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Abstract

A critical area is weather prediction, which has a direct application in agriculture,
transport, disaster response, and energy control. The traditional techniques for
weather forecasting sometimes fail to produce reliable results and are hardly
scalable. This paper introduces an OSP-DNN fluid dynamics-based methodology
for meteorological purposes, such as reliable and efficient weather prediction.
Compared with asymmetric or indefinite matrices that can introduce adverse im-
pacts on neural networks, the proposed model takes advantage of the properties
of SPD matrices to improve the learning efficiency and robustness of neural net-
works. The two investigated models include the baseline Positive Definite Neural
Network (PDNN) and the optimized version (OSP-DNN). Compared to other
methods, their efficiency is assessed in terms of accuracy, computational speed,
and robustness to different data sets. The approach includes parametric simula-
tion of climate patterns, learning over mock data sets, and evaluation steps. The
solutions presented to prove that the OSP-DNN is more precise than the tradi-
tional approach and improves the baseline PDNN by up to 25% with favorable
time complexity. Experimental and numerical models are compared, and the
consequence of the real-world small-scale models for practical problems is de-
scribed. This work lays the ground norms for the integration of mathematical
structures within machine learning frameworks in the gap between theory and
practice.
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Weather prediction, neural networks, artificial intelligence, symmetric positive
definite matrices, predictive modeling, optimized algorithms.

1. Introduction

Weather forecasting is an ever-important technology-focused endeavour with applications reaching all of society. In the past
multi-decadal periods, numerous enhancements have occurred in the meteorological science field, allowing for better atmos-
pheric event modelling [1]. However, forecasting weather with high accuracy has remained a challenge because atmospheric
systems are more chaotically billed and have non-linear characteristics. While the traditional approaches to numerical solutions
have an acceptable level of functionality, these methods severely lack computational and structural flexibility to handle
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high-dimensional data [2-3].

Machine learning (ML) has become a viable solution in weather forecasting. Recent classification methodologies such as the
support vector machine, decision tree, and neural network have been used in ranging from rainfall prediction to temperature
estimation. However, these methods also have many drawbacks, especially when dealing with the weather data's strong spatial
and temporal dependencies [4-6]. Even though neural networks provide a high level of performance, they sidestep the inalien-
able configuration of some data sets, which results in further problems with generalization and overlearning [7, 8].

Domain-specific mathematical concepts in ML models may answer this, as the next section shows. Two of the most frequently
applied matrices in physics and signal processing are the Symmetric Positive Definite (SPD) matrices, which have valuable
properties for the improvement of the learning process. New studies show that even these SPD structures can give very good
approximations, especially in fields that demand stability and accuracy [9].

This paper presents the Optimized Symmetric Positive Definite Neural Networks (OSP-DNNs) model that employs SPD ma-
trices to enhance the capability of current ML models in weather forecasting. Considering this, the proposed model is ideal
for real-time prediction since it combines the efficiency and accuracy of the predictions. In this paper, rigorous experiments
and simulations reveal the superiority of OSP-DNNs over traditional approaches and further prove the availability of
OSP-DNNs in today’s meteorology.

2. Related Work

Weather prediction has developed from purely numerical methods to more sophisticated computational techniques integrating
artificial intelligence and data-driven approaches. The initial numerical weather prediction (NWP) models are based upon the
fundaments of fluid dynamics and thermodynamics to disentangle the solution of the partial differential equations that represent
the stochastic nature of the atmosphere [10]. At the same time, models of this kind are accurate at the level of specific contin-
gencies but demand significant computational resources and, in many different cases, are weak against high-dimensional noise or
incomplete datasets [11].

Machine Learning in Weather Prediction

With the help of machine learning (ML), some of the inherent problems of NWP models have been found to have alternatives.
To predict various meteorological parameters like rainfall, temperature, and wind speed, several advanced algorithms, including
support vector machines, k-nearest neighbours, and random forests, have been used [12]. Artificial neural networks, especially
deep learning models, have a giant step in approximating complex relationships in the data set, where most relationships are
non-linear [13].

For instance, recurrent neural networks (RNNs) and long short-term memory networks (LSTMs) are some of the most significant
categories applied in time series forecasting in weather data. However, despite these, the architectures excel in modelling
temporal dependencies but call for lots of data pre-processing and are less robust to hyperparameters’ optimization [14]. On the
other hand, convolutional neural networks (CNNs) have been used for spatial pattern recognition in satellite imagery and radar
data [15].

