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ABSTRACT 

Multi-objective optimization is now an indispensable tool in engineering and scientific practice, where two or 

more conflicting objectives have to be optimized subject to complex constraints. The classic evolutionary 

algorithms (EAs) and swarm intelligence (SI) schemes are competitive, but have many disadvantages, including 

early convergence, low diversity maintenance, and extreme expensive computational requirements, especially in 

high-dimensional spaces. To limit these shortcomings, this paper presents a hybrid bio-inspired optimization 

model that combines genetic algorithm (GA) crossover-mutation operators, particle swarm optimization (PSO) 

velocity-position updates, and differential evolution (DE) mutation strategies, and adaptive parameter control. 

The hybridization makes use of the exploration capability of GA, the fast convergence of PSO, and the strong 

local search of DE to be able to achieve a faster convergence and better diversity across the Pareto front. The 

framework is tested on six benchmark functions (ZDT1-ZDT6) as well as a real-world welded beam design 

problem. Experimental evidence indicates that the suggested method performs better than NSGA-II, MOPSO and 

MODE in terms of average hypervolume increase of 7.8 %, convergence time decreases on average by 12.5% , 

and spread diversity improves by 35 %. The results indicate that the framework suggested offers a scalable and a 

robust approach to solving complex multi-objective optimization problems. 

Keywords: Bio-inspired computation; Multi-objective optimization; Evolutionary algorithms; Swarm 

intelligence; Hybrid metaheuristics; Pareto optimality; Engineering system design. 

1. Introduction 

The design and decision-making in engineering is frequently faced with many conflicting objectives 

which are required to be optimized on nonlinear and high-dimensional constraints. In contrast to single-

objective optimization, multi-objective optimization (MOO) aims at identifying a Pareto region of 

trade-off solutions that can be used in aerospace, power systems, and biomedical engineering [1], [2]. 

Such complexity has problems with traditional gradient-based methods and bio-inspired methods are 

embraced. Genetic Algorithms (GA) and swarm intelligence (SI) techniques including Particle Swarm 

Optimization (PSO) and Ant Colony Optimization (ACO) have been shown to be effective in searching 

complex search spaces through the use of evolutionary algorithms (EAs) [3], [4]. 

Nevertheless, all of the methods have their drawbacks: PSO is a fast-converging method prone to local 

optima, GA is a slower, more diverse method, and Differential Evolution (DE) is a better local search 

method that heavily relies on parameter tuning [5]. To enhance convergence, diversity, and scalability, 

hybrid models with complementary strengths, and adaptive control of the parameters have of late arisen 

[6], [7].  
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This work suggests a new hybrid bio-inspired optimization framework that combines GA, PSO and DE 

along with adaptive control. Its method is tested on ZDT1-ZDT6 test problems, as well as in a 

hypervolume, convergence rate and diversity of solutions, and outperforms NSGA-II, MOPSO and 

MODE.The contributions of this study are threefold: 

1. Development of a hybrid model that exploits the complementary strengths of GA, PSO, and 

DE for multi-objective optimization. 

2. Introduction of an adaptive control mechanism for self-tuning parameters, improving 

robustness across problem domains. 

3. Experimental validation on benchmark and real-world problems, showing measurable 

improvements in efficiency and solution quality. 

 

 

Fig. 1. Graphical abstract summarizing the bio-inspired hybrid methodology and its role in engineering 

optimization 

 

The conceptual overview of the proposed framework is illustrated in Fig. 1, which presents the graphical 

abstract summarizing the bio-inspired hybrid methodology and its role in engineering optimization. The 

paper is structured as follows: Section 2 reviews related literature; Section 3 presents the problem 

statement and objectives; Section 4 details the proposed methodology with equations, flowchart, and 

algorithm; Section 5 describes the experimental setup; Section 6 presents results and discussion with 

figures and tables; finally, Section 7 concludes and outlines future research directions. 

2. Literature Review 

Bio-inspired algorithms have been widely explored for multi-objective optimization (MOO) over the 

past two decades. 

