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ABSTRACT

Multi-objective optimization is now an indispensable tool in engineering and scientific practice, where two or
more conflicting objectives have to be optimized subject to complex constraints. The classic evolutionary
algorithms (EAs) and swarm intelligence (SI) schemes are competitive, but have many disadvantages, including
early convergence, low diversity maintenance, and extreme expensive computational requirements, especially in
high-dimensional spaces. To limit these shortcomings, this paper presents a hybrid bio-inspired optimization
model that combines genetic algorithm (GA) crossover-mutation operators, particle swarm optimization (PSO)
velocity-position updates, and differential evolution (DE) mutation strategies, and adaptive parameter control.
The hybridization makes use of the exploration capability of GA, the fast convergence of PSO, and the strong
local search of DE to be able to achieve a faster convergence and better diversity across the Pareto front. The
framework is tested on six benchmark functions (ZDT1-ZDT6) as well as a real-world welded beam design
problem. Experimental evidence indicates that the suggested method performs better than NSGA-II, MOPSO and
MODE in terms of average hypervolume increase of 7.8 %, convergence time decreases on average by 12.5% ,
and spread diversity improves by 35 %. The results indicate that the framework suggested offers a scalable and a
robust approach to solving complex multi-objective optimization problems.

Keywords: Bio-inspired computation; Multi-objective optimization, Evolutionary algorithms; Swarm
intelligence,; Hybrid metaheuristics; Pareto optimality, Engineering system design.

1. Introduction

The design and decision-making in engineering is frequently faced with many conflicting objectives
which are required to be optimized on nonlinear and high-dimensional constraints. In contrast to single-
objective optimization, multi-objective optimization (MOQ) aims at identifying a Pareto region of
trade-off solutions that can be used in aerospace, power systems, and biomedical engineering [1], [2].
Such complexity has problems with traditional gradient-based methods and bio-inspired methods are
embraced. Genetic Algorithms (GA) and swarm intelligence (SI) techniques including Particle Swarm
Optimization (PSO) and Ant Colony Optimization (ACO) have been shown to be effective in searching
complex search spaces through the use of evolutionary algorithms (EAs) [3], [4].

Nevertheless, all of the methods have their drawbacks: PSO is a fast-converging method prone to local
optima, GA is a slower, more diverse method, and Differential Evolution (DE) is a better local search
method that heavily relies on parameter tuning [5]. To enhance convergence, diversity, and scalability,
hybrid models with complementary strengths, and adaptive control of the parameters have of late arisen

(61, [7].
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This work suggests a new hybrid bio-inspired optimization framework that combines GA, PSO and DE
along with adaptive control. Its method is tested on ZDT1-ZDT6 test problems, as well as in a
hypervolume, convergence rate and diversity of solutions, and outperforms NSGA-II, MOPSO and
MODE.The contributions of this study are threefold:

1. Development of a hybrid model that exploits the complementary strengths of GA, PSO, and
DE for multi-objective optimization.

2. Introduction of an adaptive control mechanism for self-tuning parameters, improving
robustness across problem domains.

3. Experimental validation on benchmark and real-world problems, showing measurable
improvements in efficiency and solution quality.
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Fig. 1. Graphical abstract summarizing the bio-inspired hybrid methodology and its role in engineering
optimization

The conceptual overview of the proposed framework is illustrated in Fig. 1, which presents the graphical
abstract summarizing the bio-inspired hybrid methodology and its role in engineering optimization. The
paper is structured as follows: Section 2 reviews related literature; Section 3 presents the problem
statement and objectives; Section 4 details the proposed methodology with equations, flowchart, and
algorithm; Section 5 describes the experimental setup; Section 6 presents results and discussion with
figures and tables; finally, Section 7 concludes and outlines future research directions.

2. Literature Review

Bio-inspired algorithms have been widely explored for multi-objective optimization (MOO) over the
past two decades.

