
ISSN (Online): 3048-8516 1 IJCMA

Research Article

International Journal on Computational Modelling Applications

Vol. 02, Iss. 04, S. No. 04, pp. 32–40, Dec 2025

ISSN (Online): 3048-8516

Received: 17 Dec 2025, Accepted: 30 Dec 2025, Published: 04 Jan 2026

DOI: https://doi.org/10.63503/j.ijcma.2025.208

An Optimized LightGBM Framework for Static Malware Classification Based on

Windows Portable Executable File Attributes

Amit Verma
School of Computer Science, University of Petroleum and Energy Studies Dehradun, Uttarakhand, India

Senior Member, IEEE

Email: amit.uptu2006@gmail.com

*Corresponding Author: Amit Verma, amit.uptu2006@gmail.com

Abstract

Malware poses a significant threat to the digital world, as weak detection systems can enable attackers to steal data or corrupt

critical files. Numerous researchers have contributed to this domain by developing highly accurate malware classification

systems using various machine learning and deep learning techniques. According to the literature, most machine learning

models have been extensively explored for accurate malware classification, with LightGBM consistently demonstrating superior

performance in most cases. However, there remains scope for developing more efficient, lightweight, and robust malware

classification models through machine-learning-based ensemble techniques. In this paper, we conduct experiments using the

balanced and extensive EMBER 2018 dataset, comprising 799,876 samples with 2,382 features, to ensure robust training and

obtain an unbiased model. We fine-tune the LightGBM model and additionally implement various machine learning models

including Random Forest (RF), ExtraTrees Classifier (ET), XGBoost Classifier (XGB), and a soft-voting ensemble stacking RF,

ET, and LightGBM classifiers. Our results show that the proposed optimized fine-tuned LightGBM model outperforms other

approaches, achieving an accuracy of 96%.

Keywords: machine learning, LGBM, security, malware

1 Introduction

Digitalization has significantly improved the convenience and efficiency of modern life; however, it has also intro-

duced substantial risks related to data security and privacy. As digital systems have become more widely adopted,

various forms of malware have emerged, capable of infiltrating computer systems to corrupt or steal sensitive infor-

mation. Certain malware variants can even encrypt an entire system’s data, rendering it unreadable to the legitimate

owner. Although numerous anti-malware tools have been developed to mitigate such threats, these solutions are often

insufficient because new and more sophisticated malware variants continue to appear daily. This growing challenge

highlights the need for highly accurate, generalized, and robust malware classification systems. With advancements

in artificial intelligence and machine learning, many researchers have proposed effective malware classifiers using

machine learning and deep learning techniques [1, 2].

Liu et al. [3] used a SNN clustering approach with 20,000 samples for malware classification and achieved

98.9% accuracy. However, the limited sample size increases the risk of overfitting [4] and may result in a biased

model. In [5], the authors used a small dataset of 400 samples and implemented popular machine learning algo-

rithms including SVM [6], random forest [7], decision tree [8], naive Bayes [9], and AdaBoost [10]. The SVM

approach outperformed the other algorithms. In [11], the authors implemented various machine learning algorithms

and ensemble models, proposing a weighted-voting based ensemble approach that achieved an accuracy of 95%. The

dataset used for experimentation contained only 141 features, suggesting potential for improvement by increasing

https://doi.org/10.63503/j.ijcma.2025.208
mailto:amit.uptu2006@gmail.com
mailto:amit.uptu2006@gmail.com

ISSN (Online): 3048-8516 2 IJCMA

Amit Verma

the number of features to produce a more efficient model. In [12], the authors discussed the computational chal-

lenges of the large EMBER dataset. Considering these challenges, they reduced the features from the original 2381

to 384 features. After exploring multiple machine learning approaches, the LightGBM ensemble technique showed

the best result with an accuracy of 97.52%. In [13], the authors implemented nearly all popular machine learning ap-

proaches for malware classification using the EMBER dataset. However, only 49 out of 2381 features were used for

the training process. Based on the results, random forest and extra trees models achieved equal and highest accuracy

of 97%. In [14], the authors used AutoML for deep learning models with various datasets including EMBER 2018.