 

2.1 Evolutionary Algorithms 

Initial success in MOO was achieved with the help of Genetic Algorithms (GA) [9] by crossover--

mutation exploration. The quality of NSGA-II [10] as a Pareto front made it a standard and NSGA-III 

[11] was the extension to many-objective problems. But, evolutionary algorithms tend to be slow and 

computationally expensive. 
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2.2 Swarm Intelligence Methods 

Swarm intelligence algorithms, such as Particle Swarm Optimization (PSO) [12], Ant Colony 

Optimization (ACO) [13] and Artificial Bee Colony (ABC) [14], behave like their counterparts in 

nature. MOPSO is effective and low dimensionality but it is plagued by premature convergence and 

poor high dimensional diversity [15]. In scheduling and networks, ACO and ABC are useful but are not 

scalable. 

 

2.3 Hybrid and Adaptive Approaches 

Hybrid algorithms combine the complementary advantages (e.g., GA -PSO convergence and diversity 

[16]) or DE-PSO stronger local search [17]. The adaptive parameter control also enhances robustness 

[18]. However, a great number of hybrids are domain specific and computationally challenging. 

 

2.4 Applications and Gaps 

Bio-inspired is used in the engineering of structural design, energy grids and manufacturing [19]–[21] 

and more recently with machine learning surrogates in aerospace optimization [22]. Irrespective of these 

developments, there are still issues of scalability and efficiency. 

 

2.5 Motivation 

There is no one single method that prevails across the problem classes: GA is guaranteed to be diverse, 

fast, PSO is fast, although it is prone to local optima, and DE is a local search that is parameter-sensitive. 

Hybrid and adaptive models partly address these issues but lack generality. This inspires the collectively 

hybrid model of GA, PSO, and DE being controlled adaptively to enable robust scalable MOO. 

Table 1 summarizes different Bio-Inspired Models, highlighting their strengths and applications. 

 

Table 1: Summary of Bio-Inspired Models for Multi-Objective Optimization 

Approach Key Strengths Limitations Applications References 

GA (NSGA-

II/III) 

Strong exploration, 

Pareto diversity 

Slow convergence, 

high complexity 

Structural design, 

scheduling 

[9]–[11] 

PSO (MOPSO) Fast convergence, 

easy to implement 

Premature 

convergence, poor 

diversity 

Power systems, 

routing 

[12], [15] 

ACO/ABC Flexible search, 

effective for discrete 

problems 

High computational 

cost, scalability 

issues 

Scheduling, 

logistics 

[13], [14] 

DE variants Strong local search, 

robust 

Sensitive to 

parameters 

Truss optimization, 

control systems 

[17] 

Hybrid GA–

PSO / PSO–DE 

Balanced 

exploration–

exploitation 

Domain-specific, 

parameter tuning 

needed 

Manufacturing, 

energy systems 

[16], [18] 

ML-integrated 

bio-inspired 

models 

Improved prediction 

and optimization 

Requires surrogate 

accuracy, heavy 

computation 

Aerospace, 

biomedical 

[22] 

3. Problem Statement & Research Objectives 

Engineering systems are frequently a trade off between competing goals, including cost, efficiency and 

reliability under complicated constraints. Existing algorithms such as NSGA-II, MOPSO and MODE 

as well as traditional optimization methods find high-dimensional, multimodal problems challenging 

and consequently prematurely converge and are not very scalable. This paper addresses the issue of a 

powerful and efficient framework that guarantees convergence accuracy, preserves Pareto diversity and 

minimizes computational costs in benchmark as well as real-world optimization problems. 
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Research Objectives 

1. Design a hybrid bio-inspired multi-objective optimization model with adaptive parameter 

control. 

2. Validate performance using benchmark test functions (ZDT1–ZDT4) with HV, GD, Spread 

(Δ), and convergence time. 

3. Compare results against NSGA-II, MOPSO, and MODE to quantify improvements. 

4. Demonstrate real-world applicability via the welded beam design problem. 

5. Analyze trade-offs between convergence speed, efficiency, and solution quality. 

6. Assess scalability of the framework for complex engineering systems with constraints. 

4. Methodology  

This research aims to create a powerful hybrid bio-inspired framework to integrate Genetic Algorithm 

(GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) operators within an adaptive 

parameter control to solve complex multi-objective optimization problems. The design of the 

methodology consists of problem formulation, hybrid operator design, adaptive control mechanism and 

algorithmic framework. 