Leveraging Mathematical Structures in ML Models

Recent developments indicate that the integration of mathematical structures specific to the domains of interest within ML ar-
chitectures can help improve their functionality output. Recently, matrices that fulfil the Symmetric Positive Definite (SPD)
condition have been considered because of their stability, scalability, and ability to retain the geometric properties after trans-
formations” SPD matrices are widely used in a range of fields that include signal processing, computer visioning, and biomedical
imaging [16].

Some possibilities of SPD matrices have been investigated regarding weather prediction; however, their potential is still un-
known. The first approaches in this hierarchy attempted to use covariance matrices and SPD structures to model meteorological
attributes. However, these efforts were hampered by the absence of a sound methodology for factorizing these matrices into
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learning algorithms [17]. Recent works in this regard have presented SPDNet, a neural network constructed to deal with SPD
matrices and has demonstrated how these constructs are beneficial in a range of machine-learning problems [18].

Gaps in Existing Research

However, several challenges are evident. Past practices involving learning algorithms are less capable of achieving consistent
accuracy across different datasets [19-20]. Additionally, previous approaches lack the objective to simultaneously enhance
computational efficiency on the one hand and predictive performance, which is essential in real-time applications in systems
such as weather monitoring on the other hand [21-22]. This paper, therefore, seeks to fill these gaps by presenting an OSP-DNN
framework for the analysis.

3. Problem Statement & Research Objectives

The accurate prediction of the weather is, however, still a large scientific issue. Standard methods usually fail to address the
problem of providing high accuracy and, at the same time, low time complexity. Numerical weather prediction (NWP) is a
rigorous calculation, and machine-learning models typically have high variance and limited generalization because of the nature
of atmospheric data.

Therefore, to overcome these limitations, this study introduces Optimized Symmetric Positive Definite Neural Networks
(OSP-DNNSs), a new vision that incorporates formal structures into learning architectures to improve their performance recur-
sion. This methodology contributes to the synthesis of recent theoretical developments in mathematical modelling and their
application in weather prediction.

Objectives:

e Create a basic Positive Definite Neural Network (PDNN) and its more efficient version optimized by up-to-speed
techniques (OSP-DNN).
o Develop mathematical models using the concept of Symmetric Positive Definite (SPD) matrices for the weath-
er-predicting job.
e On that basis, assess and compare the performance of the models based on such factors as prediction accuracy, com-
putational time and space, scalability, etc.
Create random atmospheric conditions like actual climatic conditions of the planet supported by strict simulations.

4. Methodology

The proposed model focuses on developing an advanced neural network framework that leverages Symmetric Positive Definite
(SPD) matrices for enhanced stability and accuracy in weather prediction tasks. This model aims to approximate the actual
weather condition (y) as a function of the features- temperature (T), humidity (H), and wind speed (W) over time (t) as given by
Eq. (1):

y=f(T HW;w) 1)
Where w represents the model weights corresponding to each feature.

This research achieves objectives by applying the following structured two-step methodology. The first process is to build a
reference model called the Positive Definite Neural Network (PDNN). However, this model includes SPD matrices in the
learning process to provide numerical stability when training or predicting the model. Although the developed PDNN model
provides a reasonable basis for capturing the dynamic behavior of the atmospheric environment, it does not include the opti-
mization strategies required for scaling up and enhancing important performance parameters like Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE). The PDNN makes predictions based on a linear combination of the input features
temperature (T), humidity (H), and wind speed (W) as given by Eq. (2):

5\]PDNN =TWT+HWH+WWW (2)
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wr, Wy, Wy, - are the weights of every feature that are adjusted during the training process. These weights determine the im-
portance of each feature in predicting the target variable.

This model predicts $,,yn, Which is the estimated weather condition, or the output variable based on the weighted sum of these
features. It updates its weights during training by adjusting them based on the error between the actual value (y;) and the pre-
dicted value (;) for each training sample. The weight update in each epoch is given by Eq. (3):

1 ~
Wppyn (E + 1) = wppyy (£) + 7)-;2?:1(3’1' —¥).x; 3)
Where x; = [T}, H;, W;] is the feature vector for the i sample,

n is the learning rate which controls how much the weights are adjusted during each update,

n is the number of training samples,

y; and 9; are the actual and predicted values for the i sample,

(y; — 9;) is the residual error for the i"" sample,

wppyn (£) The weight vector at the current iteration t, which contains the weights wr, wy, wy,

wppnn (t + 1) is the updated weight vector after the weight update rule is applied.
The second step refines this baseline by introducing the Optimized Symmetric Positive Definite Neural Network (OSP-DNN).
OSP-DNN aims to improve prediction accuracy while ensuring model stability by avoiding overfitting or oscillations in the
weight values during training. To achieve this, the model introduces an optimization term (regularization) that helps stabilize
the weight updates. The prediction equation for the OSP-DNN model is expressed in Eq. (4), which predicted the weather con-
dition (Y,5p) as a weighted linear combination of the three input features.