For the EMBER dataset, the proposed work achieved an AUC of 0.98 and an F1-score of 0.96. In [15], the authors

implemented various popular machine learning algorithms on the EMBER 2018 dataset. The results show that the

LightGBM model outperformed others with an accuracy of 94.8%. In [16], the authors compared two AutoML

frameworks using the EMBER 2018 dataset and found that LightGBM provided the best results with 90% accuracy.

In [17], the authors implemented a convolutional neural network (CNN) on the EMBER 2018 dataset and reported

that the basic CNN achieved 93.45% accuracy. In [18], the authors implemented an artificial neural network (ANN)

using the raw EMBER 2018 dataset and compared its performance with popular machine learning algorithms such

as logistic regression, random forest, LightGBM, KNN, and SVM. It was found that ANN outperformed others with

an accuracy of 95%. In [19], the authors used EMBER 2017 and 2018 datasets for malware classification using

deep learning. The proposed work achieved accuracies of 97.53% and 94.09% for EMBER 2017 and 2018 datasets,

respectively. However, the model was trained for only 10 epochs with a learning rate of 0.01.

Based on the reviewed literature, we conclude that the LightGBM model has provided better results for malware

classification using the EMBER dataset. However, there remains scope for hyperparameter tuning to optimize Light-

GBM rather than using the base model. In this paper, we fine-tune hyperparameters such as the number of estimators

and learning rate. The optimized LightGBM has shown improvement across nearly all evaluation metrics. The main

contributions of this study are as follows:

• Efficient fine-tuning of the LightGBM model, which improves its performance.

• Implementation of five tree-based ensemble models with comparative performance analysis.

• Demonstration of the performance of a stack-based ensemble model using tree-based machine learning algo-

rithms.

The remainder of the paper is organized as follows: details of dataset preprocessing are presented in Section 2, the

methodology is discussed in Section 3, performance evaluation and comparative analysis are presented in Section 4,

and finally, conclusions and future work are discussed in Section 5.

2 Data set description

For experimentation, we use a cleaned version of the benchmark EMBER 2018 dataset in parquet format [20]. The

original dataset was pre-split into training and testing sections, each containing three classes: clean (0), malware (1),

and unknown (-1).

First, the training and testing subsets are concatenated. During this process, rows with unknown labels are

removed to maintain binary classification and avoid ambiguity. The resulting labels are:

• 0 - Clean

• 1 - Malware

After preprocessing, we obtain a complete binary dataset with no unknown labels, as shown in table 1.

The process of preparing the dataset is shown in the below algorithm 1.

Amit Verma

ISSN (Online): 3048-8516 3 IJCMA

Table 1: Class-wise distribution of samples in the dataset.

Label Count

Clean file(0) 399,976

Malware file(1) 399,900

Algorithm 1 Dataset Preparation Pipeline

Require: Train file T , Test file S
Ensure: Filtered and merged dataset D
1: XT ← readParquet(T)

2: XS ← readParquet(S)
3: Remove unlabeled samples:

XT ← XT [Label ∈ {0, 1}], XS ← XS[Label ∈ {0, 1}]

4: Merge datasets:

5: Shuffle dataset (optional)

6: Return D

D ← concat(XT , XS)

In lines 1 and 2, the training (T) and testing (S) parquet files are read and loaded into variables XT and XS,

respectively. During this process, unknown labeled data are removed in line 3. The updated datasets are then

concatenated to form the complete binary EMBER dataset D.

2.1 Dataset Visualization

For better understanding of the dataset, multiple visual representations are provided. Figure 1 shows that both benign

and malware classes are balanced, containing nearly equal numbers of samples, which ensures an unbiased trained

model.

