International Journal on Computational Modelling Applications
Vol. 02, Iss. 03, S. No. 02, pp.9--20, Sept 2025
ISSN (Online): 3048-8516

Received: 26 June 2025, Accepted: 07 July 2025, Published: 02 August 2025
Digital Object Identifier: https://doi.org/10.63503/j.jicma.2025.157

‘Review Articleﬁ

Pattern Matching Algorithms for DNA Sequence Analysis and
Disease Detection

Neelofar Sohi'*, Shaheena Sohi?

! Department of Computer Science & Engineering, Punjabi University, Patiala, Punjab, India
2 Universal College of Pharmacy, Lalru, Dera Bassi, Punjab, India
neelofarsohi7@gmail.com!, shaheenasohi@gmail.com?
*Corresponding author: Neelofar Sohi, neelofarsohi7@gmail.com
ABSTRACT

The focus of research in Genetics is upon analysis of massive amounts of information generated by various studies
and research endeavours in the area. DNA sequence analysis paves way for understanding of factors responsible
for diseases and leads to disease detection. Pattern matching algorithms have been explored for DNA sequence
analysis and disease detection. In this study, some of the prominent pattern matching algorithms are
comprehensively reviewed and presented as a potential technique for understanding and analysis of DNA
sequences for disease detection.

Keywords: Pattern Matching, DNA Sequence Analysis, Disease Detection.
1. Introduction

Bioinformatics is an interdisciplinary area that combines biology, computer science and statistics [1-2].
It aims at developing tools and algorithms for the understanding and analysis of biological data.
Currently, massive amounts of biological data are produced by various projects, and Bioinformatics
aims at understanding and analysing this data to reveal valuable information and knowledge. This
analysis impacts various areas such as molecular modelling, genome-wide analysis, comparative
genomics, gene expression studies, genome sequencing, drug discovery, crop improvement, gene
therapy, evolutionary studies, veterinary science, climate change studies, molecular medicine and so
on. Hence, bioinformatics plays a significant role in healthcare.

1.1 Background & Motivation

For detection of diseases, the focus of research shifted from linkage analysis to association studies. The
primary basis of association studies is to identify markers where markers are the sequence variations
present on the DNA sequence which might cause diseases. Various pioneering association studies have
been carried out such as Gambano et al., 2000; Cardon and Bell, 2001; Lohmueller et al, 2003; Manolio,
2010; Hollenbach et al, 2012; Alonso et al., 2021; Uffelmann et al., 2021; Shao et al., 2024; Yang et
al., 2025 [3-11]. There are two different types of variations viz. Genetic variations and somatic
variations. Genetic variations are inherited from parent to the offspring whereas somatic variations
include mutations caused in a person’s DNA during their lifetime. Hence, detecting the presence of
markers on the DNA sequence (or gene) of a person enables to understand the likelihood or
susceptibility of that person to develop that disease over their lifetime. Therefore, analysis of DNA
sequences is highly important for detection of diseases. Pattern matching algorithms aim to find out

ISSN (Online) : 3048-8516 9 IJCMA

mailto:neelofarsohi7@gmail.com

Neelofar Sohi, Shaheena Sohi

whether a particular pattern is present in a text and then finding its exact location in the text [12-13].
Genetic mapping is identification of genes underlying diseases. Linkage analysis is the most
fundamental form of genetic mapping introduced by Sturtevant for fruit fly in 1913. It suggests that
variants (or markers) having association with a particular trait must be lying nearby to each other on the
genome. In humans, linkage analysis was introduced around 1980s. And the idea was employed for
Huntington disease analysis in 1983. His approach was applicable to genetic and mendelian diseases
where mendelian diseases are the ones where single gene is involved in causing the disease. A Genome
wide approach to association studies was introduced in 1990s. This approach involves developing a
catalog of human genetic variations and then testing the association of variations with diseases. Various
pioneering studies were conducted based on Genome wide Association Approach since 2006 till now
[14].

