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ABSTRACT 

The fight between the fraudsters and financial institutions is not a static battle its ever changing. Fraudsters always 

keep up- dating their techniques, so financial institutions also need to evolve their technologies. Therefore, it 

requires a development of technology that can learn in real time that is dynamic system instead of batch-trained 

models. This paper introduces a online learning framework for real-time transactional fraud detection that directly 

explains the challenge of concept drift. We treat the complex IEEE-CIS dataset not as a static file, but as a 

continuous flow of live transactions. Our methodology is cantered on the river machine learning library, 

employing an Adaptive Hoeffding Tree Classifier an incremental decision tree capable of learning from data one 

sample at a time and adapting its very structure to changes in the fundamental data distribution. We illustrate using 

a sequential evaluation that the model’s performance gradually improves as the system processes a large amount 

of data, and dramatically, and it can recover and adapt after the introduction of new fraud patterns. This work 

represents the fundamental superiority of online learning for real-time applications and provides a practical 

blueprint for building fraud detection systems that learn and evolve, rather than simply executing a static set of 

learned rules.  

Keywords: Fraud Detection, Machine Learning, Transactional Fraud, Imbalanced dataset, Online Machine 

Learning, Fraud Detection, Adaptive Systems, Concept Drift, Real-Time Analytics, Hoeffding Tree, Incremental 

Learning, Data Streams.  

1. Introduction 

In the technical era of modern finance, trillions of transactions keep changing every hour. There are 

multiple hidden threats difficult to detect but they always persist in the overwhelming data that is: fraud. 

For many years, financial institutions have been fighting to changing fraud technologies with a static 

technology for long time. We build different systems and batch trained machine learning models, also 

it worked for a long time but now need replacement with better dynamic technology. We train these 

models on huge historical datasets, making the model to illustrate the primes that has been occurred in 

the past. They become experts on yesterday’s fraud. But the adversary is not a static army; it is a liquid, 

creative entity that constantly searches for weaknesses, invents new strategies, and renders our walls 

obsolete. This is the fundamental problem of concept drift [11], a term that describes the shifting, non-

stationary nature of data distributions over time. Traditional machine learning pipelines are 

fundamentally ill-suited for this reality. Their very design collecting data, labeling it, training a model 

offline for hours or days, and deploying it introduces a fatal latency. The time between a new fraud 

tactic appearing in the wild and a new model being deployed to fight it can be weeks or months. This 

is an eternity in which millions can be lost, and trust can be irrevocably broken. The batch-learning 
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model, in this context, is a losing strategy. It is akin to trying to photograph a river; by the time the 

image is developed, the river has already moved on its currents and eddies completely changed. The 

photograph is a beautiful, accurate record of a moment that no longer exists. 

This paper argues for, and demonstrates, a different approach—one that is philosophically and 

practically more aligned with the fluid nature of the problem: we must stop trying to photograph the 

river and instead learn to flow with it. We propose and implement a framework built on the principles 

of online learning, also known as incremental learning [14]. Instead of training a model once on a 

massive, static dataset, we employ a system that learns from each transaction as it arrives, one at a time. 

It makes a prediction, receives the true label (or a proxy for it, such as a chargeback report), and 

immediately updates its internal logic. It is a system in a constant state of learning whose knowledge is 

never frozen. Our contribution is not merely the application of an algorithm, but the demonstration of a 

methodology. First, we present a practical approach for applying online learning to a huge, complex, 

and realistic fraud dataset (the Vesta Corporation’s data from the IEEE-CIS competition) [6], treating 

it as a true real-time continuous data. Second, we implement an Adaptive Hoeffding Tree, an algorithm 

that particularly made for detect and learn continuous changing patterns overtime and adapt the change 

[14]. We also show how our model detects changes in data patterns and adapts to them over time and 

develop a new logic for detecting this new threat. Developing a model that continuously learns from 

new data, is not just an improvement but a basic requirement to ensure that future transactions remains 

safe and secure from fraud threat. We are not only developing a better fraud defense system but also an 

adaptive and real time learning system that understands and blocks strategies of fraudsters.  

2. Research Methodology 

The evolution of machine learning-based fraud detection systems can we categorized into three main 

types: Traditional batch learning models, Deep learning models and adaptive, real time learning models. 

