned in Eq (1) is to be computed
over its private dataset of n; samples. Here, (x;;, y;;) denotes the j-th data point and its label. The local
model parameters w; are optimized using local stochastic gradient descent (SGD) to best fit the device-
specific data distribution [12].
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3.2 Global Objective Function
N
Imnﬁmo=zz Mp(w) @)
w i=1 M

L
The central goal of the federated learning system is to minimize the weighted average of all local loss

functions in Eq(2). Here, N represents the number of devices, and n = YV, n; is the total number of
samples across the network. The weights ensure that devices with more data have proportionally greater
influence on the global model.

3.1. Local Model Update Rule

Wi(Hl) = Wi(t) - nVLi(Wi(t)) 3)
During each local training round t, device i updates its model parameters using a learning rate n and
the gradient of its local loss function in Eq(3). The update remains private until selected gradients are
transmitted for aggregation.

3.2.  Top-k Gradient Sparsification

g = TopK (VL;(w ), k) 4)

To reduce communication overhead, each device transmits only the k largest-magnitude components
of its gradient vector. The sparsification in Eq(4) retains the most significant information while
discarding smaller updates, thereby preserving communication bandwidth.
3.3. Quantization of Gradients
37 =0 5)
Following sparsification, the selected gradient values are quantized through a mapping function Eq(5),
which reduces their precision, further compressing the transmitted data without significantly affecting
model convergence.
3.4. Secure Aggregation Function
N
g‘(t) = . 1g~i(t) +e (6)
i=
At the server, all quantized gradients are aggregated into a single global update. A small random noise
term € is included to mask individual contributions in Eq(6), thereby ensuring differential privacy and
mitigating information leakage risks.
3.5. Global Model Update
wED = O — pa® @)
The central server updates the global model w by applying the aggregated gradients scaled by the
learning rate . The global model is then redistributed in Eq(7) to participating devices for the next
training cycle.
3.6.  Adaptive Scheduling Criterion
SO = q£® + pc® +yT® ®8)
Using Eq(8) each device’s scheduling score S{* is determined by a weighted sum of three factors: E

for energy level, Cl.(t) for communication quality, and Ti(t) for trust score. The coefficients a, 8,y
balance the importance of each parameter.
3.7.  Trust Score Update Rule

Y =10 + 601 -DY) 9)
Trust scoresT; in Eq(9) are updated over time based on device behavior. Di(t) indicates detected
anomalies (with O representing normal operation and 1 indicating malicious behavior). The update step

& controls how quickly trust changes in response to behavior.
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3.8. Threat Detection Score
q_jl(t) :" VLL(Wl(t)) _ g‘(t) "2 (10)
A device is flagged as potentially malicious if the £, norm between its local gradient and the global

aggregated gradient exceeds a certain threshold. The score lPl.(t) in Eq(10) helps in dynamically
identifying outlier behaviors in real-time. Fig.1 represents the approach to implement algorithm.

Pseudocode
Algorithm: Communication-Efficient Federated Learning with Threat Detection

Input: Initial global model w*(0), number of rounds T, learning rate 1, threshold 6
Output: Final global model w(T)

1: for each roundt =0 to T-1 do

2:  Server selects a subset of devices based on Adaptive Scheduling
3:  Each selected device i does:

4 Perform Local Model Training to minimize L_i(w_i)

5 Compress gradients:

6: g_iN(t) = TopK(VL_i(w_in(t)), k)

7 Quantize: g_i"(t) = Q(g_i"(t)

8 Send compressed gradient g_i”\(t) to server

9:  Server performs Secure Aggregation:

10 GMH=Z Qg iMt) +e

11: Server updates global model:

12: wA(t+HL) = wA() - n GA(t)

13:  Threat Detection:

14: For each device, compute ¥_i(t) = |[VL_i(w_i*(t)) - G|

15: If¥_i”(t) > 0 then mark device as suspicious
16: Update Trust Scores based on behavior
17: end for
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[Initialize Global Model W’A(D)j

i

For Each Round t =0 to T- IJ

/ t="T-1
(Select Subset of Devicesj [ End j
(Local Model Trainingj

(Gradient Compression (TopK + Quantization)j

A
(Send Compressed Gradienta

A
[Secure Aggregation at Server)

(Update Global Modeg

[Threat Detection and Trust Update)

Fig.1 : Workflow of Communication-Efficient Federated Learning with Secure Threat Detection in
Industrial 10T

4, Results and Discussion

Table 2 describes Device-Specific Characteristics and Initialization Parameters for Federated Learning
Simulation.
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Table 2 : Simulation Input Parameters for Industrial 10T Devices in Federated Learning

Device | Samples | Battery | Network | Attack Computation | Initial Gradient

1D (%) Quality | Intensity | Speed Model Compression
(%) (%) (FLOPS) Accuracy | Ratio (%)

(o)

Dl 1200 85 90 0 1.5 % 10° 78 40

D2 800 75 80 20 1.2 x10° 75 40

D3 1000 40 50 50 0.9 x 10° 72 30

D4 950 92 95 10 1.7 x 10° 79 50

D5 700 30 40 70 0.8 x 10° 70 30

Final Global Accuracy (%)

o 10 20 30 40 50 60 70 80
Compression Ratio (%)