2. Pattern Matching Algorithms for DNA Sequence Analysis

In this study, some of the prominent pattern-matching algorithms are studied for their application in
DNA sequence analysis. In this section, six string matching algorithms are discussed, giving their
working principle, advantages, shortcomings, and complexities.

2.1 Brute Force Matching Algorithm

This is also termed as the Naive algorithm, known to be the simplest one for the string matching
problem. The task is to match and find the pattern of length ‘m’ in the text of length ‘n’ [15]. The
technique of this algorithm is discussed below:

o The first character of the pattern is matched against the first character of the text.

o If the characters match, then the second characters are compared. If the second character
matches, then the third and so on until the entire pattern is found to occur at that location.
Then starting location of the pattern inside the text is returned.

o If the characters at the first position do not match, then the first character of the pattern is
moved to match it with the second character of the text, and the same procedure is repeated
for matching.

L]

+¢ Problems with Brute Force Matching Algorithm
e Slow Execution Time: This algorithm follows linear search technique hence is very slow and
consumes a lot of time. Its worst case complexity is O (m*n) as it performs character by
character comparison.
e Poor performance for long sequences: This algorithm works well for short sequences but its
complexity increases when the sequence becomes longer.
L
+ Advantages of Brute Force Matching Algorithm
e FEasy to understand & implement
e Simple technique
e Wide applicability

2.2 Boyer Moore Algorithm
This algorithm learns from the character comparisons it performs and then skips those alignments which

cannot possibly be fruitful [16]. Hence, in comparison to Brute force matching algorithm, Boyer Moore
performs less number of comparisons. This algorithm learns from the study of pattern that which

ISSN (Online) : 3048-8516 10 IJCMA

Neelofar Sohi, Shaheena Sohi

comparisons cannot yield matches and skips them. Alignment is performed from left to right whereas
individual characters are compared from right to left.

¢+ Approaches in Boyer Moore:
e Bad Character Rule
e Good Suffix Rule

Here, Idea is to apply the rule which skips more alignments hence best of the two heuristics (approaches)

is applied at any given step.
e Bad Character Rule: Character of the text not matching with currently compared character of
the pattern is called the Bad Character.This rule checks the following conditions: if there occurs

a mismatch, we skip alignments or shift the pattern until

> Mismatch becomes a match: We look for the mismatched character of text while
moving towards left in the pattern or

» P moves past the bad character if no match found while going towards left

e Good Suffix Rule: It keeps the matches and does not let them turn into mismatches. This rule

checks the following conditions:
» If asubstring ‘t’ is found in the text that occurs in the pattern while moving towards

left, then move the pattern to match that substring of P with T or
» Look for the next match of characters in P and T while moving left in the pattern

The working of Boyer Moore is explained with the help of an example in figure 1.

[fafafe]ale Jale [ac e |aa b |

| P1 | C ‘ B | A | A ‘ B | be=1. gs=0 Bad Character rule applied

[12]a Jafefale [ale [ac b [a]a b |

‘ P2 ‘ C ‘ B | A ‘ A | B ‘ be=0, gs=2 Good Suffix rule applied

c[B[a]a[B]

I3 [afafc]alB]a]B[a

be=2, gs=0 Bad Character rule applied

[P e [[aa [n

[A e Ta o [a [o [A Tc [Ja [v]
[[T 1
[ATc o [A]a 5]

Pattern found in the Text
*Lines denote matches
*Red colour denotes mismatches

Fig. 1: Example of Boyer Moore Algorithm

+ Advantages of Boyer Moore Algorithm
e Known to be the most efficient algorithm
e Works well for long pattern and moderate sized text

ISSN (Online) : 3048-8516 11 IJCMA

Neelofar Sohi, Shaheena Sohi

e Best case complexity= O(n)

2.3 Rabin Karp Algorithm

Rabin Karp algorithm is used for searching and matching of patterns in a text. Originally, it is a string
matching algorithm developed by Michael O. Rabin and Richard M. Karp in 1987 [17]. It is used in
string matching to find a particular pattern in the text. It calculates a hash function. For Text
T={t1,t2...... tay and Pattern P= {pl,p2.....pm}, goal is to find out occurrence and location of the
pattern in the text. It is achieved by first comparing whole pattern with substring of the text with length
equal to length of the pattern. It is stated that pattern is found in the text with shift ‘s’ where shift is the
number of characters after which pattern is found.