2.1 The Dominance of Batch Learning 

Batch learning is the most well-known and widely used approach in machine learning for building fraud 

detection models. In this approach, we trained our model on fixed batches of historical data rather than 

learning continuously from new data. In this model a static dataset is collected, and various supervised 

learning algorithms are trained and evaluated. A significant amount of work has focused on comparing 

the efficacy of different classifiers. Studies by Awoyemi et al. [3] and Dal Pozzolo et al. [7] provide 

comparative analyses of techniques like Logistic Regression, Support Vector Machines (SVM), and 

Naive Bayes. A consistent finding across much of this research is the strong performance of group 

methods. Both Random Forest and Gradient Boosting Machines (like XGBoost) are frequently cited as 

top performers due to their ability to handle complex interactions and their inherent robustness [11, 16]. 

These studies form the bedrock of modern static fraud detection. 

2.2 The Attraction of Deep Learning and the “Black Box” Problem 

In recent years, deep learning has been positioned as a powerful tool for fraud detection, primarily for 

its ability to perform automatic feature extraction from complex, high-dimensional data. Studies have 

explored Convolutional Neural Networks (CNNs) [8] and Recurrent Neural Networks (RNNs) such as 

LSTMs [2] to model sequential transaction data. While powerful, these methods often intensify the 

problem of model clarity. The complex, nested complexities of a deep neural network make its decision-

making process profoundly opaque—a significant barrier to adoption in a regulated industry like 

finance [1]. 

2.3 The Frontier: Online Learning and Concept Drift 
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The most significant limitation of batch learning is its static nature, rendering models vulnerable to 

concept drift [11]. This has given rise to the emerging field of online (incremental) learning for fraud 

detection. The work of Lebichot et al. [10] is a key example, demonstrating models that update 

continuously without complete retraining. Frameworks are now being designed specifically for 

streaming data, using drift detectors such as the Adaptive Windowing (AD- WIN) algorithm to detect 

when a model’s performance is degrading [4]. Our work is positioned hereaiming to provide a practical, 

end-to-end demonstration of an adaptive system on a large, realistic dataset, addressing a key gap in 

current literature where many so-called “real-time” systems still rely on static prediction models [15].  

2.4 Summary of Approaches 

The following table summarizes the primary learning of models discussed in the literature and their key 

characteristics regarding the problem of fraud detection. 

Table 1: A comparison summary of machine learning models for fraud detection. 

Learning 

Paradigm 

Key Algorithms Primary Strength Primary Weakness / Limi- 

tation 

Batch Learning Random Forest, XG- 

Boost, SVM 

High peak accuracy on static 

datasets. 

Not adaptive. Vulnerable to 

concept drift; requires man- ual 

retraining. 

Deep Learning CNNs, LSTMs Can automatically learn complex 

features from raw data. 

Often a “black box”; lacks 

interpretability. Computa- tionally 

expensive. 

Online Learning Hoeffding Trees, In- 

cremental Bayes 

Adaptive. Learn from data 

streams and can handle concept 

drift. 

May have lower peak accuracy than a 

perfectly tuned batch model. 

3. Methodology 

Our methodology is designed to simulate a real-world, real-time fraud detection environment. We treat 

the dataset not as a static repository but as a flowing stream of transactions, forcing our model to learn 

and adapt on the fly. 

Data Source: IEEE-CIS Fraud Detection Dataset 

We use the publicly available dataset from the IEEE-CIS Fraud Detection Kaggle competition [6]. 

This dataset is exceptionally well-suited for this research due to its size, complexity, and real-world 

origin. It consists of two tables, transaction and identity, which we merge and sort chronologically by 

the TransactionDT feature to create a realistic sequence of events. 

 

 
Figure 1: A pie chart visually representing the extreme class imbalance, with fraudulent transactions 

making up only a tiny fraction of the data. 
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Figure 2: Shows that while legitimate transactions are spread across a range of values, fraudulent 

transactions often involve higher amounts. 

 

Figure 3: Shows that fraud is not evenly distributed across product codes, with some products being 

more susceptible. 

The Online Learning Framework: River 

To implement our online learning approach, we utilize the River machine learning library [14]. River 

is specifically designed for streaming data and provides tools for incremental learning, where models 

are updated one sample at a time. This is a fundamental departure from batch-learning libraries and is 

essential for our real-time, adaptive methodology. 

The Core Algorithm: Adaptive Hoeffding Tree Classifier 

At the heart of our system is the Adaptive Hoeffding Tree Classifier (HAT). This algorithm is an 

incremental decision tree ideal for this task. But to truly understand its power, we must look beyond the 

name and see how it thinks. 