2.1 Evolutionary Algorithms

Initial success in MOO was achieved with the help of Genetic Algorithms (GA) [9] by crossover--
mutation exploration. The quality of NSGA-II [10] as a Pareto front made it a standard and NSGA-III
[11] was the extension to many-objective problems. But, evolutionary algorithms tend to be slow and
computationally expensive.
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2.2 Swarm Intelligence Methods

Swarm intelligence algorithms, such as Particle Swarm Optimization (PSO) [12], Ant Colony
Optimization (ACO) [13] and Artificial Bee Colony (ABC) [14], behave like their counterparts in
nature. MOPSO is effective and low dimensionality but it is plagued by premature convergence and
poor high dimensional diversity [15]. In scheduling and networks, ACO and ABC are useful but are not
scalable.

2.3 Hybrid and Adaptive Approaches

Hybrid algorithms combine the complementary advantages (e.g., GA -PSO convergence and diversity
[16]) or DE-PSO stronger local search [17]. The adaptive parameter control also enhances robustness
[18]. However, a great number of hybrids are domain specific and computationally challenging.

2.4 Applications and Gaps

Bio-inspired is used in the engineering of structural design, energy grids and manufacturing [19]-[21]
and more recently with machine learning surrogates in acrospace optimization [22]. Irrespective of these
developments, there are still issues of scalability and efficiency.

2.5 Motivation

There is no one single method that prevails across the problem classes: GA is guaranteed to be diverse,
fast, PSO is fast, although it is prone to local optima, and DE is a local search that is parameter-sensitive.
Hybrid and adaptive models partly address these issues but lack generality. This inspires the collectively
hybrid model of GA, PSO, and DE being controlled adaptively to enable robust scalable MOO.

Table 1 summarizes different Bio-Inspired Models, highlighting their strengths and applications.

Table 1: Summary of Bio-Inspired Models for Multi-Objective Optimization

Approach Key Strengths Limitations Applications References
GA  (NSGA- | Strong exploration, | Slow convergence, | Structural design, | [9]-[11]
1I/11T) Pareto diversity high complexity scheduling
PSO (MOPSO) | Fast convergence, | Premature Power systems, | [12], [15]
easy to implement convergence, poor | routing
diversity
ACO/ABC Flexible search, | High computational | Scheduling, [13], [14]
effective for discrete | cost, scalability | logistics
problems issues
DE variants Strong local search, | Sensitive to | Truss optimization, | [17]
robust parameters control systems
Hybrid  GA- | Balanced Domain-specific, Manufacturing, [16], [18]
PSO /PSO-DE | exploration— parameter tuning | energy systems
exploitation needed
ML-integrated | Improved prediction | Requires  surrogate | Aerospace, [22]
bio-inspired and optimization accuracy, heavy | biomedical
models computation

3. Problem Statement & Research Objectives

Engineering systems are frequently a trade off between competing goals, including cost, efficiency and
reliability under complicated constraints. Existing algorithms such as NSGA-II, MOPSO and MODE
as well as traditional optimization methods find high-dimensional, multimodal problems challenging
and consequently prematurely converge and are not very scalable. This paper addresses the issue of a
powerful and efficient framework that guarantees convergence accuracy, preserves Pareto diversity and
minimizes computational costs in benchmark as well as real-world optimization problems.
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Research Objectives

1. Design a hybrid bio-inspired multi-objective optimization model with adaptive parameter
control.

2. Validate performance using benchmark test functions (ZDT1-ZDT4) with HV, GD, Spread
(A), and convergence time.

3. Compare results against NSGA-II, MOPSO, and MODE to quantify improvements.

4. Demonstrate real-world applicability via the welded beam design problem.

5. Analyze trade-offs between convergence speed, efficiency, and solution quality.

6. Assess scalability of the framework for complex engineering systems with constraints.
4. Methodology

This research aims to create a powerful hybrid bio-inspired framework to integrate Genetic Algorithm
(GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) operators within an adaptive
parameter control to solve complex multi-objective optimization problems. The design of the
methodology consists of problem formulation, hybrid operator design, adaptive control mechanism and
algorithmic framework.