Due to the large size of the dataset, 3,000 random samples are selected to generate a t-SNE visualization, as

shown in Figure 2. The overlapping between sample points illustrates that the data are not pre-separated, necessitat-

ing an effective model for accurate malware classification.

To analyze dependencies among dataset features, a heatmap is generated using the first 20 features, as shown

in Figure 3. The heatmap displays predominantly light blue colors, indicating weak correlations between features.

This suggests that the dataset contains minimal duplication or similarity among features, which reduces the risk of

overfitting and contributes to a more generalizable and robust model

3 Methodology

This section describes the complete workflow, from data cleaning to training the malware classification model. After

preparing the data as outlined in the previous section, we implement several popular lightweight machine learning

models. Addressing the research gap regarding unexplored ensemble approaches, we propose a novel structure that

stacks Random Forest, Extra Trees, and LightGBM classifiers using soft voting. The workflow is visually represented

in Figure 4.

3.1 Data Sampling

Experiments were performed on Kaggle using a GPU P100 to efficiently utilize the available RAM and processing

speed. Given the impracticality of using the complete EMBER dataset with 799,876 samples (after removing un-

Amit Verma

ISSN (Online): 3048-8516 4 IJCMA

Figure 1: Class-wise distribution of samples in the dataset.

Figure 2: t-SNE to visualize the structure of the data.

known labels, as shown in Table 1), 50,000 random samples with all 2,381 features were selected for model training

without compromising the training process.

Amit Verma

ISSN (Online): 3048-8516 5 IJCMA

Figure 3: Heatmap showing the corelation among first 20 features.

3.2 Dataset Partitioning

For model evaluation, the dataset was partitioned in an 8:2 ratio into training and testing sets. The class-wise

distribution is shown in Table 2. Stratified sampling was employed to ensure balanced class representation during

training. The training data were used for model training, while the testing data were reserved for performance

evaluation.

Table 2: Distribution of samples in training and testing data.

Class Training Samples Testing Samples

Clean file (0) 20,030 5,007

Malware file (1) 19,970 4,993

3.3 Training Lightweight Machine Learning Models

In this study, we selected tree-based machine learning models that have demonstrated strong performance in malware

classification across various datasets, based on the existing literature. Models with poor performance were excluded.

Four models were trained using the dataset:

• Random Forest (RF): This model uses 200 decision trees with parallel processing, combining their outputs

for final prediction.

• Extra Trees (ET): For more generalized training, 200 extremely randomized decision trees were used to

generate the final prediction.

• LightGBM (LGBM): Instead of building trees independently, 300 decision trees are created sequentially with

a learning rate of 0.1 to improve accuracy. Each tree learns from the misclassifications of the previous tree.

• XGBoost (XGB): This gradient boosting model constructs 150 trees sequentially, each with a maximum depth

of 8. A learning rate of 0.1 and row subsampling of 80

Amit Verma

ISSN (Online): 3048-8516 6 IJCMA

Figure 4: Workflow diagram for dataset preprocessing, model training, ensemble creation, and evaluation.

All models were trained using the training dataset and evaluated with the testing dataset. Among these, the

LightGBM model achieved the highest performance across evaluation metrics.

3.4 Stack-Based Ensemble Model

In addition to individual tree-based ensemble models, a stack-based ensemble model was created by combining

Random Forest, Extra Trees, and LightGBM. In this approach, each model is trained individually, and the probability

distributions for each sample are averaged to obtain the final classification. The training dataset was used for model

development, while the testing dataset was used for performance evaluation. However, the individual LightGBM

model ultimately outperformed this ensemble approach.

