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Abstract

In recent years, Self-supervised learning (SSL) has evolved as a framework that eliminates the bottleneck of dependence on
labeled data for conventional Supervised learning paradigms. It has opened entirely new possibilities by removing the depen-
dence on the annotated data, which is particularly useful for medical image classification problems, as finding the annotated
data is scarce in this domain. In this paper, we have collected and presented a structured view of the usage of SSL framework
and techniques for MRI-based medical image classification. We have consolidated a detailed review of this modality that can
be practical for future research and experimentation.
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1 Introduction

In modern diagnostic radiology, one of the most important aspects is MRI - Medical Resonance Imaging. MRIs
provide a detailed structural and functional insight into the human body. In recent times where speed and scalability
both matter, there has been a constant need for automated systems that can help radiologists classify and interpret
these images. The rise in the demand is also because of the growing volume of MRI based images and need for their
accurate diagnosis. The conventional Supervised techniques do not scale as they have a huge dependence on the
annotated data. This greatly restricts the development of robust deep learning models for interpreting MRI [1]. In re-
cent times, the Self-supervised learning framework has evolved as one of the promising frameworks, eliminating the
dependence on the annotated data as it finds the cues within the data itself. Unlike traditional Supervised Learning,
SSL employs natural structures or features of the data to generate supervision cues for the representation learning.
This field, besides transforming Computer Vision and Natural Language Processing (NLP), is also being explored
increasingly for medical image analysis, such as MRI [2,3]. SSL works on the idea of using a smaller proxy task
for representation learning. These proxy tasks are called Pretext tasks. The Pretext tasks are frameworks designed to
train models to solve some problem and while solving the problem, it also learns the features of the data. These tasks
have various types including distinguishing whether the two different rotations of an image are similar or dissimilar,
reconstructing masked sections of an image, putting image patches back in the order, and so on. These tasks are
categorized as Generative, Contrastive, etc. These trained models are then used for the actual downstream tasks like
classification, segmentation, and so on [2]. This approach is particularly useful for Medical Image classification as
3D volumes contain rich spatial and temporal data that can be used to learn from with the appropriate Pretext tasks.
Recent work in this domain has labeled SSL as one of the efficient frameworks for a variety of tasks like MRI-
based classification, Schizophrenia classification, Alzheimer diagnosis, etc. These experiments illustrate how SSL
can enhance transfer learning between tasks, generate more generalizable representations, and reduce dependency
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on costly annotations [1,3]. In this work, the most recent advancements in Self-supervised learning for MRI-based
image classification are compiled, along with a description of key methods, a classification of Pretext problems, and
trends in performance gains.

2 Self-Supervised Learning Approaches and Pretext tasks

Self-supervised Learning (SSL) has become an important approach in the wider field of Unsupervised learning. It
aims to use the natural structure of data to learn meaningful representations without needing manual labels. The idea
of SSL dates back to earlier studies like [4].

jingle
Supervised Unsupervised Self Supervised:
Derives label from co-

occuring information
within input

Figure 1: Self-supervised Learning Workflow

These studies introduced learning in real-world situations with different types of inputs. For instance, an image
of a pile of coins might not always have a label, but it often is associated with the sound ’jingle.” This shows
how valuable it is to learn from the relationships between different types of data. Over time, the machine learning
community has made great progress in SSL, recognizing its ability to extract useful signals from the data itself.
Unlike traditional Supervised learning, SSL creates output labels from within the data by revealing connections
between different parts or views of the input data. For instance, Autoencoders (AEs) aim to reconstruct input data
from compressed versions and can be seen as early types of SSL, since their output labels are simply the original data.
AEs are commonly used for tasks like reducing dimensionality and detecting anomalies. SSL can be understood as:
(1) predicting one part of the input from another, (2) predicting the future based on the past, (3) predicting what we
cannot see from what we can see, and (4) reconstructing hidden, masked, or damaged parts from the visible content.
At its heart, SSL involves hiding part of the input and training a model to predict or fill in the missing pieces. Jing et
al. [5] expanded the definition of SSL to include any learning method that does not rely on human-made labels. With
this definition, SSL becomes similar to Unsupervised learning. This includes models like Generative Adversarial
Networks (GANSs) [6], which learn to create realistic data through adversarial training without labeled supervision.
A key innovation in SSL is using Pretext tasks, which are side tasks not linked to the model’s end goal. These tasks
help the model learn useful representations. They offer indirect guidance, helping the model find patterns in the
data. Pretext task plays a crucial role in representation learning. They enable self-supervision framework to work
by generating labels (cues) directly from the data. The significant benefit is that this eliminates the need for huge
annotated data sets.
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2.1 Pretext tasks and Representation Learning
2.1.1 Representation learning from the innate image features