+ Two Components of Rabin Karp Algorithm
There are two main components of Rabin Karp algorithm:

e Hashing: It is the basic technique used in Rabin Karp algorithm to reduce the number of
comparisons required. Also, it converts the string into a numeric value. Hash function is
calculated and hash value for the pattern and the sub-sequence of the text can be compared for
finding the match.

¢ Rolling Hash Function: In order to calculate the Hash Function of next sub-string, previous
character’s hash value is used. This is termed as ‘Rolling Hash Function’.

+¢ Selection of Hash function in Rabin Karp

It is basically a tool to convert a large value to a small value. Here, in this case, it converts a string into
a numeric value. The output value is termed as hash value [18].
For Text T={t1,12...... tn}
& Pattern P= {p1,p2.....pm}
Hash function for Rabin Karp can be defined as:
* P[1]+P[2]+P[3]or

e P[1]*d™'+ P[2] *d™2+ P[3] *d™ or
e h« (P[i]* d™')mod K

where d is radix base (d is chosen as 4 when there four elements in the alphabet set); K is prime
number
+ Working of Rabin Karp Algorithm

The step by step procedure of working of Rabin Karp algorithm is discussed below:

e Take the Reference nucleotide sequence, T={t1,t2...... ta} with length ‘n’ to be matched

e Convert each character in the Alphabet set {A,G,C,T} into a numeric value by having codes
assigned to each of these characters viz. 0 for A, 1 for G, 2 for Cand 3 for T

e Take the Query nucleotide sequence, P= {p1,p2.....pm} with length ‘m’ to be matched against
reference sequence

e For this Query string, Convert each character in the Alphabet set {A,G,C,T} into a numeric
value by having codes assigned to each of these characters viz. 0 for A, 1 for G, 2 for C and 3
for T

e (Calculate the Hash Value for the chosen Reference as well as Query sequence using this
formula: h « (Sequence [i]* d™!) mod K

ISSN (Online) : 3048-8516 12 IJCMA

Neelofar Sohi, Shaheena Sohi

» Choose a prime number ; K. We choose K=29 because if we look at ASCII codes for
A, G, C & T, highest code is for T and lowest for A. The difference between the two is
32. Hence we choose a number nearest to that.

» ‘d’ is the radix base. Since we have four characters {A, G, C, T} in the alphabet set,
‘d’ is taken equal to 4.

Now, calculated hash values for Reference and Query sequences are compared to each other.

» If the two values match that means this part of sequence has no SNP then next
subsequence in the main reference & Query sequence is compared using Rabin Karp.

» Ifthe values do not match that means this part of compared sequences is the ‘Candidate
part’ for SNPs. Candidate part is taken and character by character comparison is done
using naive Brute Force String matching algorithm.

+» Advantages of Rabin Karp Algorithm

Reduced number of comparisons: In case of Rabin Karp Algorithm, the two sequences do
not have to be compared on character by character basis as in case of Brute Force Matching
algorithm. The hash values are calculated for both reference and query sequences and are
compared to check for match. If the two values match that means this part of sequence has
no SNP then next subsequence in the main reference & Query sequence is compared using
Rabin Karp. If the values do not match that means this part of compared sequences is the
‘Candidate part’ for SNPs. Candidate part is taken and character by character comparison
is done using naive Brute Force String matching algorithm. So, individual characters are
compared only when needed.