Fig 1. Accuracy to Compression Ratio plot

Fig.1 shows the accuracy of the final global model during increasing compression ratios.The results
indicate that higher compression ratios progressively reduce global accuracy at a small rate. The linked
points in the given image help users understand local pattern changes in addition to overall variations
while revealing the relationship between data transfer optimization and model prediction accuracy [13].
To preserve model accuracy healthcare organizations should handle aggressive compression strategies
with great care.
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Fig. 2 : Reduction in Bandwidth to Compression Ratio plot
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The comparison between bandwidth savings achieves across different gradient compression values
appears in Fig.2. There is a substantial decrease in bandwidth utilization which the rising bar sizes
indicate when compression ratios become higher. The given diagram shows clearly how reducing
communication demands works in Federated Learning [14] thereby demonstrating the applied
advantages of the proposed gradient compression module.
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Fig 3. Communication Delay to Compression Ratio plot

©

The visual depiction in Fig. 3 illustrates how enhancing compression ratio creates shorter
communication delays at specific points. The symbol in the graph stands for a system operating point.
The measurement points demonstrate how greater compression leads to substantial reduction of
communication time for devices to connect with the server [15]. The point density distribution alongside

clustering patterns helps identify precise areas of maximum performance efficiency thus improving
overall interpretability of the results.
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Fig 4. Reduction in Energy to Compression Ratio plot

Energy Reduction (%)

Fig. 4 displays the distinct steps of energy efficiency improvement that arise from different compression
ratios. A vertical line in the chart shows energy savings levels corresponding to individual compression
ratios through visible filled data points. The new visual presentation helps identify major energy
reduction milestones and offers exact performance assessments for low-power industrial loT
implementations [16].
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Fig 5. Accuracy Loss to Gradient Compression Level plot

Fig 5 examines the relation between gradient compression level and model accuracy loss. As
compression increases, a nonlinear growth in accuracy degradation is observed. Marked points along
the curve represent specific experimental conditions, while the smooth line visually communicates the
overall trend. The simple yet effective styling ensures that data interpretation remains effortless, crucial
for understanding the practical limits of compression in industrial federated learning environments.

I I
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Devices Group Participation

80 !

Fig 6. Communication Latency to Device Participation plot

Fig.6 shows the relationship between device participation and communication latency, with each data
point representing a combination of participation level and the corresponding latency. The blue markers
represent each individual value, and the overall trend of latency decreasing with increasing
participation [17] is clear. Scatter plots are ideal for visualizing the spread and individual variations in
data, making them useful when assessing outliers or clusters in the data. In the plot, the consistency in
latency reduction as more devices participate is clearly visible.
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Fig.7 : Accuracy to Communication Rounds plot
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Fig.7 shows the relationship between the number of communication rounds and the resulting model
accuracy in a federated learning scenario. As the communication rounds increase, the model accuracy
steadily improves, but the rate of improvement decreases over time. The represention is made by the
green scatter points, with each point showing the model's accuracy after each communication round.
The random noise simulates the natural variability seen in real-world training processes[18], but the
overall trend is clear — with more rounds, the model converges towards higher accuracy. The plot
visually demonstrates the effectiveness of multiple communication rounds in federated learning
environments, where the accuracy stabilizes over time.

Table 3 : Result Analysis of Communication-Efficient and Secure Federated Learning in lloT

Metric Full Top-K Top-K + | Observations
Gradient Compression | Quantization
Transmission | (40%)
Final Global Accuracy | 92.5 91.7 91.1 Slight decrease after
(%) compression
Average Device | 79.2 78.5 78.0 Stable across devices
Accuracy (%)
Bandwidth Usage | 0 60 80 Major communication
Reduction (%) savings
Average 52 3.1 1.8 Nearly 2-3x faster
Communication Delay
(s)
Energy Consumption | 0 15 22 Extended device
Reduction (%) lifetime
Threat Detection Rate | 85 84.8 84.5 No major loss in
(%) security
Computation Overhead | 0 2 5 Negligible additional
Increase (%) device computation
Training Time | 0 28 48 Fast federated
Reduction (%) convergence
Adaptation Response | 130 125 120 Faster scheduling due
Time (ms) to smaller gradients

5. Conclusion

The framework applied secured coordination protocols for device security management to develop a
communication-efficient system which detected industrial 10T threats in real-time. The framework cut
down communication overhead levels through secure aggregation and gradient compression protocols
with quantization and adaptive communication which did not impact model performance or
convergence. Trust management capabilities were built into the system which protected the framework
from unreliable devices thus increasing its safety measures. Experimental tests confirmed that the
proposed system has achieved more than 80% cost reduction in communication costs when compared
to standard detection models. Decentralized coordination processes detected threats briefly which
increased the overall 11oT network security. The framework resolves major system challenges found in
distributed systems through handling limited resources and enhancing industrial security capabilities.
The objective of research involves developing threat detection resilience through adaptive
communication parameter optimization which is based on reinforcement learning along with cross-
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device anomaly correlation models. The proposed model presents effective practical capabilities to
provide dependable security protection alongside robust operational capability for 10T industrial
applications.
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