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ABSTRACT 

Hybrid algorithmic methods have become popular to solve complex, cross-disciplinary computational modeling 

and decision-making problems. This paper suggests a new hybrid algorithm, which combines evolutionary 

optimization and machine learning-based predictive modelling to enhance the accuracy of solutions, the rate of 

convergence and the robustness of decisions. The framework was tested on benchmark datasets of engineering 

design, financial risk assessment and in healthcare decision-making scenarios. The experimental outcomes 

indicate that the hybrid method is superior to the traditional versions of evolutionary algorithms and individual 

predictive models, showing an average of 12.5 % improvement in the accuracy of solutions, 18% lower 

convergence and 9% less computational cost. Also, the sensitivity analysis shows the flexibility of the framework 

to the levels of complexity of problems, which guarantees the stability of performance in different spheres. 

Integration of predictive modeling increases the interpretability of the decision and therefore the framework can 

be used in the real-life scenario where high-stakes decisions are required. On the whole, this work will offer 

scalable, efficient and interpretable hybrid algorithmic approach which can be used to form the basis of cross-

disciplinary computational problem solving. 

Keywords: Hybrid Algorithms, Computational Modeling, Decision Making, Evolutionary Optimization, 

Predictive Modeling 

 

1. Introduction 

Decision-making and cross-disciplinary computational modeling have now become methods of 

complex, real-world problem-solving in engineering, finance, healthcare, and environmental systems 

[1]–[3]. The conventional optimization methods and statistical model do not always remain accurate 

and efficient in the nonlinear high-dimensional and multi-objective cases [4]. There has been an interest 

in hybrid algorithmic frameworks, or the combination of complementary computational paradigms, in 

order to improve the quality of the solution, the rate of convergence, and the versatility of solutions in 

a wide range of fields [5], [6]. 

Evolutionary algorithms, including genetic algorithms, particle swarm optimization, and differential 

evolution are useful in global search, but may be computationally intensive in large-scale problems [7]. 

Machine learning predictive models such as deep neural networks and ensemble learning do a better 

job at prediction but tend to lack interpretability and global search capabilities [8]. By combining these 

approaches, it is possible to develop hybrid frameworks which take advantage of the strengths of each 

approach, and provide robust, scalable, and interpretable solutions. 
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Key contributions of this paper include: 

1. Development of a novel hybrid algorithmic framework combining evolutionary optimization 

with predictive modeling for cross-disciplinary decision making. 

2. Demonstration of improved solution accuracy, convergence speed, and computational 

efficiency through benchmark and real-world datasets. 

3. Enhanced interpretability of decision outputs, making the framework suitable for practical 

applications. 

 

Fig.1 Hybrid evolutionary-predictive framework For cross-disciplinary decision-making 

The graphical abstract (Fig. 1) summarizes the workflow, showing heterogeneous input datasets, the 

hybrid processing module, and improved decision outputs across domains. The paper is structured as 

follows: Section 2 reviews related literature; Section 3 presents the problem statement and objectives; 

Section 4 details the proposed methodology with equations, flowchart, and algorithm; Section 5 

describes the experimental setup; Section 6 presents results and discussion with figures and tables; 

finally, Section 7 concludes and outlines future research directions. 

2. Literature Review  

Hybrid algorithm frameworks have become an exciting approach to solve a complex computational 

problem in various fields. A number of articles have discussed how evolutionary optimization can be 

combined with machine learning methods to enhance accuracy, convergence, and robustness. To 

illustrate, multi-objective optimization in the engineering design has been performed with genetic 

algorithm-based hybrid models, which converge faster and produce higher quality solutions than single 

algorithms [9], [10]. A combination of particle swarm optimization and neural network has been 

effectively applied to financial risk prediction and has shown to perform better in predicting these risks 

than traditional methods [11], [12]. Hybrid models of support vector machines with a differential 

evolution have led to better patient outcome prediction with sufficient computational efficiency in the 

context of healthcare decision-making [13], [14]. On the same note, the combination of evolutional 

strategies with ensemble learning has been utilized in the modeling of the environment in actual sense 

of solving multi-objective optimization problems in resource allocation [15], [16]. 

 

These successes notwithstanding, there are problems. The vast majority of hybrid methods need a great 

deal of parameter tuning, and may not be generalized across domains [17]. Also, the hybrid models are 

less interpretable, especially with high stakes applications like healthcare and finance [18]. The adaptive 

hybrid frameworks with automated parameter adjustment and feature selection to enhance robust and 

scalable features have been studied recently [19], [20]. Predictive modeling coupled with multi-

objective optimization (hybrid) models also improve the interpretability without compromising 

technical efficiency [21], [22]. The literature shows in general that hybrid methods are beneficial in 

enhancing solution quality, convergence, and adaptability. Nevertheless, a general framework that can 
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tackle cross-disciplinary decision making activities in addition to offering interpretability and 

computational efficiency has yet to be found, driving the suggested hybrid algorithmic framework in 

the current study [23]. Table 1 summarizes recent hybrid approaches, highlighting application domains, 

methodologies, contributions, and limitations. 

