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Abstract 

Malware poses a significant threat to the digital world, as weak detection systems can enable attackers to steal data or corrupt 

critical files. Numerous researchers have contributed to this domain by developing highly accurate malware classification 

systems using various machine learning and deep learning techniques. According to the literature, most machine learning 

models have been extensively explored for accurate malware classification, with LightGBM consistently demonstrating superior 

performance in most cases. However, there remains scope for developing more efficient, lightweight, and robust malware 

classification models through machine-learning-based ensemble techniques. In this paper, we conduct experiments using the 

balanced and extensive EMBER 2018 dataset, comprising 799,876 samples with 2,382 features, to ensure robust training and 

obtain an unbiased model. We fine-tune the LightGBM model and additionally implement various machine learning models 

including Random Forest (RF), ExtraTrees Classifier (ET), XGBoost Classifier (XGB), and a soft-voting ensemble stacking RF, 

ET, and LightGBM classifiers. Our results show that the proposed optimized fine-tuned LightGBM model outperforms other 

approaches, achieving an accuracy of 96%. 
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1 Introduction 

Digitalization has significantly improved the convenience and efficiency of modern life; however, it has also intro- 

duced substantial risks related to data security and privacy. As digital systems have become more widely adopted, 

various forms of malware have emerged, capable of infiltrating computer systems to corrupt or steal sensitive infor- 

mation. Certain malware variants can even encrypt an entire system’s data, rendering it unreadable to the legitimate 

owner. Although numerous anti-malware tools have been developed to mitigate such threats, these solutions are often 

insufficient because new and more sophisticated malware variants continue to appear daily. This growing challenge 

highlights the need for highly accurate, generalized, and robust malware classification systems. With advancements 

in artificial intelligence and machine learning, many researchers have proposed effective malware classifiers using 

machine learning and deep learning techniques [1, 2]. 

Liu et al. [3] used a SNN clustering approach with 20,000 samples for malware classification and achieved 

98.9% accuracy. However, the limited sample size increases the risk of overfitting [4] and may result in a biased 

model. In [5], the authors used a small dataset of 400 samples and implemented popular machine learning algo- 

rithms including SVM [6], random forest [7], decision tree [8], naive Bayes [9], and AdaBoost [10]. The SVM 

approach outperformed the other algorithms. In [11], the authors implemented various machine learning algorithms 

and ensemble models, proposing a weighted-voting based ensemble approach that achieved an accuracy of 95%. The 

dataset used for experimentation contained only 141 features, suggesting potential for improvement by increasing 
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the number of features to produce a more efficient model. In [12], the authors discussed the computational chal- 

lenges of the large EMBER dataset. Considering these challenges, they reduced the features from the original 2381 

to 384 features. After exploring multiple machine learning approaches, the LightGBM ensemble technique showed 

the best result with an accuracy of 97.52%. In [13], the authors implemented nearly all popular machine learning ap- 

proaches for malware classification using the EMBER dataset. However, only 49 out of 2381 features were used for 

the training process. Based on the results, random forest and extra trees models achieved equal and highest accuracy 

of 97%. In [14], the authors used AutoML for deep learning models with various datasets including EMBER 2018. 

For the EMBER dataset, the proposed work achieved an AUC of 0.98 and an F1-score of 0.96. In [15], the authors 

implemented various popular machine learning algorithms on the EMBER 2018 dataset. The results show that the 

LightGBM model outperformed others with an accuracy of 94.8%. In [16], the authors compared two AutoML 

frameworks using the EMBER 2018 dataset and found that LightGBM provided the best results with 90% accuracy. 

In [17], the authors implemented a convolutional neural network (CNN) on the EMBER 2018 dataset and reported 

that the basic CNN achieved 93.45% accuracy. In [18], the authors implemented an artificial neural network (ANN) 

using the raw EMBER 2018 dataset and compared its performance with popular machine learning algorithms such 

as logistic regression, random forest, LightGBM, KNN, and SVM. It was found that ANN outperformed others with 

an accuracy of 95%. In [19], the authors used EMBER 2017 and 2018 datasets for malware classification using 

deep learning. The proposed work achieved accuracies of 97.53% and 94.09% for EMBER 2017 and 2018 datasets, 

respectively. However, the model was trained for only 10 epochs with a learning rate of 0.01. 

Based on the reviewed literature, we conclude that the LightGBM model has provided better results for malware 

classification using the EMBER dataset. However, there remains scope for hyperparameter tuning to optimize Light- 

GBM rather than using the base model. In this paper, we fine-tune hyperparameters such as the number of estimators 

and learning rate. The optimized LightGBM has shown improvement across nearly all evaluation metrics. The main 

contributions of this study are as follows: 

 

• Efficient fine-tuning of the LightGBM model, which improves its performance. 

 

• Implementation of five tree-based ensemble models with comparative performance analysis. 