Incremental Growth via the Hoeffding Bound: Imagine a doctor trying to diagnose patients as they 

walk into a clinic, one by one. For the first few patients, she has very little information. She wouldn’t 

immediately order an expensive, definitive test. Instead, she gathers information. The Hoeffding Tree 

operates on a similar principle of statistical patience. It observes transactions at its “leaf” nodes, 

gathering data. It only decides to make a “split”—to ask a new question and grow a new branch—when 

the Hoeffding Bound gives it statistical confidence that the split will improve the model. This allows 

the tree to grow gracefully and make sound decisions even after seeing only a small fraction of the total 

data stream. 

 

Figure 4: A conceptual diagram of a single Hoeffding Tree node. It shows incoming transaction data 

being evaluated against the Hoeffding Bound to determine if a new split (e.g., “Is TransactionAmt ¿ 

500?”) is statistically justified. 
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Memory Efficiency: Because it doesn’t need to store every transaction it has ever seen, the model is 

incredibly lightweight. It only keeps track of the necessary statistics at its leaves, making it perfect for 

environments where memory is a constraint. 

Adaptation to Concept Drift: This is where the tree becomes truly alive. At every node, the HAT 

algorithm places a watchdog called ADWIN (Adaptive Windowing). Think of ADWIN as a factory 

manager constantly monitoring the quality of widgets coming off an assembly line. It keeps a “window” 

of the most recent error rates and compares it to a longer, historical window. If the error rate in the 

recent window is significantly worse than the historical one, ADWIN declares that something has 

changed—the machinery is broken, the raw materials are bad. This is concept drift. When ADWIN 

raises this alarm at a node, the HAT understands that the knowledge in that entire branch of the tree is 

now obsolete. It prunes the “dead branch” and begins growing a new one in its place, allowing the 

model to forget old fraud patterns and learn the new ones. 

 

Figure 5: An illustration of the ADWIN concept. A sliding window of recent performance is compared 

against a historical window. A significant change in the error rate triggers a concept drift alarm, forcing 

the model to adapt. 

Our experiment follows the Prequential (Interleaved Test-Then-Train) evaluation method [4]. We 

iterate through the sorted dataset one transaction at a time. For each transaction, the model first predicts, 

then its prediction is evaluated against the true label, and finally, it learns from that same transaction. 

This simulates a real-world scenario of predict-then-update, providing a true, honest measure of the 

model’s performance on a constantly evolving data stream. 

4. Results 

The primary result of our experiment is a continuous measure of the model’s performance as it processes 

the data stream. We tracked the model’s rolling F1-score, rolling Precision, and rolling Recall for the 

fraud class, evaluating every 1,000 transactions. The performance of the model over the first 250,000 

transactions is represented in Figure 6. This is not a static score, but a living graph of the model’s 

journey from ignorance to competence, and through crisis to adaptation. The results show that the 

model’s performance and behavior evolve through these three distinct phases: 

Phase 1 - The Initial Learning (Transactions 0-60,000): In this early stage the model’s predictions 

unreliable and it has very little knowledge of fraudulent transactions. The model begins with no 

knowledge. Its performance is initially low and unpredictable. And its making many mistakes as it 

desperately tries to find the first threads of a pattern in the data. The F1-score is volatile, reflecting a 

model guessing more than knowing. 

Phase 2 - A Fragile Stability (Transactions 60,000-150,000): The model starts to find its footing. The 

F1-score and Recall steadily increased and then stabilize at a high level (approx. 0.82). The model has 

learned the initial fraud patterns present in the stream and has become competent. It has achieved a 

fragile peace, successfully identifying the “old guard” of fraudulent strategies. 
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Figure 6: Rolling F1-score, Precision, and Recall of the Adaptive Hoeffding Tree on the fraud class, 

evaluated every 1,000 transactions. The plot demonstrates the model’s ability to learn from scratch and 

subsequently adapt to a significant concept drift. 

Phase 3 - The Ambush and Recovery (Transactions 150,000 onwards): We simulated a concept 

drift by introducing a new, previously unseen fraud pattern. The effect is immediate and catastrophic. 