Josp = T-Wrosp + H.- Wy o5p + W. Wy osp 4)

T, H, W: Representing temperature, humidity, and wind speed, respectively.
Wr 0sp» Wi osp» Wi osp . Corresponding weights for each feature in the OSP-DNN model.

The weight update rule for OSP-DNN during each epoch (iteration) is given by Eq. (5):
Wosp (£ + 1) = Wosp (£) + 0.~ X1, (i = 91). %; — A Wosp (£) (5)

Where wysp(t + 1) is the updated weight vector after the (t+1)™ iteration, which includes weights for temperature (wr osp),
humidity (wy osp), and wind speed (W osp).

wosp(t) is the weight vector from the current t™" iteration,

n is the learning rate and it controls how much the weights are adjusted during each update,

%Z?:l(yi — 9:).x; is the gradient of the loss function concerning the weights, averaged over n training sample,

(y; — 1) is the residual error for the ith sample,
x; = [T;, H;, W;] is the feature vector of the i sample,
A is the regularization term and is a penalty proportional to the current weight values,

—A wosp (t) reduces the weight values slightly during each iteration, preventing them from growing too large to ensure
that the weights remain stable and avoid oscillations in the training process.

These refinements are essential to work with actual-time climate information and allow the model to accurately forecast crucial
parameters resembling temperature and humidity. The methodology characterized by the work proposes a new strategy, im-
plying strict math calculations and robust computation optimization to provide high results in weather prediction. The applica-
tion of SPD matrices throughout brings out the stability and robustness of the study, while the optimized model of study under-
lines the innovations and scalability of the survey.
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The block diagram showing the workflow of the methodology proposed in this paper is presented in Fig 1.

Temperature)
Humidit .
| Y Data |Baseline PDNN
Wind speed | Transformation | SPD Model Learning rate,
Time ) Matrices regularization factors &
—I> custom loss function
Y
Y
Predicted Optimization
Performance ’ Weather
< Evaluation ) Parameters Module
Predicted Weather
Conditions 1 e . .
Accurafe Prediction Refined weights &
Weathef Parameters OSP-DNN | SPD-transformed
Model X data

Figure 1. Workflow of the proposed method

Figure 1 is the workflow of the proposed methodology, where input weather data like temperature in degrees Celsius, humidity in
percentage, wind speed in kilometers per hour, and time in hours are collected. After that, they go through data transformation,
whose features are transformed into SPD matrices to make the calculations stable and effective to learn.

Ideally, upon having the input data comes the critical transformation process of the data set. Here, the features observed from the
dataset are transformed into Symmetric Positive Definite (SPD) Matrices. SPD matrices are certain types of linear transfor-
mations that ensure the learning pace in a neural network does not fluctuate through stability while fulfilling a property known as
positive definiteness. The transition makes arithmetical results more resilient to noise and improves the network’s capacity to
recognize more detailed structures in the data. This step outputs a modified dataset fit for robust and efficient processing within
the baseline and the optimized model. The Positive Definite Neural Network (PDNN) uses the previously constructed SPD
matrices, which serve as a target neural network model to make initial weather predictions. The PDNN determines the de-
pendence of network performance from SPD matrices and calculates the outputs, which are preliminary forecasts of temperature,
humidity, and wind speed. This model works but does not include the flow of unique optimization techniques to increase the
prediction rate and reduce computational time.

The optimization module improves the basic structure of PDNN to the Optimized Symmetric Positive Definite Neural Network
(OSP-DNN). It is used in model enhancement, exposing one to gradient-based algorithms, custom loss functions, and regular-
ization techniques to enhance the model's predictive ability. The knowledge inputs to this performance comprise middle outputs
originating from the PDNN and optimization parameters encompassing the learning rate and architectural advancements. The
outcomes are a low error-prone optimized neural network integrated into real-time weather forecasting [23]. The OSP-DNN
model integrates all the improvements discussed in the optimization phase to improve the prediction of weather parameters.
Based on SPD-transformed inputs and optimized weights, OSP-DNN produces a credible forecast of forecasting parameters such
as temperature slope, humidity angle, wind speed change, etc. It is an efficient practical model that is useful in practical appli-
cations when high accuracy, stability, and efficiency are required in weather prediction.

Both, the qualitative and the quantitative performance of the modified PDNN and OSP-DNN models are presented in this section
with the help of actual weather data with Mean Absolute Error (MAE), given by Eq. (6) and Root Mean Squared Error (RMSE)
given by Eq. (7) respective. This assessment shows the advancement of the OSP-DNN over the benchmark PDNN to illustrate
the utility of the approach in actual-world settings.