In this method, the innate structure of images is leveraged, which is quite natural to the medical images. Some exam-
ples of this kind of Pretexts include solving a jigsaw puzzle, reordering mixed image patches, sequence remembering,
etc. [1,2].

2.1.2 Generative Pretext Learning

In this Pretext task, the models are trained to recreate the input images. This kind of tasks involve autoencoders
(AEs), variational auto encoders (VAEs), or GANs (generative adversarial networks) to train models to create useful
presentations. As they focus on image reconstruction, this allows them to perform classification without the need for
manual annotations [2].

2.1.3 Contrastive Representation Learning

This is one of the most explored fields with very promising use cases. In this learning framework, the model is trained
to tell apart the dissimilar images (negative pair) and pull together the similar images (positive pair). Negative pairs
come from the dissimilar images whereas positive pairs come from the same image with different augmentations.
Methods like SimCLR, MoCo, BYOL, and SimSiam use this approach to gain transformation-invariant, high-level
features that work well across medical imaging tasks [7].

2.1.4 Predictive Masked Modeling

In this Pretext method, the model learns by predicting the masked part of the images. Some parts of the images
are being covered and then the model is being trained to guess the missing content. This is the same as the method
used in Natural Language Processing. This approach often uses vision transformers, such as MAE and BEiT, to
learn detailed but context-aware representations [8]. The emphasis is on recovering parts of the image using visual
information, rather than reconstructing the entire image like generative models do.

3 Literature Review

Magnetic Resonance imaging is a key imaging technique in medical image classification using SSL. MRI is a tech-
nique that has its use cases in fields like neurology, psychiatry, cardiology and musculoskeletal studies due to its
non-invasive nature and high image quality of soft tissues. Since labelled data is costly and research direction is
shifting to SSL to eliminate the need for labelled data, this framework has led to the utilisation of large amounts
of unlabelled data and also improved model performance. In this section we have reviewed the recent work in a
collection of 17 studies which have shown methodological improvements and clinical goals. This approach includes
generative, contrastive and context-predictive learning, often combining elements of different methods to leverage
the performance.

Several studies used contrastive learning, in which models learn to tell apart similar and different image repre-
sentations. To learn features from the unlabeled MRI, Firildak et al. (2024) [9] proposed a valuable solution. He
proposed using the SimCLR model to learn features from unlabeled MRI scans. Their training results were very
impressive with 96 of accuracy and 72 of validation accuracy. The dip in the validation accuracy highlights the
challenge of generalisation in SSL techniques. In 2021, Dufumier et al. (2021) [10] proposed in their research
work a modified SimCLR approach to classify the psychiatric imaging tasks. They got an improvement in AUROC
from 0.942 to 0.968 for schizophrenia and bipolar disorder classification. Similarly, Li et al. (2021) [11] in their
research work, employed a contrastive method for brain tumor classification and obtained a boost in sensitivity from
0.888 t0 0.920. In [12] Manna et al. (2021) demonstrated the significance of how even minor gains in performance
(AUROC: 0.970 vs. 0.965) in the detection of anterior cruciate ligament (ACL) tears on knee MRIs were achievable
using semi-supervised learning rather than fully supervised approaches. Similarly in [11], Hongwei Li employed
contrastive learning on MRI data for detecting brain tumors in their work published in 2021.
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An encoder extracted features, which were then classified using an SVM. This achieved a sensitivity of 0.92 and
an AUC of 0.888, indicating strong diagnostic performance. Other research, like that by Fedorov et al. (2021) [13],
looked at mutual information maximization for detecting Alzheimer’s. Although the SSL-based model performed
slightly worse (AUROC: 0.841) than the supervised model (0.880), it demonstrated the potential of SSL in important
diagnostic tasks. Ouyang et al. (2021) [14] made progress by using a longitudinal neighborhood embedding structure
with autoencoding. This approach improved Alzheimer’s classification accuracy, increasing it from 0.794 to 0.836.