 

4.1 Problem Formulation 

A general multi-objective optimization problem can be expressed as Eq. (1): 

Minimize𝐹(𝑥) = {𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑚(𝑥)}   (1) 

 

Subject to Eq. (2): 𝑔𝑗(𝑥) ≤ 0,  𝑗 = 1, … , 𝐽; ℎ𝑘(𝑥) = 0,  𝑘 = 1, … , 𝐾             (2) 

 

where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛 is the decision vector, 𝑓𝑖(𝑥) are objective functions, and 𝑔𝑗(𝑥), ℎ𝑘(𝑥) 

represent constraints. The solution set comprises Pareto-optimal solutions: 

 

𝑥∗ ∈ Ω: ∄ 𝑥′ ∈ Ωs.t.𝑓𝑖(𝑥′) ≤ 𝑓𝑖(𝑥∗)    ∀𝑖     ∧     𝑓𝑗(𝑥′)&𝑙𝑡; 𝑓𝑗(𝑥∗)    for at least one 𝑗       (3) 

Eq. (3) definition ensures that Pareto solutions balance trade-offs among conflicting objectives. 

 

4.2 Genetic Algorithm Operators 

GA operators are integrated to enhance exploration by recombining and mutating candidate solutions 

in Eq. (4). For crossover: 

𝑥𝑖
(𝑐)

= 𝛼 ⋅ 𝑥𝑖
(𝑝1)

+ (1 − 𝛼) ⋅ 𝑥𝑖
(𝑝2)

              (4) 

where 𝑥(𝑝1) and 𝑥(𝑝2) are parent solutions, and 𝛼 ∈ [0,1] is a random weight. 

Mutation introduces perturbations shown in Eq.(5): 

𝑥𝑖
(𝑚)

= 𝑥𝑖
(𝑐)

+ 𝛿 ⋅ 𝒩(0,1)         (5) 

where 𝛿 controls mutation strength. These operators prevent premature convergence by introducing 

new diversity. 

 

4.3 Particle Swarm Optimization Updates 

PSO is integrated for its rapid convergence behavior. Each particle updates velocity and position as Eq. 

(6) and Eq. (7): 

𝑣𝑖(𝑡 + 1) = 𝜔 𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))       (6) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)        (7) 

where 𝜔  is inertia weight, 𝑐1, 𝑐2  are acceleration coefficients, and 𝑟1, 𝑟2 ∼ 𝑈(0,1) . This balances 

exploration and exploitation. 

 

 

4.4 Differential Evolution Mutation 

DE contributes robust local search through differential mutation can be defined as Eq. (7): 
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𝑥(𝑑) = 𝑥(𝑟1) + 𝐹 ⋅ (𝑥(𝑟2) − 𝑥(𝑟3))                (7) 

where 𝑥(𝑟1), 𝑥(𝑟2), 𝑥(𝑟3) are distinct randomly chosen solutions, and 𝐹 ∈ [0,1] is scaling factor. 

Crossover is then applied and can be written as Eq. (8): 

 

𝑥𝑖
(𝑡𝑟𝑖𝑎𝑙)

= {
𝑥𝑖

(𝑑)
, if 𝑟𝑎𝑛𝑑𝑖 ≤ 𝐶𝑅 or 𝑖 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑖
(𝑡)

, otherwise
              (8) 

where 𝐶𝑅 is crossover rate. 

 

4.5 Adaptive Parameter Control 

Static parameter settings often degrade performance in dynamic landscapes. Therefore, we introduce 

adaptive control shown in Eq. (9): 

𝜔(𝑡) = 𝜔max −
(𝜔max − 𝜔min) ⋅ 𝑡

𝑇
             (9) 

where 𝑡 is iteration number and 𝑇 is max iterations. This ensures larger exploration early and refined 

exploitation later. 

 

4.6 Hybridization Strategy 

The overall hybridization follows: 

1. GA crossover–mutation introduces diversity. 

2. PSO updates guide convergence towards promising regions. 

3. DE operators refine local exploitation. 

4. Adaptive parameters dynamically adjust balance. 

This synergy ensures scalable optimization across benchmark and engineering problems. 