Constant Pre-processing Time: In this algorithm, there is one subtraction, one addition and
one multiplication involved at one location for computing hash function therefore the pre-
processing time is constant i.e. O(1).

There is a role of intuition in selection of prime number ‘k’

¢ Problems in Rabin Karp Algorithm

Improper selection of Modulus function and prime number creates problem

In some situations, same hash value is generated by two equal strings. So, H(P) i.e. hash value

of the pattern and H(T;) i.e. hash value of the text subsequence with length equal to pattern (m)

is calculated. These two hash values are compared to establish whether there is a match or not.

Sometimes, hash value comes out to be equal but actually pattern and text subsequence are not

equal. This situation is called ‘spurious hit’ [19]. Then characters are to be individually
compared to ascertain that it is a “valid hit” and not’ spurious hit’. And if character by character

comparison is done then complexity increases.

Larger number of comparisons
Increased complexity
Algorithm is slow

Takes up extra space O(P)

2.4 Knuth-Morris-Pratt (KMP) Algorithm

Knuth-Morris-Pratt (KMP) algorithm is used to search for a pattern with length ‘m’ from a text of length
‘n’. The most salient feature of this algorithm is that it reduces number of comparisons and hence the

time complexity by utilising the information gained from previous comparisons. In comparison to brute

ISSN (Online) : 3048-8516 13 IJCMA

Neelofar Sohi, Shaheena Sohi

force matching (naive) algorithm, it performs a reduced number of comparisons [20]. The average case
complexity of Brute Force Matching algorithm is O(mn) whereas that of KMP algorithm is O(m-+n).
* It utilizes the information obtained from previously carried out comparisons.

* The failure function (f) is computed, which describes how much of the previous comparison
can be reused.

¢ Pre-processing in KMP algorithm

There is a need to pre-process the pattern and construct an integer array Ips|]. The array Ips[] gives the
number of characters which can be skipped as they have been already compared. It tries to find which
characters are repeating in the given pattern to reduce number of comparisons required.

e In KMP algorithm, pre-processing of pattern is done and auxiliary integer array Ips[] is
constructed of size ‘m’ i.e. size of the pattern.

e The term ‘Ips’ stands for longest proper prefix. For example, possible prefixes of ‘abc’ are ‘a’,
‘ab’ and ‘abc’ taken from left to right and suffixes are ‘c’, ‘bc’ and ‘abc’ which are taken from
right to left.

e For every sub-pattern pat [0......i] where i=0 to m-1, Ips[i] is an array storing length of the
maximum matching prefix that is also a suffix of this sub-pattern.

The working of KMP algorithm is explained below with the help of an example (figure 2).

Pattern with length: m=5

Index() |1 |2 [3 |4 |5

Pattern a b a b d

Ips o o |t |2 |o

Text with length: n=15

Index |1 |23 [4 |5 [6 |7 |8 |9 [10 |1l |12 |13 |14 |15
(i)

Text |a bla |b C a b |[¢c |a b a b a b d

Fig. 2: Example of KMP Algorithm

The step-by-step procedure of working of the KMP algorithm is presented in Table 1 with the help of
the given example.

Table 1: Example of Step by step working of KMP Algorithm

Step 1. Begin at index; i=1 for text & j=0; do | Step 2. Move to i=2, T(i)=b and
jt1=1 j=1; j+1=2, P(j)= b, hence Match
Ati=1, T(i)=a

At j+1=1, P(j)= a, hence Match

Step 3. Move to i=3, T(i)=a and Step 4. Move to i=4, T(i)=b and

At j=2; j+1=3, P(j)= a, hence Match At j=3; j+1=4, P(j)= b, hence Match

ISSN (Online) : 3048-8516 14 IJCMA

Neelofar Sohi, Shaheena Sohi

Step 5. Move to i=5, T(i)=c and
At j=4; j+1=5, P(j)= d, hence Mismatch

(1343}

Step 6: Do not backtrack “i”; only
backtracked
e Value of Ips at j=4 is 2
So, move j=2; j+1=3, P(j)=a
e Continue with i=5
T(i)=c
Hence Mismatch

backtracked
e Value of Ips at j=4 is 2
So, move j=2; j+1=3, P(3)=a
e Continue with i=13
T(13)=a
Hence Match