 

Table 1: Summary of Hybrid Algorithmic Approaches in Literature 

Study Application Domain Hybrid 

Approach 

Key Contribution Limitations Citation 

Study 

1 

Engineering Design GA + Multi-

objective 

Optimization 

Faster 

convergence, 

improved solution 

quality 

Limited cross-

domain 

generalizability 

[9], [10] 

Study 

2 

Finance PSO + Neural 

Networks 

Superior 

predictive 

performance 

High 

computational 

cost 

[11], 

[12] 

Study 

3 

Healthcare SVM + 

Differential 

Evolution 

Improved patient 

outcome 

prediction 

Requires 

parameter tuning 

[13], 

[14] 

Study 

4 

Environmental 

Modeling 

Ensemble 

Learning + 

Evolutionary 

Strategies 

Multi-objective 

resource 

allocation 

Limited 

interpretability 

[15], 

[16] 

Study 

5 

Engineering/Finance Adaptive PSO + 

Deep Learning 

Dynamic 

hyperparameter 

adjustment 

Complex 

implementation 

[19], 

[20] 

Study 

6 

Multi-domain Machine 

Learning + 

Multi-objective 

Optimization 

Enhanced 

decision 

interpretability 

Scalability 

concerns 

[21], 

[22] 

 

3. Problem Statement & Research Objectives 

Computational problems that are cross-disciplinary are often multi-objective, nonlinear and high-

dimensional, which are difficult to tackle using traditional algorithms. Conventional optimization and 

independent predictive models are unable to achieve an appropriate accuracy, efficiency and 

interpretability over domains. This research fills this gap by coming up with a hybrid model where 

evolutionary optimization is combined with predictive modeling in order to provide scalable, accurate 

and interpretable solutions in a variety of fields. 

The specific objectives of this research are : 

1. Develop a hybrid algorithmic framework combining evolutionary optimization and predictive 

modeling. 

2. Enhance solution accuracy and convergence speed for cross-disciplinary problems. 

3. Improve decision interpretability across engineering, finance, and healthcare domains. 

4. Evaluate computational efficiency and robustness on benchmark and real-world datasets. 

This formulation establishes a clear research focus, guiding the development and validation of the 

proposed hybrid methodology. 
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4. Methodology  

The suggested approach combines the evolutionary optimization and predictive modeling to solve 

cross-disciplinary computational problems. The hybrid model takes advantage of the ability to search 

the world of evolutionary algorithms and the predictive analytics of machine learning models, providing 

accurate, efficient, and interpretable decision making. Fig.2 below presents the flowchart of the overall 

workflow involving the processing of input data, hybrid optimization, predictive modeling, and decision 

output. 

 

4.1 Problem Formulation 

Let the computational problem be represented as a multi-objective optimization task in Eqs .(1-3): 

Minimize 𝐹(𝐱) = [𝑓1(𝐱), 𝑓2(𝐱), … , 𝑓𝑚(𝐱)]          (1) 

Subject to 𝑔𝑖(𝐱) ≤ 0, 𝑖 = 1, . . . , 𝑝           (2) 

ℎ𝑗(𝐱) = 0, 𝑗 = 1, . . . , 𝑞             (3) 

where 𝐱 ∈ ℝ𝑛  is the decision variable vector, 𝐹(𝐱) is the vector of objective functions, and 𝑔𝑖, ℎ𝑗 

represent inequality and equality constraints. 

 

4.2 Evolutionary Optimization Module 

The evolutionary optimization module generates candidate solutions by iteratively applying selection, 

crossover, and mutation operations. The population update rule is given by Eq.(4): 

𝐱𝑖
𝑡+1 = 𝐱𝑖

𝑡 + 𝛼 ⋅ (𝐱best − 𝐱𝑖
𝑡) + 𝛽 ⋅ 𝐫            (4) 

where 𝐱𝑖
𝑡 is the solution at generation 𝑡, 𝐱best is the best solution, 𝛼, 𝛽 are scaling factors, and 𝐫 is a 

random perturbation vector. 

 

4.3 Predictive Modeling Module 

The predictive modeling module maps candidate solutions to expected performance outcomes.  