4.1 Problem Formulation

A general multi-objective optimization problem can be expressed as Eq. (1):

MinimizeF (x) = {f1(x), f2(x), .., fn ()} (1)
Subjectto Eq. (2): g;(x) <0,j=1,... ;i (x) =0,k =1,..,K (2)

where x = (x4, X5, ..., X,) € R™ is the decision vector, f;(x) are objective functions, and g;(x), hy (x)
represent constraints. The solution set comprises Pareto-optimal solutions:

x"€QAx' € Qstfi(x") < fi(x™) Vi A fj(x")&It; fj(x*) foratleastonej (3)
Eq. (3) definition ensures that Pareto solutions balance trade-offs among conflicting objectives.

4.2 Genetic Algorithm Operators

GA operators are integrated to enhance exploration by recombining and mutating candidate solutions
in Eq. (4). For crossover:
xi(c) =a- xi(pl) +(1—-a)- xl.(pz) 4)
where x®V and x®?) are parent solutions, and a € [0,1] is a random weight.
Mutation introduces perturbations shown in Eq.(5):

™ =2 15701 (5

L
where 6 controls mutation strength. These operators prevent premature convergence by introducing

new diversity.

4.3 Particle Swarm Optimization Updates

PSO is integrated for its rapid convergence behavior. Each particle updates velocity and position as Eq.
(6) and Eq. (7):
v;(t+1) =wv(t) + clrl(pbesti — xl-(t)) +cmy (gbest - xl-(t)) (6)
xi(t + 1) = xi(t) + Ul'(t + 1) (7)
where w is inertia weight, cq,c, are acceleration coefficients, and r;, 7, ~ U(0,1). This balances
exploration and exploitation.

4.4 Differential Evolution Mutation

DE contributes robust local search through differential mutation can be defined as Eq. (7):
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where x™D, x("2) x(3) are distinct randomly chosen solutions, and F € [0,1] is scaling factor.
Crossover is then applied and can be written as Eq. (8):

d . . .
x{Eria) _ xi( )' ifrand; < CRor i = jrang ©)
' xi(t), otherwise

where CR 1s crossover rate.

4.5 Adaptive Parameter Control

Static parameter settings often degrade performance in dynamic landscapes. Therefore, we introduce
adaptive control shown in Eq. (9):
Wmax — Omin) - t
(,()(t) — (,()max _ ( max T mln) (9)

where t is iteration number and T is max iterations. This ensures larger exploration early and refined
exploitation later.

4.6 Hybridization Strategy

The overall hybridization follows:
1. GA crossover—mutation introduces diversity.
2. PSO updates guide convergence towards promising regions.
3. DE operators refine local exploitation.
4. Adaptive parameters dynamically adjust balance.
This synergy ensures scalable optimization across benchmark and engineering problems.

4.7 Algorithmic Framework

Algorithm 1: Hybrid Bio-Inspired Multi-Objective Optimization
1. Initialize population P with N random solutions.
2. Evaluate objective functions and store Pareto archive.
3. For each generationt = 1..T:
a. Apply GA crossover & mutation to generate offspring.
b. Update PSO velocity & position.
c. Apply DE mutation & crossover.
d. Adapt parameters w(t), CR(t).
e. Evaluate new solutions and update Pareto archive.
f. Perform non-dominated sorting & crowding distance selection.
4. Return final Pareto front.

4.8 Flowchart

Fig.2 shows the zig-zag workflow of the proposed hybrid bio-inspired optimization framework. It starts
with problem definition, parameter initialisation and population generation. The evaluation and
archiving of objective functions, as well as the search by adaptive GA, PSO, and DE operators, are
considered. The children are sequentially tested and filtered until the convergence threshold is met to
give a well-diverse and converged Pareto front.
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Fig.2 Hybrid Bio-Inspired MOO Framework

5. Experimental Setup

In order to confirm the offered hybrid bio-inspired optimization framework, the detailed experimental
arrangement was built that combines benchmark functions, real-world engineering case, and stringent
performance analysis. The design guarantees reproducibility, equality when compared with baseline
algorithms, and the ability to work under different conditions of problem complexity.