Step 7: Do not backtrack “i”; only “j” | Step 8: “j” already at 0; cannot be backtracked,
backtracked hence move i to 6, T(6)=a and j=0; j+1=1, P(j)=
e Value of Ips at j=2is 0 a, hence Match
So, move j=0; j+1=1, P(j)=a
e Continue with i=5
T(i)=c
Hence Mismatch
Step 9: Move to i=7, T(i)=b and Step 10: Move to i=8, T(i)=c and
j=1; j+1=2, P(j)= b, hence Match j=2; j+1=3, P(j)= a, hence Mismatch
Step 11: Do not backtrack “i”; only “j” | Step 12: “j” already at O; cannot be backtracked;
backtracked hence move i to 9, T(9)=a and j=0; j+1=1, P(j)=
e Value of Ips at j=2 is 0 a, hence Match
So, move j=0; j+1=1, P(j)=a
e Continue with i=8
T(8)=c
Hence Mismatch
Step 13: Move to i=10, T(i)=b and Step 14: Move to i=11, T(i)=a and
j=1; j+1=2, P(j)= b, hence Match j=2; j+1=3, P(j)= a, hence Match
Step 15: Move to i=12, T(i)=b and Step 16: Move to i=13, T(i)=a and
j=3; j+1=4, P(j)= b, hence Match j=4; j+1=5, P(j)= d, hence Mismatch
Step 17: Do not backtrack “i”; only “j” | Step 18: Move to i=14, T(i)=b and

j=3; j*1=4, P(j)= b, hence Match

Step 18: Move to i=15, T(i)=d and
j=4; j+1=5, P(j)= d, hence Match

Therefore, pattern found at index: 11 to 15 in the

text

2.5 Trie String Matching Algorithm

Trie is a tree-based data structure, also called a Digital tree or a Prefix tree. It is for storing of strings to

enable efficient retrieval. Tries enable prefix queries for the retrieval of information. Prefix queries look
for the longest prefix of a given string that matches a prefix of some string in the trie [21].

If S is the set of strings, a Trie for S is an ordered tree T where:

* Everyedge in T is labeled with a character belonging to).

* Order of edges coming out from some internal node is decided by Y.

ISSN (Online) : 3048-8516

15

IJCMA

Neelofar Sohi, Shaheena Sohi

* A path from root node to any node in T denotes a prefix in)’ which is equal to concatenation

of characters while traversing the path

* A character associated with an edge can be represented at a child node under it

¢ Operations in Trie
Insertion operation: This operation is to insert a string ‘X’ into a set of strings ‘S’ as described

in an example in figure 3.

Root node Root node
Insertion ol “abe’
{1 . .| @ = I a
F /|F rarl: S F
B 4 ¢ ¢
Here. map iz empty b b
and Fnd of Wiod ; y
False F ;.«‘ F AL
Step 1: 'a’ inserted ¥ “
e
__.I' I’
F JF

Step 2! b7 inserted

T

Step 3: ‘¢’ inserted

Fig 3: Example of Insertion operation in Trie

* Deletion operation: This operation is to remove a string ‘X’ from a set of strings “S’.

Search operation: This operation returns all those strings in set ‘S’ which have the longest prefix
of ‘X’. Searching in the given set of strings for a particular string can be of two types:

» Prefix based search: This search operation just requires the prefix to be present on the

trie structure as shown in figure 4.