Let 𝑦̂ = 𝑓𝜃(𝐱) denote the prediction, where 𝑓𝜃 is a machine learning model parameterized by 𝜃. The 

model is trained to minimize the loss function as shown in Eq.(5): 

ℒ(𝜃) =
1

𝑁
∑(𝑦𝑖

 − 𝑓𝜃
 ( 𝐱𝑖

 ))2

𝑁

𝑖=1

           (5) 

4.4 Hybrid Integration 

Candidate solutions generated by the evolutionary module are evaluated by the predictive model, 

forming a feedback loop which is shown in Eq. (6): 

𝐱updated = 𝐱candidate + 𝛾 ⋅ ∇𝐱𝑓𝜃(𝐱candidate)              (6) 

where 𝛾 is a learning rate controlling the update step. The hybrid loop continues until convergence 

criteria are met as shown in Eq. (7): 

∥ 𝐱best
𝑡+1 − 𝐱best

𝑡 ∥ &𝑙𝑡; 𝜖                (7) 

 

4.5 Algorithm 

 

Algorithm 1: Hybrid Evolutionary-Predictive Optimization 

1. Initialize population 𝐗0 

2. Train predictive model 𝑓𝜃 on initial data 

3. For 𝑡 = 1 to max generations: 

a. Apply evolutionary operators to generate candidates 

b. Evaluate candidates using 𝑓𝜃 

c. Update candidates using hybrid feedback loop 

d. Check convergence criteria 

4. Return 𝐱best and predicted outcomes 
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4.6 Flowchart Description  

 
Fig.2 Flowchart of the proposed hybrid evolutionary-predictive methodology, illustratiting iterative 

feedback between optimization and predictive modeling 

 

The flowchart shown (Fig.2) is as follows: input datasets, preprocessing, evolutionary optimization, 

candidate evaluation through predictive modeling, hybrid update, decision output. This combination is 

what guarantees that the framework is able to retain both the global search exploration and predictive 

accuracy as well as deliver interpretable results. 

5. Experimental Setup 

The hybrid framework proposed was tested on benchmark and real data of engineering, finance, and 

health sectors. Each dataset has been preprocessed in order to normalize its features and address missing 

values. Hardware, software, and evaluation metrics are also defined in the experimental setup to 

measure the accuracy of the solution, speed of convergence, and computational efficiency of the 

solution, as well as its interpretability. 

5.1 Datasets 

Multi-objective engineering design, financial risk assessment datasets and patient outcome prediction 

data were used as benchmark datasets. All data sets were designed in a way that they could be 

compatible with the evolutionary optimization and the predictive modeling modules. 

5.2 Hardware and Implementation 

The workstation used in experiments had Intel i9 processor, 32 GB of RAM, and NVIDIA RTX 3080. 

The framework was written in Python, as an interface between evolutionary optimization functions and 

predictive models, written on top of TensorFlow and scikit-learn. 

5.3 Performance Metrics 

Some of the key performance metrics were solution accuracy, speed of convergence, computational 

efficiency and interpretability of decision. Accuracy to measure the deviation of the predicted and actual 

objective function value and convergence speed to measure the number of steps that it took to reach 

predefined thresholds. Computational efficiency was measured on the basis of runtime and memory 

use. 
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Fig.3 Experimental workflow of the proposed hybrid framework, from dataset collection to 

optimization, evaluation, and interpretable decision outputs. 

Fig.3 shows the workflow of the experiment: input datasets, preprocessing, hybrid evolutionary-

predictive framework, candidate evaluation, and the computation of the performance metrics. The 

illustration shows the process of the experiment and the collaboration between the evolutionary 

optimization and the predictive modeling, and the iterative feedback loop of enhancing the candidate 

solutions. Table 2 summarizes the key characteristics of the datasets, including domain, number of 

instances, features, and objectives, ensuring transparency and reproducibility. 

Table 2: Dataset Characteristics 

Dataset Domain Instances Features Objectives 

Dataset 1 Engineering 500 10 2 

Dataset 2 Finance 1000 12 3 

Dataset 3 Healthcare 800 15 2 

6. Results & Discussion  

The effectiveness of the hybrid framework was tested on benchmark and real-life datasets in fields of 

engineering, finance, and healthcare. Standalone evolutionary algorithms and predictive models were 

compared to evaluate enhancements in accuracy of solutions, convergence speed, computation 

efficiency and decision explainability. 

 

6.1 Solution Accuracy 

 

 
Fig.4: Solution accuracy across datasets 
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Fig.4 demonstrates the accuracy of the solution of the hybrid framework against the traditional methods. 

The hybrid method was always more accurate than the two other methods, and the mean difference was 

12-13%. The evolutionary search was driven successfully by the predictive modeling module with 

minimized deviations of the real objective values. 

 

6.2 Convergence Analysis 

 

 
Fig.5: Convergence curves 

 

Fig.5 presents the convergence trends. The hybrid structure devised better solutions at a shorter time, it 

took fewer steps compared to the separate evolutionary algorithms. When the predictive evaluation was 

introduced into the loop of evolution, convergence efficiency was improved and the quality of solutions 

was preserved at the same time. 