 

• Demonstration of the performance of a stack-based ensemble model using tree-based machine learning algo- 

rithms. 

 

The remainder of the paper is organized as follows: details of dataset preprocessing are presented in Section 2, the 

methodology is discussed in Section 3, performance evaluation and comparative analysis are presented in Section 4, 

and finally, conclusions and future work are discussed in Section 5. 

 

 

2 Data set description 

For experimentation, we use a cleaned version of the benchmark EMBER 2018 dataset in parquet format [20]. The 

original dataset was pre-split into training and testing sections, each containing three classes: clean (0), malware (1), 

and unknown (-1). 

First, the training and testing subsets are concatenated. During this process, rows with unknown labels are 

removed to maintain binary classification and avoid ambiguity. The resulting labels are: 

 

• 0 - Clean 

 

• 1 - Malware 

 

After preprocessing, we obtain a complete binary dataset with no unknown labels, as shown in table 1. 

The process of preparing the dataset is shown in the below algorithm 1. 
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Table 1: Class-wise distribution of samples in the dataset. 
 

Label Count 

Clean file(0) 399,976 

Malware file(1) 399,900 

 

Algorithm 1 Dataset Preparation Pipeline 
 

Require: Train file T , Test file S 
Ensure: Filtered and merged dataset D 
1: XT ← readParquet(T ) 

2: XS ← readParquet(S) 
3: Remove unlabeled samples: 

XT ← XT [Label ∈ {0, 1}], XS ← XS[Label ∈ {0, 1}] 
 

4: Merge datasets: 

 

5: Shuffle dataset (optional) 

6: Return D 

 
D ← concat(XT , XS) 

 
 

 
In lines 1 and 2, the training (T ) and testing (S) parquet files are read and loaded into variables XT and XS, 

respectively. During this process, unknown labeled data are removed in line 3. The updated datasets are then 

concatenated to form the complete binary EMBER dataset D. 

 

2.1 Dataset Visualization 

For better understanding of the dataset, multiple visual representations are provided. Figure 1 shows that both benign 

and malware classes are balanced, containing nearly equal numbers of samples, which ensures an unbiased trained 

model. 

Due to the large size of the dataset, 3,000 random samples are selected to generate a t-SNE visualization, as 

shown in Figure 2. The overlapping between sample points illustrates that the data are not pre-separated, necessitat- 

ing an effective model for accurate malware classification. 

To analyze dependencies among dataset features, a heatmap is generated using the first 20 features, as shown 

in Figure 3. The heatmap displays predominantly light blue colors, indicating weak correlations between features. 

This suggests that the dataset contains minimal duplication or similarity among features, which reduces the risk of 

overfitting and contributes to a more generalizable and robust model 

 

3 Methodology 

This section describes the complete workflow, from data cleaning to training the malware classification model. After 

preparing the data as outlined in the previous section, we implement several popular lightweight machine learning 

models. Addressing the research gap regarding unexplored ensemble approaches, we propose a novel structure that 

stacks Random Forest, Extra Trees, and LightGBM classifiers using soft voting. The workflow is visually represented 

in Figure 4. 

 

3.1 Data Sampling 

Experiments were performed on Kaggle using a GPU P100 to efficiently utilize the available RAM and processing 

speed. Given the impracticality of using the complete EMBER dataset with 799,876 samples (after removing un- 
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Figure 1: Class-wise distribution of samples in the dataset. 

 

 

Figure 2: t-SNE to visualize the structure of the data. 

 

 

known labels, as shown in Table 1), 50,000 random samples with all 2,381 features were selected for model training 

without compromising the training process. 
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Figure 3: Heatmap showing the corelation among first 20 features. 

 

3.2 Dataset Partitioning 

For model evaluation, the dataset was partitioned in an 8:2 ratio into training and testing sets. The class-wise 

distribution is shown in Table 2. Stratified sampling was employed to ensure balanced class representation during 

training. The training data were used for model training, while the testing data were reserved for performance 

evaluation. 

Table 2: Distribution of samples in training and testing data. 
 

Class Training Samples Testing Samples 

Clean file (0) 20,030 5,007 

Malware file (1) 19,970 4,993 

 

 

3.3 Training Lightweight Machine Learning Models 

In this study, we selected tree-based machine learning models that have demonstrated strong performance in malware 

classification across various datasets, based on the existing literature. Models with poor performance were excluded. 

Four models were trained using the dataset: 

• Random Forest (RF): This model uses 200 decision trees with parallel processing, combining their outputs 

for final prediction. 

• Extra Trees (ET): For more generalized training, 200 extremely randomized decision trees were used to 

generate the final prediction. 

• LightGBM (LGBM): Instead of building trees independently, 300 decision trees are created sequentially with 

a learning rate of 0.1 to improve accuracy. Each tree learns from the misclassifications of the previous tree. 