In the area of generative modeling, researchers focused on autoencoders and their ability to reconstruct image
data to learn latent representations. Zhao et al. (2020) [15] introduced a generative autoencoder for predicting brain
age and detecting Alzheimer’s. In this method the researchers put in place a latent space constraint, which achieved a
16.6 improvement over supervised baselines. Similarly Osin et al. (2020) [16] in their work combined autoencoders
and LSTMs. Their goal was to capture the temporal dynamics in functional MRI (fMRI) data related to psychiatric
traits like PTSD. However they did not fully publish the quantitative metrics, but their work gave a new direction
to temporal learning. In another work, Fedorov et al. (2021) [17] combined autoencoders with SimCLR to extract
MRI features for Alzheimer’s diagnosis. They achieved this through a linear classifier, however they didn’t share
the comparative result benchmarks. Manna et al. (2021) [12] created a jigsaw-based pretext task to classify ACL
tears in knee MRIs and achieved an AUROC of 0.848. Hashimoto et al. (2021) [18] studied schizophrenia with a
domain-specific transformation task, reporting an accuracy of 0.778. Dezaki et al. (2021) [19] made progress by
modeling temporal cycle consistency in MRIs derived from echocardiograms. This led to improved accuracy from
0.609 to 0.787. Zhu et al. (2021) [20] used simple transformations like rotation and patch ordering on COVID-
19-related MRI and CT scans, but they did not provide separate details on MRI outcomes. Han et al. (2023) [21]
addressed a common problem in self-supervised learning called representation collapse. This is when the model
does not learn meaningful features. They introduced an Enhanced Masked Image Modeling (E-MIM) framework
that combines various masking techniques with a contrastive regularization component. This method resulted in
significant improvements in segmentation accuracy for multimodal MRI scans. More recent studies have started to
combine different SSL strategies into unified frameworks. Haghighi et al. (2021) [22] created a combined approach
that included generative modeling, patch restoration, and innate relationship tasks with pseudo-labeling to improve
diagnostic accuracy on CT and MRI data. Their model achieved a strong AUROC improvement from 0.943 to 0.985.

Hsieh et al. (2020) [23] used a multimodal setup that combined autoencoders with contrastive objectives to
investigate cognitive impairment and Alzheimer’s, reaching a classification accuracy of 0.594; however, they did not
provide baseline comparisons. A few broader patterns appear from these findings. Neurological disorders, especially
Alzheimer’s disease and Schizophrenia, dominate the clinical application space, followed by musculoskeletal and
cardiovascular conditions. Among all approaches, Contrastive Learning was the most commonly used and generally
led to modest but consistent performance improvements of around 6. When designed carefully, generative models
provided the biggest performance improvements, achieving gains as high as 24.5 compared to Supervised methods.
Intrinsic proxy tasks with clinical relevance, such as modeling heart motion or brain structure, often outperformed
those based on artificial changes like patch shuffling. This highlights the benefit of adjusting learned representations
directly to the downstream task. In conclusion, Self Supervised learning has shown great potential in medical image
classification using MRI. While different SSL approaches have their own strengths, the overall evidence suggests
that combining strategies, designing clinically relevant pretext tasks, and fully fine-tuning can significantly improve
model performance in data-limited medical fields. Table 1 presents the summary of major works in a tabular form.