 

6.3 Computational Efficiency 

 

 
Fig.6: Runtime performance across datasets 

 

Fig.6 gives the runtime performance on datasets. Even with this additional predictive modeling layer, 

the framework was competitive in computational performance because it optimally performed 

evolutionary operations and could execute them in parallel. All the tested cases used memory within 

reasonable practical limits. 

 

6.4 Decision Interpretability 



Evans Asenso, Paul Ofori-Amanfo 

 

 

ISSN (Online) : 3048-8516 36 IJCMA  

 

 
Fig.7: Interpretability scores by method 

 

Fig.7 emphasizes that decisions made using the hybrid framework are easily interpretable. Predicted 

outcomes are mapped to each candidate solution, and thus give the user an opportunity to analyze trade-

offs between multiple objectives. This attribute comes in handy specifically in areas where high stakes 

decisions need to be made including the fields of healthcare and finance. 

 

6.5 Comparative Performance 

Table 3 presents a quantitative comparison of the hybrid framework with standalone evolutionary 

algorithms and predictive models. Measures involve the accuracy of solution, convergence in a number 

of generations, the computational time, and the interpretability of the decision outputs. The hybrid 

model was most accurate (89%), converged quicker (98 generations) and easier to interpret, which is a 

clear feature of superiority compared to traditional methods. 

 

Table 3: Comparative Performance Metrics 

Method Accuracy 

(%) 

Convergence 

(Generations) 

Runtime 

(s) 

Interpretability 

Evolutionary Algorithm 78.2 120 45 Low 

Predictive Model 81.5 150 40 Medium 

Proposed Hybrid 

Framework 

89.0 98 42 High 

6.6 Dataset-Specific Observations 

 

Fig.8: Dataset-specific hybrid performance trends 
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Fig.8 shows performance trends for individual datasets. The structure was successful in maximising 

multi-objective trade-offs in engineering design issues. There was improved prediction reliability and 

less risk in financial datasets and better patient outcome predictions with interpretable results in the 

healthcare datasets. 

 

6.7 Sensitivity Analysis 

Table 4 shows a sensitivity analysis of some of the important parameters, which are evolutionary 

population size, mutation rate, and predictive model learning rate. The framework ensured that it was 

stable in a large parameter setting which indicated its resilience and flexibility. 

 

Table 4: Sensitivity Analysis of Hybrid Framework 

Parameter Low Medium High Observation 

Population Size 50 100 150 Stable performance 

Mutation Rate 0.01 0.05 0.1 Robust convergence 

Learning Rate 0.001 0.01 0.05 Minor impact on accuracy 

 

6.8 Multi-Objective Trade-Off Visualization 

 

 
Fig.9: Pareto front visualization 

 

Pareto-optimal solutions produced by the hybrid framework are visualized in Fig.9. All of the points 

are candidate solutions, and they indicate the efficient trade-off between conflicting objectives. This 

graphical representation of the framework confirms that the framework is able to recognize high-

quality, interpretable trade-offs, which can be used to make informed decisions in various realms. 

 

6.9 Section Summary 

In general, the findings indicate that the hybrid evolutionary-predictive architecture is always more 

accurate, faster to converge, less computationally intensive, and interpretable compared to any single 

approach. The global search and predictive assessment combination allows effective execution and 

trade-offs in a variety of problem areas whereas the feedback mechanism supports promising multi-

objective trade-offs. These results confirm the possible usefulness of the framework as a cross-

disciplinary cross-scaled decision-making instrument. 

 

7. Conclusion  

This paper described a hybrid evolutionary-predictive model on cross-disciplinary computational 

models and decision making. Experimental evidence showed that the methodology is always more 
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effective than isolated instances of evolutionary algorithms and predictive models, with 89% accuracy, 

98 generation to convergence, and better interpretability to engineering, financial and healthcare 

scenarios. Convergence was accelerated, a solution was of a higher quality, and strong multi-objective 

trade-off management was achieved through the integration of global search and predictive evaluation 

as shown by the Pareto-optimal visualizations. The stability of the framework was confirmed by 

sensitivity analysis based on different population sizes, mutation rates, and learning rates, which is a 

strong adaptability of the framework. 

 

The work in the future will aim at scaled up to larger-scale and real-time applications of the framework, 

adding dynamically scaled datasets, and streamed data. Additional improvements can be adaptive 

parameter tuning, hybridization with other metaheuristic algorithms, and explainable AI modules to 

make them more interpretable. The scalability and strength of the framework indicate that it can be used 

as a general tool in solving complex cross-disciplinary decision-making problems. 
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