Load EMBER Train and Test Splits

Remove Unlabeled Samples (Label = -1)

Merge Cleaned Splits into Unified Dataset

Random Sampling of 50,000 Instances

Train–Test Split (80:20, Stratified)

Train Base Models

RF, ET, XGBoost, LightGBM
Construct Soft Voting Ensemble

Evaluate Using Accuracy, Precision, Recall, F1 Score

Amit Verma

ISSN (Online): 3048-8516 7 IJCMA

4 Results and Discussion

This section presents the performance of the proposed approach using accuracy, precision, recall, AUC, and F1-score

as evaluation metrics. In the comparative analysis of tree-based machine learning models—including fine-tuned

LightGBM, RF, ET, XGB, and a soft-voting stack-based ensemble (RF, ET, and LGBM)—the fine-tuned LightGBM

model outperformed all others, as shown in Table 3.

Table 3: Comparative analysis of performance of tree-based machine learning models with the proposed fine-tuned

LGBM algorithm.

Model Accuracy Precision Recall F1-Score

Random Forest 0.9359 0.9423 0.9285 0.9353

Extra Trees 0.9464 0.9554 0.9363 0.9458

XGBoost 0.9580 0.9603 0.9553 0.9578

Stack-based Ensemble 0.9566 0.9617 0.9509 0.9563

Fine-tuned LightGBM 0.9607 0.9626 0.9585 0.9606

For better understanding of the proposed fine-tuned LightGBM model’s performance, the confusion matrix is

shown in Figure 5. Additionally, ROC curves for all models are presented in Figure 6.

Figure 5: Confusion matrix of the proposed Fine-tuned LightGBM model on EMBER 2018 dataset.

To strengthen the proposed study, the performance of the fine-tuned LightGBM model is compared with existing

works. All comparative studies were published in reputable journals and conferences between 2020 and 2025. The

results demonstrate that our model outperforms all considered existing works across all evaluation metrics. The

comparative analysis is presented in Table 4.

Amit Verma

ISSN (Online): 3048-8516 8 IJCMA

Figure 6: ROC curves for all evaluated models.

Table 4: Comparision of proposed work with the existing models on ember 2018 dataset.

S. No. Reference Model # Features AUC Precision Recall F1 score Accuracy(%)

1 Manjaly et al. [13]
Random forest 49 - 0.97 0.97 0.97 97

Extra tree 49 - 0.97 0.97 0.97 97

2 Brown et al. [14] AutoML Not specified 0.98 - - 0.96 -

3 Galen et al. [15] LightGBM 2381 0.99 0.95 0.95 - 94.8

4 Kundu et al. [16] LightGBM Not Specified - - - - 90

5 Thosar et al. [17] CNN Not Specified 0.99 0.94 0.93 0.93 93.45

6 Connors et al. [18] ANN 2381 0.98 0.96 0.94 0.95 95

7 Lad et al. [19] CNN 2381 0.91 0.90 0.89 0.89 94.09

8 Proposed work FineTune-Light GBM 2381 0.99 0.96 0.96 0.96 96

5 Conclusion & future scope

In this work, we consider the rarely explored, large raw EMBER 2018 dataset, which was preprocessed to obtain

binary classes with 799,876 total samples and 2,382 features. We implemented various tree-based machine learning

algorithms, among which LightGBM performed best. We then fine-tuned the hyperparameters of the LightGBM

model to enhance its performance. This optimization improved the baseline LightGBM accuracy to 96%. Addition-

ally, we developed a stack-based ensemble model using soft voting to combine Random Forest, Extra Trees, and

LightGBM predictions. However, the proposed optimized LightGBM still achieved slightly better results than the

stack-based ensemble model.

For future work, researchers can develop memory-optimized methods to experiment with the full EMBER 2018

dataset. There also remains considerable scope to explore additional ensemble machine learning models and further

optimize the LightGBM architecture.

Amit Verma

ISSN (Online): 3048-8516 9 IJCMA

References

[1] M. H. Al-Adhaileh, A. Verma, T. H. Aldhyani, and D. Koundal, “Potato blight detection using fine-tuned cnn architecture,”

Mathematics, vol. 11, no. 6, p. 1516, 2023.

[2] T. H. Aldhyani, A. Verma, M. H. Al-Adhaileh, and D. Koundal, “Multi-class skin lesion classification using a lightweight

dynamic kernel deep-learning-based convolutional neural network,” Diagnostics, vol. 12, no. 9, p. 2048, 2022.