Root node
Searclunge of “ab . IE N
_;" F ;__J' F
¢ W
i | b
/|F JLF
o4 s
C e
7 i
A |F FF
/
W W
Prefx “ab” found
T F

Fig. 4: Example of Prefix based search in Trie

ISSN (Online) : 3048-8516 16 IJCMA

Neelofar Sohi, Shaheena Sohi

» Whole word based search: This search operation requires the whole word to be present on the

trie structure while traversing down from the root node. It must have its end of word=True (as
shown in figure 5).

Root nods
Searching of *ab’]
. A , a
£ F SF
£ o
b k
,:I; F / |F
RE: C
_.I'
.I'-r F) F
i s
Prefix “ab’ found but End of Word is not
[RUE hence whole word search for “ab’
T F fails & returns FALSE

Fig. 5: Example of Word-based search in Trie
+ Advantages of Trie

* Less Memory: If there are repeating characters ‘ab’ and ‘abcd’, they will be represented on
same path hence less memory is used.

* Reduced Complexity: O(m) where m is length of string to be inserted or searched for.

2.6 Finite Automata

The idea is to construct finite automata (finite state automation) for searching a pattern from the given
text. The approach followed consists of three steps. The working of this technique is described below
in detail with the help of an example. Pattern and the text are given in figure 6.

Pattern a b a b a Cc a

Index 1] 1213 |4 [5 |6 |7 (819 [10 |11

Text 15 |bla |b |a |b |a |c |a |b |a

Fig. 6: Pattern and text taken in the example

Step 1. Build Finite Automata for the given pattern as described in step by step manner in table 2:
Take Alphabet set; Y= {a, b, ¢}
Q: Finite set of states
Qo € Q: Initial State
F C Q: Final State
0 : Transition from one state to another
Tuple: (Q, Y, 3, qo, F) defines the FA

Now, the question is how many states are to be formed. As there are 7 characters in pattern (P), we take
States in Finite Automata (FA) from 0 to 7.

ISSN (Online) : 3048-8516 17 IJCMA

Neelofar Sohi, Shaheena Sohi

Table 2: Step I of building the Finite Automata

Step 1: Check for a,b,c
e ‘a’ is in the P so Make transition for ‘a’
from 0 to 1

Step 2:

e Now from ‘a’ check aa,ab,ac
aa: p=(a) & s=(a); p=s; len=1; so make transition from
1 to 1 for next ‘a’

e Check ab: p#s hence no transition

e Check ac: p#s hence no transition

Step 3: Check : aba, abb, abc

e aba: Found in P so make transition from
1to2

e abb: p#s hence no transition

e abc: p#s hence no transition

Step 4: check abaa,abab,abac
e check abaa: p=(a,ab,aba) & s=(a,aa,baa)
p=s; len=1; hence transition from 3 to 1
e abab: Found in P so make transition from 3 to 4
e abac: p#s hence no transition

Step 5: check ababa, ababb, ababc

e ababa: Found in P so make transition
from4 to 5

e ababb: p#s hence no transition

e ababc: p#s hence no transition

Step 6: check ababaa, ababab, ababac

e ababaa: p=(a,ab,aba,abab) & s=(a,aa,baa,abaa) p=s;
len=1; hence transition from 5 to 1

e ababab: p=(a,ab,aba,abab,ababa) &
s=(b,ab,bab,abab,babab) p=s for ‘ab’ and ‘abab’ take
len=4 hence transition from 5 to 4

e ababac: Found in P so make transition from 5 to 6

Step 7: check ababaca, ababacb, ababacc

e ababaca: Found in P so make transition
from 6 to 7

e ababacb: p#s hence no transition

e ababacc: p#s hence no transition

Step 8: check ababacaa, ababacab, ababacac

p=(a,ab,aba,abab,ababa,ababac,ababaca)
& s=(a,aa,caa,acaa,bacaa,abacaa,babacaa) p=s for ‘a’
with len=1 hence transition from 7 to 1

e ababacab: p=(a,ab,aba,abab,ababa,ababac,ababaca)
& s=(b,ab,cab,acab,bacab,abacab,babacab) p=s for
‘ab’ with len=2 hence transition from 7 to 2

e ababacaa:

e ababacab: p#s hence no transition

Step II. The first step gives us the Finite Automata for given pattern. Second step is to convert this FA

into transition table given in table 3. Here, 0 denotes ‘no transition’.