In medical imaging, especially for MRI-based classification, SSL tackles an important issue of the lack of labeled
data. Labeling medical images is often expensive and requires expert input. SSL offers a promising solution by
using large amounts of unlabeled scans to pre-train models. These models are then fine-tuned on a few annotated
examples. This method is particularly useful in healthcare, where rules and ethical concerns often limit large-scale
labeling efforts.

4 How Well Does SSL Work?

Most studies agree that SSL improves performance. Models pre-trained with SSL usually outperform those trained
from scratch or with ImageNet weights, especially when there is limited labeled data. Reported improvements vary
widely, reaching up to 32 in AUROC and nearly 30 in accuracy. This shows how much SSL can help in settings
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Table 1: Summary of Selected Studies on Self-Supervised Learning for MRI

Author(s) Year Method / SSL Type Dataset /| Results / Metrics
Modality
Firildak et al. [9] 2024 Contrastive Learning | MRI Train acc: 96%, Val acc: 72%
(SimCLR)
Dufumier et | 2021 Modified SimCLR (Con- | MRI AUROC: 0.968
al. [10] trastive)
Lietal [11] 2021 Contrastive MRI Sensitivity: 0.920
Manna et al. [12] 2021 Semi-supervised MRI AUROC: 0.970 vs. 0.965 (base-
line)
Hongwei Li [11] 2021 Contrastive, SVM MRI Sensitivity: 0.92, AUC: 0.888
Fedorov et al. [13] | 2021 Mutual information maxi- | MRI AUROC: 0.841 vs. 0.880 (su-
mization pervised)
Ouyang et al. [14] | 2021 Longitudinal neigh- | MRI Acc: 0.836
borhood embedding,
Autoencoder
Zhao et al. [15] 2020 | Generative Autoencoder | MRI 16.6% improvement over super-
vised methods
Manna et al. [24] 2022 | Jigsaw pretext task MRI AUROC: 0.848
Hashimoto et al. | 2021 | Domain-specific transfor- | MRI Accuracy: 0.778
[18] mations
Dezaki et al. [19] 2021 Temporal cycle consis- | MRI Acc: 0.787
tency
Han et al. [21] 2024 | Enhanced Masked Image | MRI multi- | Significant segmentation im-
Modeling (E-MIM), Con- | modal provement
trastive Learning
Haghighi et al. [22] | 2021 Combined  (generative, | CT and MRI | AUROC: 0.985
patch  restoration and
pseudo-labeling)
Hsieh et al. [23] 2020 Multimodal AE, Con- | MRI and | Accuracy: 0.594
trastive Learning multimodal

with few resources. A few studies did report slight decreases in performance, often because of mismatched pretext
tasks or weak fine-tuning setups. Still, the overall picture is clear: SSL reduces the need for extensive annotation and
encourages broader use of machine learning in real clinical settings.

S Why Does Medical Data Need Careful Pretext Design?

Many SSL methods used in medical imaging are based on Contrastive Learning, such as SimCLR, MoCo, and
BYOL. These methods perform well with natural images, but medical images have unique challenges. In Contrastive
Learning, small changes, like cropping or masking, are thought to preserve the image’s meaning. However, in an MRI
scan, cropping might remove a tumor or an important feature. This can change the diagnostic content completely.
To address this, researchers are developing better augmentations. One example of better augmentation is Window
Slicing and Window Warping in fMRI time series data [25]. In rs-fMRI (resting state analysis), the continuous time
series data of brain activity is recorded by segmenting into overlapping temporal windows, which is called Window
Slicing. Or it is being warped at the two end points (beginning and ending) which is called Window Warping. This
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helps in maintaining temporal consistency and retaining important neurological information within the data [26].
In pathology, stain normalization and tile-based consistency are also important. These specific strategies show that
semi-supervised learning in healthcare needs more than just applying concepts from natural image tasks.