[3] L. Liu, B.-s. Wang, B. Yu, and Q.-x. Zhong, “Automatic malware classification and new malware detection using machine

learning,” Frontiers of Information Technology & Electronic Engineering, vol. 18, no. 9, pp. 1336–1347, 2017.

[4] X. Ying, “An overview of overfitting and its solutions,” in Journal of physics: Conference series, vol. 1168. IOP Publishing,

2019, p. 022022.

[5] N. Milosevic, A. Dehghantanha, and K.-K. R. Choo, “Machine learning aided android malware classification,” Computers &

Electrical Engineering, vol. 61, pp. 266–274, 2017.

[6] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector machines,” IEEE Intelligent Systems and

their applications, vol. 13, no. 4, pp. 18–28, 1998.

[7] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[8] B. De Ville, “Decision trees,” Wiley Interdisciplinary Reviews: Computational Statistics, vol. 5, no. 6, pp. 448–455, 2013.

[9] T. Bayes, “Naive bayes classifier,” Article Sources and Contributors, pp. 1–9, 1968.

[10] R. E. Schapire, “Explaining adaboost,” in Empirical inference: festschrift in honor of vladimir N. Vapnik. Springer, 2013,

pp. 37–52.

[11] R. Islam, M. I. Sayed, S. Saha, M. J. Hossain, and M. A. Masud, “Android malware classification using optimum feature

selection and ensemble machine learning,” Internet of Things and Cyber-Physical Systems, vol. 3, pp. 100–111, 2023.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/S2667345223000202

[12] A. Choudhary, S. Pawar, and Y. Haribhakta, “Efficient malware detection with optimized learning on high-dimensional fea-

tures,” arXiv preprint arXiv:2506.17309, 2025.

[13] J. Sunny Manjaly, R. CR, and L. Jose, “Evaluating the efficacy of machine learning models in predictive malware detection,”

SSRN Electronic Journal, 2025.

[14] A. Brown, M. Gupta, and M. Abdelsalam, “Automated machine learning for deep learning based malware detection,” Com-

puters & Security, vol. 137, p. 103582, 2024.

[15] C. Galen and R. Steele, “Evaluating performance maintenance and deterioration over time of machine learning-based malware

detection models on the ember pe dataset,” in 2020 Seventh International Conference on Social Networks Analysis, Management

and Security (SNAMS). IEEE, 2020, pp. 1–7.

[16] P. P. Kundu, L. Anatharaman, and T. Truong-Huu, “An empirical evaluation of automated machine learning techniques for

malware detection,” in Proceedings of the 2021 ACM Workshop on Security and Privacy Analytics, 2021, pp. 75–81.

[17] K. Thosar, P. Tiwari, R. Jyothula, and D. Ambawade, “Effective malware detection using gradient boosting and convolutional

neural network,” in 2021 IEEE Bombay Section Signature Conference (IBSSC). IEEE, 2021, pp. 1–4.

[18] C. Connors and D. Sarkar, “Machine learning for detecting malware in pe files,” in 2023 International Conference on Machine

Learning and Applications (ICMLA). IEEE, 2023, pp. 2194–2199.

[19] S. S. Lad and A. C. Adamuthe, “Improved deep learning model for static pe files malware detection and classification,”

International Journal of Computer Network and Information Security, vol. 12, no. 2, p. 14, 2022.

[20] Kaggle Dataset: dhoogla, “Ember-2018-v2-features: Elastic malware benchmark feature set (version 2),” https://www.kaggle.

com/datasets/dhoogla/ember-2018-v2-features, 2025, accessed: 2025-12-10.

https://www.sciencedirect.com/science/article/pii/S2667345223000202
https://www.kaggle.com/datasets/dhoogla/ember-2018-v2-features
https://www.kaggle.com/datasets/dhoogla/ember-2018-v2-features