Table 3: Transition Table constructed from FA in Step 11

st | Ly 1 e
0 1 0 0 a
1 1 2 0 b
2 3 0 0 a
3 1 4 0 b
4 5 0 0 a
5 1 4 6 c
6 7 0 0 a
7 1 2 0
ISSN (Online) : 3048-8516 18 IJCMA

Neelofar Sohi, Shaheena Sohi

Step III. Third step is to match the pattern with text using transition table. Here, we read the elements
of text one by one as described in table 4.

Table 4: Step I1I of matching Pattern with Text using Finite Automata

Step 1: Start checking from initial state= 0 Step 2: (0,a) = 1 States encountered=0, 1
(0,a) > 1 States encountered=0
Step 3: (1,b) > 2 States encountered=0,1,2 Step 4: (2,a) > 3 States encountered=0,1,2,3

Step 5: (3.b) > 4 States encountered=0,12.3.4 Step 6: (4,a) > 5 States encountered=0,1,2,3,4,5

Step 7: Gb) > 4 States | Step &: 42 > 5 States
encountered=0,1,2,3,4,5,4 encountered=0,1,2,3,4,5,4,5

Step 9: Ge) > 6 States | Step 10: 6,a) > 7 States
encountered=0,1,2,3,4,5,4,5,6 encountered=0,1,2,3,4,5,4,5,6,7

Step IV. The condition used in the code is “if (q==m) then “pattern occurs with a shift of (i-m)”. Here,
q=7 is reached and the value of P; Pattern is initially set to 7. Hence, the condition is met, which implies
that the pattern occurs with a shift of (i-m). Here, the value of index i in Text where 7 occurs is 9. Hence,
(i-m) gives 2, which means the pattern occurs with a shift of 2, i.e., the pattern occurs at index 3 of the
Text. The complexity of Finite Automata for pattern matching is O (n), where n is the length of the text.
Here, every character is processed only once.

3. Conclusions and Future Scope

In this study, several prominent pattern-matching algorithms, such as Brute Force, Boyer-Moore,
Rabin-Karp, Knuth-Morris-Pratt (KMP), Trie and Finite Automata, have been explored for DNA
sequence analysis and disease detection. Strengths and shortcomings of these algorithms are discussed
along with their working principle in detail. The paradigm shift of research in genetics from linkage
studies to Genome Wide Association Studies is discussed. Also, the importance of understanding
sequence variations and their association with diseases is discussed. It is established that analysis of
sequence variations can lead to disease detection. Pattern-matching algorithms hold the potential for
understanding and analysis of DNA sequences for disease detection. They can be applied for the
detection of SNPs and other sequence variations. There is a scope to improve the performance of these
algorithms for such applications.

Acknowledgements

We are thankful to the Department of Computer Science & Engineering, Punjabi University, Patiala,
Punjab and Universal College of Pharmacy, Lalru, Dera Bassi, Punjab for providing the necessary labs
and other infrastructure for carrying out this research work.

Funding source

"None."

Conflict of Interest

The authors declare no conflict of interest.
References

[1] N.M. Luscombe, D. Greenbaum D and M. Gerstein, “What is bioinformatics? An Introduction
and overview”, Yearbook of Medical Informatics, pp. 83-100.

ISSN (Online) : 3048-8516 19 IJCMA

Neelofar Sohi, Shaheena Sohi

[2]

[3]

[13]
[14]

[15]

[16]
[17]
[18]
[19]
[20]

[21]

J. Pevsner, Bioinformatics and functional genomics, 3rd ed. John Wiley & Sons Inc,
Chichester, 2015.

G. Gambano, F. Anglani and A. D’Angelo, “Association studies of genetic polymorphisms
and complex disease”, The Lancet (British edition), vol. 355, no. 9200, pp. 308-311, 2000.
L.R. Cardon and J.I. Bell, “Association Study Designs for Complex Diseases”, Nature
Reviews (Genetics), vol. 2, pp. 91-99, 2001.