6 Mixing SSL Approaches for Better Results

Several self-supervised goals are combined in some of the best models. For example, contrastive learning can be used
along with simpler tasks like image jigsaw puzzles or rotation prediction. By teaching the model both the overall
structure and specific details, these mixed approaches seem to improve performance. Although publication bias may
have played a role in some of this success, the results are still promising. Using multi-task pretext techniques might
offer additional benefits for complex modalities like MRI, which rely on spatial and contextual consistency.

7 How Fine-Tuning Affects Performance?

How you adjust SSL-pretrained models matters when using them. Research shows that optimizing the entire model,
rather than just the last layer, often leads to better results. Tuning the whole network to the new data is beneficial
because hospitals use different MRI protocols, scanners, and settings. This holds true even when labeled data is
limited, suggesting that starting with a solid SSL foundation may reduce overfitting issues. Some researchers are
exploring middle-ground strategies, like using different learning rates for each layer or unfreezing layers gradually.

8 Current and Emergingn Applications of SSL

Up to now, the majority of SSL work has been radiology-related, particularly chest imaging. The availability of huge
datasets like CheXpert and MIMIC-CXR is primarily to blame for this. However, results from chest X-rays might
not be transferable to other fields. There are problems with MRI, CT, and ultrasound, particularly when dealing
with 3D and 4D data. MRI varies widely in imaging sequences and resolution, making it hard to create general
SSL models. Additionally, there are not many public MRI datasets available. SSL has been somewhat successful
in fields like pathology and dermatology, particularly with high-resolution whole-slide images; nevertheless, other
fields, such as nuclear medicine and ophthalmology, are still in their infancy. Custom SSL techniques built around
their unique visual characteristics could be advantageous for these.

9 Where We’re Going?

There are significant gaps despite significant progress. One issue is that research uses different datasets, designs, and
metrics, which makes comparisons difficult. We need standardized benchmarks and reproducible pipelines to fairly
evaluate SSL approaches across different jobs and formats. Another unresolved question is whether models devel-
oped on one type of data, like CT, can be applied to other types, such as MRI. Changing between modalities could
greatly lower labeling costs. Finally, explainability is still a challenge. Even though SSL improves performance, it is
often unclear which parameters the model relies on. Combining explainable Al with SSL could enhance the models’
use in therapeutic settings and build trust.

10 Conclusion and Future Work

Self-supervised learning is showing promising results in general and particularly in the medical imaging domain.
Recently it has been blooming in all domains but more testing and organised comparisons are needed to quantify
which approach performs best and under what circumstances. Also the design of Pretext tasks is another key factor
which needs to be studied. Which Pretext suits which domain more is a real challenge. For example, a small crop can
make a significant change in the medical images so careful design of tasks is something that needs to be figured out.
Which strategy works best and why is an important aspect to be studied. Also, some special tuning, such as applying
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the steady patterns in body structures, interpreting over-time changes of cardiac or fMRI data, or even integrating
various kinds of information, such as radiology reports and patient information, can facilitate the learning process
and result in more clinically relevant representations.These approaches not only tackle the current challenges which
exist in our ecosystem but also provide a way to develop adaptable and scalable frameworks. If we could summarise
the key takeaways that were taken while carrying out this research work it would be as follows:

» SSL is a promising framework in reducing the dependency on the annotated data, however a careful design of
Pretext tasks is mandatory and offers a wide scope of research, especially in medical image domains.

* Different Pretext tasks have strengths and shortcomings, combining them can help leverage the strengths and
be fruitful in achieving SOTA results.

* More reproducible pipelines, standardised benchmarks and Explainability of SSL frameworks remains a chal-
lenge, to fairly evaluate and use SSL in different domains.
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