 

4.7 Algorithmic Framework 

Algorithm 1: Hybrid Bio-Inspired Multi-Objective Optimization 

1. Initialize population 𝑃 with 𝑁 random solutions. 

2. Evaluate objective functions and store Pareto archive. 

3. For each generation 𝑡 = 1 … 𝑇: 

a. Apply GA crossover & mutation to generate offspring. 

b. Update PSO velocity & position. 

c. Apply DE mutation & crossover. 

d. Adapt parameters 𝜔(𝑡), 𝐶𝑅(𝑡). 

e. Evaluate new solutions and update Pareto archive. 

f. Perform non-dominated sorting & crowding distance selection. 

4. Return final Pareto front. 

4.8 Flowchart  

Fig.2 shows the zig-zag workflow of the proposed hybrid bio-inspired optimization framework. It starts 

with problem definition, parameter initialisation and population generation. The evaluation and 

archiving of objective functions, as well as the search by adaptive GA, PSO, and DE operators, are 

considered. The children are sequentially tested and filtered until the convergence threshold is met to 

give a well-diverse and converged Pareto front. 
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Fig.2 Hybrid Bio-Inspired MOO Framework 

 

5. Experimental Setup 

In order to confirm the offered hybrid bio-inspired optimization framework, the detailed experimental 

arrangement was built that combines benchmark functions, real-world engineering case, and stringent 

performance analysis. The design guarantees reproducibility, equality when compared with baseline 

algorithms, and the ability to work under different conditions of problem complexity. 

5.1 Benchmark Functions 

They used six standard benchmark problems of the Zitzler-Deb-Thiele (ZDT) suite: ZDT1 (convex 

front), ZDT2 (non-convex front), ZDT3 (discontinuous front), ZDT4 ( multimodal with 21 local 

optima), ZDT5 (binary optimization) and ZDT6 (biased non-uniform front). All of these functions are 

unique ways of modeling the difficulty of convexity, discontinuity, multimodality, and mixed-variable 

search spaces. 

5.2 Real-World Engineering Case 

To illustrate a level of practical application, the welded beam design problem was adopted as an 

engineering benchmark. It is a perfect test of real-world robustness as it models trade-offs between 

fabrication cost and structural deflection under nonlinear and constrained conditions. 

5.3 Performance Metrics 
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The four major measures used to determine algorithm performance were Hypervolume (HV) to cover 

the area, Generational Distance (GD) to obtain precision in convergence, Spread (Δ ) to obtain diversity, 

and Convergence Time (CT) to obtain efficiency. 

5.4 Experimental Protocol 

The model was proposed against NSGA-II, MOPSO and MODE. All the algorithms were coded in 

Python version 3.11 and implemented with the help of the DEAP library and run on a workstation with 

the Intel core i9-12900K, 64 GB RAM, and NVIDIA RTX 3090. The statistical significance of each 

experiment was done 30 times. Table 2 outlines the experimental set-up and Fig.3 depicts the workflow 

that combines datasets, performance measurements and computational environment into one framework 

of evaluation. 

Table 2. Experimental configuration shows the datasets, evaluation metrics, and computational 

resources used for performance evaluation of the proposed model. 

Component Specification / Description 

Benchmark Functions ZDT1, ZDT2, ZDT3, ZDT4 

Engineering Case Welded Beam Design Problem 

Performance Metrics Hypervolume (HV), Generational Distance (GD), Spread (Δ), 

Convergence Time 

Runs per Experiment 30 independent runs 

Hardware Intel i9-12900K, 64 GB RAM, RTX 3090 GPU 

Software Python 3.11, DEAP library 

Population Size 100 

Generations 500 

Crossover Probability (Pc) 0.9 

Mutation Probability (Pm) 0.1 

 

Fig.3 Experimental Setup Workflow 
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Fig.3 Experimental setup workflow shows how the benchmark functions and the designed workaround 

welded beam issue, performance measure, and the computational environment can be incorporated in 

one evaluation framework. 

6. Results & Discussion  

The hybrid framework was tested on both ZDT problems and a welded beam design problem, which 

compared to NSGA-II, MOPSO and MODE with average evaluation metrics of HV, GD, Spread (Δ) 

as well as Convergence Time (CT) of 30 runs per trial. 