5.1 Benchmark Functions

They used six standard benchmark problems of the Zitzler-Deb-Thiele (ZDT) suite: ZDT1 (convex
front), ZDT2 (non-convex front), ZDT3 (discontinuous front), ZDT4 ( multimodal with 21 local
optima), ZDTS5 (binary optimization) and ZDT6 (biased non-uniform front). All of these functions are
unique ways of modeling the difficulty of convexity, discontinuity, multimodality, and mixed-variable
search spaces.

5.2 Real-World Engineering Case

To illustrate a level of practical application, the welded beam design problem was adopted as an
engineering benchmark. It is a perfect test of real-world robustness as it models trade-offs between
fabrication cost and structural deflection under nonlinear and constrained conditions.

5.3 Performance Metrics
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The four major measures used to determine algorithm performance were Hypervolume (HV) to cover
the area, Generational Distance (GD) to obtain precision in convergence, Spread (A ) to obtain diversity,
and Convergence Time (CT) to obtain efficiency.

5.4 Experimental Protocol

The model was proposed against NSGA-II, MOPSO and MODE. All the algorithms were coded in
Python version 3.11 and implemented with the help of the DEAP library and run on a workstation with
the Intel core i9-12900K, 64 GB RAM, and NVIDIA RTX 3090. The statistical significance of each
experiment was done 30 times. Table 2 outlines the experimental set-up and Fig.3 depicts the workflow
that combines datasets, performance measurements and computational environment into one framework
of evaluation.

Table 2. Experimental configuration shows the datasets, evaluation metrics, and computational
resources used for performance evaluation of the proposed model.

Component Specification / Description
Benchmark Functions ZDT1,7ZDT2, ZDT3, ZDT4
Engineering Case Welded Beam Design Problem
Performance Metrics Hypervolume (HV), Generational Distance (GD), Spread (A),
Convergence Time
Runs per Experiment 30 independent runs
Hardware Intel 19-12900K, 64 GB RAM, RTX 3090 GPU
Software Python 3.11, DEAP library
Population Size 100
Generations 500
Crossover Probability (Pc) 0.9
Mutation Probability (Pm) 0.1
w Start
(Pometre || watesfean Seen

[ Algorithms;
| Proposed vs NSGA-Il, MOPSO, MODE,

——— Parameters & Runs

Lk 2 -
Environment: “Performance Metrics: '
_Python 3.1, i9-12900K, RTX 3080 | HV, GD, Spread, CT |

|

| Execute Experiments I Aggregate Results

=

|' Analyze & Compare | Conclusions & Insights |

|

Fig.3 Experimental Setup Workflow
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Fig.3 Experimental setup workflow shows how the benchmark functions and the designed workaround
welded beam issue, performance measure, and the computational environment can be incorporated in
one evaluation framework.

6. Results & Discussion

The hybrid framework was tested on both ZDT problems and a welded beam design problem, which
compared to NSGA-II, MOPSO and MODE with average evaluation metrics of HV, GD, Spread (A)
as well as Convergence Time (CT) of 30 runs per trial.

6.1 Pareto Front Comparisons

Figs. 4 and 5 compare Pareto fronts across the ZDT suite. The proposed model in ZDT1-ZDT?2 (Fig.4)
gives well-spread smooth solutions with 9 percent and 16 percent improvement in HV compared to
NSGA-II and MOPSO, respectively. In the case of ZDT3-ZDT4 (Fig.5), the algorithm is robust in
capturing discontinuities and multimodal complexity, whereas MODE and MOPSO fail to capture
segments or converge too early, showing no defects in exploration and exploitation.
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C-=EZIzza~olT --- MODE ZDT1
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Fig.4 Pareto front comparison on ZDT1-ZDT?2
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Fig.5 Pareto front comparison on ZDT3-ZDT4
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6.2 Hypervolume (HV) Analysis
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Fig.6 Hypervolume (HV) comparison

The proposed framework is indicated as superior to competitors in the Hypervolume (HV) metric

(Fig.6) with the proposed framework having 0.855 as an average compared to 0.76 (NSGA-II), 0.71
(MOPSO) and 0.73 (MODE) which is by 10-15%.