K. Lohmueller, C. Pearce, M. Pike et al., “Meta-analysis of genetic association studies
supports a contribution of common variants to susceptibility to common disease”, Nature
Genetics, vol. 33, pp. 177-182, 2003.

T.A. Manolio, “Genomewide Association Studies and Assessment of the Risk of Disease”,
The New England Journal of Medicine, vol. 363, no. 2, pp.166-176, 2010.

J.A. Hollenbach, S.J. Mack, G. Thomson and P.A. Gourraud, “Analytical methods for disease
association studies with immunogenetic data”, Methods in Molecular Biology, vol. 882, pp.
245-266, 2012.

L. Alonso, 1. Moran, C. Salvaro and D. Torrents D, “In Search of Complex Disease Risk
through Genome Wide Association Studies”, Mathematics, vol. 9, no. 23, pp. 3083, 2021.
E. Uffelmann, Q.Q. Huang, N.S. Munung et al., “Genome-wide association studies”, Nature
Review Methods Primers, vol. 1, 59, 2021.

M. Shao, K. Chen, S. Zhang, M. Tian, Y. Shen, C. Cao and N. Gu, “Multiome-wide
Association Studies: Novel Approaches for Understanding Diseases”, Genomics, Proteomics
& Bioinformatics , vol. 22, qzae077 ,2024.

L. Yang, M.C. Sadler and R.B. Altman, “Genetic association studies using disease liabilities
from deep neural networks”, The American Journal of Human Genetics, vol. 112, no. 3, pp.
675-692, 2025.

A.P. Gope and R.N. Behera, “A Novel Pattern Matching Algorithm in Genome Sequence
Analysis”, International Journal of Computer Science and Information Technologies, vol. 5,
no. 4, pp. 5450-5457, 2014.

P.Neamatollahi, M. Hadi and M. Naghibzadeh, “Simple and Efficient Pattern Matching
Algorithms for Biological Sequences”, IEEFE Access, vol. 8, pp. 23838-2384, 2020.

D. Altschuler, M.J. Daly and E.S. Lander, “Genetic Mapping in Human Disease”, Science,
vol. 322, 1n0.5903, pp. 881-888, 2008.

E. D’Souza, B. Shalini Pai and S. Vijayakumar, “Comparative Analysis on Efficiency of
Single String Pattern Matching Algorithms”, International Journal of Latest Trends in
Engineering and Technology SACAIM, vol. 2016, pp.221-225, 2016.

R.S. Boyer and J.S. Moore, “A Fast String Searching Algorithm”, Communications of the
ACM , vol. 20, no.10, pp. 762-772,1977.

R.M. Karp and M.O. Rabin, “Efficient randomized pattern-matching algorithms”, IBM
Journal of Research and Development, vol. 31, no. 2, pp. 249-260, 1987.

M. Shabaz and N. Kumari, “Advance-Rabin Karp Algorithm for String Matching”,
International Journal of Current Research, vol. 9, no. 9, pp. 57572-57574, 2017.

Sunita, R. Malik and M. Gulia M, “Rabin-Karp Algorithm with Hashing a String Matching
tool”, International Journal of Advanced Research in Computer Science and Software, 2014.
D.E. Knuth, J.H. Morris and V.R. Pratt, “Fast Pattern Matching in Strings”, SIAM Journal on
Computing, vol. 6, no. 2, pp. 323-350, 1977.

Ahmed, “The Role of Trie Data Structure in String Processing”, Research Project, Benha
University, Shoubra, 2019.

ISSN (Online) : 3048-8516 20 IJCMA