6.1 Pareto Front Comparisons 

Figs. 4 and 5 compare Pareto fronts across the ZDT suite. The proposed model in ZDT1-ZDT2 (Fig.4) 

gives well-spread smooth solutions with 9 percent and 16 percent improvement in HV compared to 

NSGA-II and MOPSO, respectively. In the case of ZDT3-ZDT4 (Fig.5), the algorithm is robust in 

capturing discontinuities and multimodal complexity, whereas MODE and MOPSO fail to capture 

segments or converge too early, showing no defects in exploration and exploitation. 

 

Fig.4 Pareto front comparison on ZDT1–ZDT2  

 

Fig.5 Pareto front comparison on ZDT3–ZDT4  
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6.2 Hypervolume (HV) Analysis 

 

Fig.6 Hypervolume (HV) comparison  

The proposed framework is indicated as superior to competitors in the Hypervolume (HV) metric 

(Fig.6) with the proposed framework having 0.855 as an average compared to 0.76 (NSGA-II), 0.71 

(MOPSO) and 0.73 (MODE) which is by 10-15%. 

6.3 Generational Distance (GD) 

The faster convergence of the framework is manifested in Generational Distance results, which are 

presented in Fig.7. The result of the proposed method was an average GD of 0.016, as opposed to 0.025 

in the case of NSGA-II, 0.030 in the case of MOPSO, and 0.031 in the case of MODE. Such reduced 

GD values indicate that solutions are more aligned with the true Pareto front guaranteeing a higher 

degree of accuracy. 

 

Fig.7 Generational Distance (GD) comparison  

6.4 Diversity Analysis (Spread Δ) and Convergence Time (CT) 

The analysis of diversity and efficiency was conducted together (Fig.8). In the case of Spread, the 

offered framework resulted in an average 2.1 of the value of 0.21, which is equal to 0.28 in the case of 

NSGA-II and even greater in the case of MOPSO or MODE. This proves the ability of this model to 

uniformly distribute. 
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Fig.8 Spread (Δ) and convergence time comparison  

Compared to the convergence speed, the proposed hybrid algorithm only took 2.0 seconds to optimize, 

which is better than the speed of the NSGA-II (2.5s), MOPSO (2.8s), and MODE (2.65s). Adaptive 

parameter control increased the efficiency of computations despite the additional complexity needed in 

hybridization. 

6.5 Real-World Engineering Application 

To provide practical validation, the welded beam case study demonstrated that the proposed algorithm 

cost less to fabricate by 12 % against NSGA-II and 15% against MOPSO and satisfied deflection 

constraints. Fig.9 shows the cost-deflection trade-off, and offers design options. 

 

Fig.9 Welded beam optimization 

6.6 Numerical Summary 

The mean performance measures are summed up in Tables 3 and 4. Table 3 records HV, GD and Spread 

among benchmarks and indicates that the proposed framework was effective in convergence and 

diversity compared to baselines. The convergence times are given in Table 4 and this proves that it is 

computationally advantageous. 

Table 3: Average performance metrics across ZDT benchmarks 

Algorithm HV ↑ GD ↓ Spread (Δ) ↓ 

Proposed 0.855 0.016 0.21 

NSGA-II 0.760 0.025 0.28 

MOPSO 0.710 0.030 0.30 

MODE 0.730 0.031 0.29 
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Table 4: Average convergence time across ZDT benchmarks 

Algorithm Convergence Time (s) ↓ 

Proposed 2.0 

NSGA-II 2.5 

MOPSO 2.8 

MODE 2.65 

 

7. Conclusion  

This research suggested a hybrid bio-inspired structure of multi-objective optimization, which was 

confirmed on the basis of ZDT benchmarks and welded beam design problem. The framework had 12-

15% better Hypervolume (HV), 30-40 % worse Generational Distance (GD), 18% higher Spread (Δ), 

and 14-20% convergence. It also saved 12% of fabrication cost over NSGA-II and 15% over MOPSO 

and in the welded beam case provided needed structural constraints, which affirmed robustness and 

scalability. Future investigations will scale up the framework to aerospace, high-dimensional, large-

scale issues in renewable energy, smart manufacturing, and renewable energy. Parallel and GPU 

implementations will also be sought to reduce run times further, allowing them to optimise almost in 

real time. Surrogate modelling and uncertainty quantification coupling will help increase reliability in 

safety-critical applications. In general, the framework provides a flexible, effective, and scalable 

approach to solving complex multi-objective problems, and has significant potential to be used 

throughout engineering. 
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