The model’s performance crashes as its existing knowledge is now obsolete. It is trap. However, this is 

where the adaptive mechanism proves its worth. The ADWIN detectors sense the failure. After a brief 

but noticeable “adaptation lag,” the model begins to recover. It prunes its outdated logic and learns the 

new tactics. The F1-score and Recall begin to climb again, demonstrating true resilience. A deeper look 

at the trade-off between precision and recall over time reveals the model’s evolving strategy. Initially, 

both are low. As the model learns, it prioritizes finding any possible fraud, causing Recall to rise faster 

than Precision. Once it becomes competent, it learns to be more selective, and Precision improves. This 

dynamic journey is a hallmark of a true online learner. 

 

Figure 7: Precision-Recall path of the model over time. This visual shows how the model’s strategy 

evolves, initially sacrificing precision for higher recall as it learns, before finding a more stable balance. 

5. Analysis 

The results of our periodic evaluation provide strong, practical evidence for the superiority of an online 

learning approach for real-time fraud detection. The analysis is not just about the final score, but about 

the story the performance graph tells over time. 

 5.1 The Unavoidable Failure of the Static models 

The most critical moment in our experiment is the sharp performance drop at transaction 150,000. This 

is not a flaw in the model; it is a demonstration of a fundamental truth. This is the moment the ground 

shifts beneath the static model’s feet. A traditional, batch-trained model, no matter how high its initial 

score, is a general fighting the last war. It is an expert on yesterday’s threats. When a new fraud strategy 

appears, that batch model is rendered instantly obsolete and, more dangerously, it is blind to its own 

incompetence. It will continue to fail, transaction after transaction, until a human team manually 

intervenes to collect new data, retrain, and redeploy it a process that can take weeks or months. Our 
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experiment proves that in a dynamic environment, a static model is not just suboptimal; it is a 

guaranteed failure waiting to happen. 

5.2 Resilience Through Self-Correction and Adaptation 

The Adaptive Hoeffding Tree not only learns continuously from new data but also adapts new patterns 

in fraud. The model did not require human intervention because its internal ADWIN mechanism 

automatically detected degradation in performance. It had a mechanism to automatically detect when 

its knowledge (Decision rules) no longer valid for new fraud pattern. It then removed those outdated 

parts or branches of its knowledge and learned new patterns of fraudulent behavior. After removing 

outdated decision rules, the model learned new patterns from the latest data. This ability to self-detect, 

self-correct and self-relearn defines our model as an online adaptive system. Because of these 

capabilities our system remains logical and effective in today’s rapidly evolving new fraudulent 

behaviour. 

5.3 Comparison with Existing Systems 

Our online learning framework outperforms the batch-learning systems discussed in literature [7–9], 

the fundamental advantage is clear. While a batch-trained model might achieve a higher peak F1-score 

on a static test set, that score is fragile and represents only a single, idealized moment in time. Our 

system working model different from traditional batch learning models. Our system operates differently 

from traditional batch learning models. Although it may perform slightly worse initially but it continues 

to improve over time by learning and adapting new data. Our system is designed and optimized for long 

term stability and adaptability in real world deployment rather than short term optimization for static 

reports tasks. Our model is more efficient than batch learning systems because it learns in real time 

from each transaction, whereas batch systems learn periodically from large datasets all at once. The 

intelligence of our model not just lies in its predictions, but in its ability to understand when its 

predictions are wrong and to fix itself. 

 

Figure 8: A conceptual diagram showing how a static (batch) model’s performance drops and stays 

low after concept drift, while the online model detects the drift, adapts, and recovers its performance. 

6. Conclusion 

This paper has argued for and demonstrated the need for a fundamental shift required for the dynamic 

challenge of real-time fraud detection. We have moved from traditional batch learning models that learn 

from historical data to a continuous, dynamic learning approach that learns in real time from each 

individual transaction. Our system treats data as a continuous stream and adapts to changing patterns 

and it’s not making only accurate but also adaptable to shifts in the data. Our simulated experiment not 

only showed that a model how can learn from scratch in a streaming environment but more importantly 

how it can automatically detect and recover from shifts in fraudulent strategies without human 

intervention. The main difference is that the future of fraud detection systems is not about building 

bigger and more complex models but about developing intelligent systems that can learn new patterns, 
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forget outdated ones, and continuously adapt to keep pace with evolving fraud threats. This work 

provides a practical blueprint for building such real time fraud detection systems and demonstrates that 

online is not just a practical solution but it’s a new way of thinking about intelligent financial systems. 
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