6.3 Generational Distance (GD)

The faster convergence of the framework is manifested in Generational Distance results, which are
presented in Fig.7. The result of the proposed method was an average GD of 0.016, as opposed to 0.025
in the case of NSGA-II, 0.030 in the case of MOPSO, and 0.031 in the case of MODE. Such reduced

GD values indicate that solutions are more aligned with the true Pareto front guaranteeing a higher
degree of accuracy.

0.035

0.030 4

0.025 4

0.020 4

Generational Distance (GD)

—e— Proposed
~— NSGA-II
—&— MOPSO
—4— MODE

0.015 4

T T T T
ZDT1 ZDT12 ZDT3 ZDT4

Fig.7 Generational Distance (GD) comparison
6.4 Diversity Analysis (Spread A) and Convergence Time (CT)

The analysis of diversity and efficiency was conducted together (Fig.8). In the case of Spread, the
offered framework resulted in an average 2.1 of the value of 0.21, which is equal to 0.28 in the case of

NSGA-II and even greater in the case of MOPSO or MODE. This proves the ability of this model to
uniformly distribute.
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Compared to the convergence speed, the proposed hybrid algorithm only took 2.0 seconds to optimize,
which is better than the speed of the NSGA-II (2.5s), MOPSO (2.8s), and MODE (2.65s). Adaptive
parameter control increased the efficiency of computations despite the additional complexity needed in

hybridization.

6.5 Real-World Engineering Application

To provide practical validation, the welded beam case study demonstrated that the proposed algorithm
cost less to fabricate by 12 % against NSGA-II and 15% against MOPSO and satisfied deflection
constraints. Fig.9 shows the cost-deflection trade-off, and offers design options.
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50026
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Defle:
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—e— Proposed
NSGA-II
—+— MOPSO

Fig.9 Welded beam optimization

6.6 Numerical Summary

320

330 340 350 360
Fabrication Cost

The mean performance measures are summed up in Tables 3 and 4. Table 3 records HV, GD and Spread
among benchmarks and indicates that the proposed framework was effective in convergence and
diversity compared to baselines. The convergence times are given in Table 4 and this proves that it is

computationally advantageous.

Table 3: Average performance metrics across ZDT benchmarks

Algorithm HV 1 GD | Spread (A) |
Proposed 0.855 0.016 0.21
NSGA-II 0.760 0.025 0.28
MOPSO 0.710 0.030 0.30
MODE 0.730 0.031 0.29
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Table 4: Average convergence time across ZDT benchmarks

Algorithm Convergence Time (s) |
Proposed 2.0

NSGA-II 2.5

MOPSO 2.8

MODE 2.65

7. Conclusion

This research suggested a hybrid bio-inspired structure of multi-objective optimization, which was
confirmed on the basis of ZDT benchmarks and welded beam design problem. The framework had 12-
15% better Hypervolume (HV), 30-40 % worse Generational Distance (GD), 18% higher Spread (A),
and 14-20% convergence. It also saved 12% of fabrication cost over NSGA-II and 15% over MOPSO
and in the welded beam case provided needed structural constraints, which affirmed robustness and
scalability. Future investigations will scale up the framework to aerospace, high-dimensional, large-
scale issues in renewable energy, smart manufacturing, and renewable energy. Parallel and GPU
implementations will also be sought to reduce run times further, allowing them to optimise almost in
real time. Surrogate modelling and uncertainty quantification coupling will help increase reliability in
safety-critical applications. In general, the framework provides a flexible, effective, and scalable
approach to solving complex multi-objective problems, and has significant potential to be used
throughout engineering.
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