• XGBoost (XGB): This gradient boosting model constructs 150 trees sequentially, each with a maximum depth 

of 8. A learning rate of 0.1 and row subsampling of 80 
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Figure 4: Workflow diagram for dataset preprocessing, model training, ensemble creation, and evaluation. 

 

All models were trained using the training dataset and evaluated with the testing dataset. Among these, the 

LightGBM model achieved the highest performance across evaluation metrics. 

 

3.4 Stack-Based Ensemble Model 

In addition to individual tree-based ensemble models, a stack-based ensemble model was created by combining 

Random Forest, Extra Trees, and LightGBM. In this approach, each model is trained individually, and the probability 

distributions for each sample are averaged to obtain the final classification. The training dataset was used for model 

development, while the testing dataset was used for performance evaluation. However, the individual LightGBM 

model ultimately outperformed this ensemble approach. 

Load EMBER Train and Test Splits 

Remove Unlabeled Samples (Label = -1) 

Merge Cleaned Splits into Unified Dataset 

Random Sampling of 50,000 Instances 

Train–Test Split (80:20, Stratified) 

Train Base Models 

RF, ET, XGBoost, LightGBM 
Construct Soft Voting Ensemble 

Evaluate Using Accuracy, Precision, Recall, F1 Score 
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4 Results and Discussion 

 
This section presents the performance of the proposed approach using accuracy, precision, recall, AUC, and F1-score 

as evaluation metrics. In the comparative analysis of tree-based machine learning models—including fine-tuned 

LightGBM, RF, ET, XGB, and a soft-voting stack-based ensemble (RF, ET, and LGBM)—the fine-tuned LightGBM 

model outperformed all others, as shown in Table 3. 

 

 

Table 3: Comparative analysis of performance of tree-based machine learning models with the proposed fine-tuned 

LGBM algorithm. 
 

Model Accuracy Precision Recall F1-Score 

Random Forest 0.9359 0.9423 0.9285 0.9353 

Extra Trees 0.9464 0.9554 0.9363 0.9458 

XGBoost 0.9580 0.9603 0.9553 0.9578 

Stack-based Ensemble 0.9566 0.9617 0.9509 0.9563 

Fine-tuned LightGBM 0.9607 0.9626 0.9585 0.9606 

 

 

For better understanding of the proposed fine-tuned LightGBM model’s performance, the confusion matrix is 

shown in Figure 5. Additionally, ROC curves for all models are presented in Figure 6. 
 

 

 

Figure 5: Confusion matrix of the proposed Fine-tuned LightGBM model on EMBER 2018 dataset. 

 

 

To strengthen the proposed study, the performance of the fine-tuned LightGBM model is compared with existing 

works. All comparative studies were published in reputable journals and conferences between 2020 and 2025. The 

results demonstrate that our model outperforms all considered existing works across all evaluation metrics. The 

comparative analysis is presented in Table 4. 



Amit Verma 

ISSN (Online): 3048-8516 8 IJCMA 

 

 

 

 

Figure 6: ROC curves for all evaluated models. 

 

 

Table 4: Comparision of proposed work with the existing models on ember 2018 dataset. 
 

S. No. Reference Model # Features AUC Precision Recall F1 score Accuracy(%) 

1 Manjaly et al. [13] 
Random forest 49 - 0.97 0.97 0.97 97 

Extra tree 49 - 0.97 0.97 0.97 97 

2 Brown et al. [14] AutoML Not specified 0.98 - - 0.96 - 

3 Galen et al. [15] LightGBM 2381 0.99 0.95 0.95 - 94.8 

4 Kundu et al. [16] LightGBM Not Specified - - - - 90 

5 Thosar et al. [17] CNN Not Specified 0.99 0.94 0.93 0.93 93.45 

6 Connors et al. [18] ANN 2381 0.98 0.96 0.94 0.95 95 

7 Lad et al. [19] CNN 2381 0.91 0.90 0.89 0.89 94.09 

8 Proposed work FineTune-Light GBM 2381 0.99 0.96 0.96 0.96 96 

 

 

 

5 Conclusion & future scope 

 
In this work, we consider the rarely explored, large raw EMBER 2018 dataset, which was preprocessed to obtain 

binary classes with 799,876 total samples and 2,382 features. We implemented various tree-based machine learning 

algorithms, among which LightGBM performed best. We then fine-tuned the hyperparameters of the LightGBM 

model to enhance its performance. This optimization improved the baseline LightGBM accuracy to 96%. Addition- 

ally, we developed a stack-based ensemble model using soft voting to combine Random Forest, Extra Trees, and 

LightGBM predictions. However, the proposed optimized LightGBM still achieved slightly better results than the 

stack-based ensemble model. 

For future work, researchers can develop memory-optimized methods to experiment with the full EMBER 2018 

dataset. There also remains considerable scope to explore additional ensemble machine learning models and further 

optimize the LightGBM architecture. 
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