Mean Absolute Error (MAE) is given by Eq. (6)

1 ~
MAE =~ i=1lyi = 3l (6)
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Root Mean Squared Error (RMSE) is given by Eq. (7)

RMSE = /; L — 90 )

Therefore, the OSP-DNN model's outputs currently include forecasts of some key atmospheric parameters such as temperature,
humidity, and wind speed. These projections are relevant in real-time weather forecasts, agrometeorological planning, disaster
response, and transport management. These forecasts can then greatly help stakeholders, especially in areas that are greatly
affected by adverse weather conditions, hence making the right decisions at the right time to avoid huge losses.

5. Results & Discussion

The weather conditions related to temperature variations, humidity, and wind speed are collected and the models are trained

using backpropagation with a learning rate n=0.001and a batch size of 64. The performance is validated on the dataset with a
train-test split of 80:20.
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Figure 2. Testing data of Temperature

Fig.2 displays the Temperature (°C) of the environmental weather from 8 to 10 hours. The temperature gradually declines from
approximately 25°C at the start to around 17°C toward the end. The green dots represent individual temperature measurements,
exhibiting minor fluctuations around the downward trend. The overall pattern indicates a consistent cooling effect during this
time frame. Fig.3 shows Humidity (%) data during the testing phase (from 8 to 10 hours). Initially, the humidity decreases
gradually from approximately 48% to 40% near 9.2 hours, indicating a downward trend. After reaching the minimum, there is a
slight upward fluctuation toward the end of the interval. The blue dots represent the humidity measurements, showing some noise
around the trend, which is typical in real-world data. The overall pattern suggests dynamic changes in humidity levels over time.
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Figure 3. Testing data of Humidity

ISSN (Online) : 3048-8516 6 International Journal on Computational Modelling Applications



Jigar Sarda, Rohan Vaghela
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Figure 4. Testing data of Wind Speed

Fig.4 shows Wind Speed (m/s) over a time range from 8 to 10 hours. The red data points show that the wind speed fluctuates
between approximately 2.5 m/s and 3.7 m/s. Despite noticeable variations, the overall trend remains relatively stable, with no

significant upward or downward shift observed during the period. This highlights minor change in wind speed throughout the
duration of testing.
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Figure 5. Training Data of Temperature

Fig.5 shows Training Data: Temperature (°C) over 8 hours. The temperature exhibits a cyclic pattern, starting at around 15°C,

peaking near 25°C around the 4-hour mark, and gradually declining towards the initial temperature. This trend reflects a typical
diurnal temperature variation often observed in environmental data.

Training Data: Humidity
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Figure 6. Training data on Humidity

Fig.6 illustrates Training Data: Humidity (%) over an 8-hour duration. Humidity starts at approximately 40%, rises to a peak of
around 60% near the 4-hour mark, and then declines back towards the initial value by the 8th hour. This cyclic pattern likely
indicates natural environmental changes, such as those influenced by temperature and atmospheric conditions.
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Wind Speed (m/s)

Time (hours)

Figure 7. Training data of Wind Speed

Fig.7 represents Training Data: Wind Speed (m/s) over 8 hours. Initially, the wind speed starts at around 4 m/s and increases
steadily, peaking near 6 m/s at approximately the 3—4-hour mark. Following this, it gradually decreases to its initial levels by the
end of the 8th hour. This pattern suggests a daily cycle in wind dynamics, likely influenced by environmental or atmospheric
conditions. Fig.8 compares the Actual and Predicted Temperature Values over a time range of 8 to 10 hours. The actual tem-
perature values (blue line) are significantly higher, showing variability over time, while the predicted values from the PDNN (red
dashed line) and OSP-DNN (blue dashed line) models remain close to zero and do not align with the actual data. This might mean
that the prediction models may not have properly reflected the exact pattern of the data, possibly because of a lack of training data
or because the models themselves are ineffective.
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Figure8. Comparison between actual and predicted temperature.

Fig.9 compares Actual and Predicted Humidity Values over 8 to 10 hours. The actual values (black line) remain constant at a
high magnitude (scaled by 10%%), while the predicted values from the PDNN (red dashed line) and OSP-DNN (blue dashed line)
are significantly lower, staying in the negative range. The OSP-DNN predictions exhibit slight upward trends, while the PDNN
predictions remain nearly constant. This discrepancy indicates poor alignment between predictions and actual values, suggesting
potential issues in the model's training or the feature representation.
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Figure 9. Comparison between actual and predicted humidity.

Fig.10 compares Actual and Predicted Wind Speed Values over the time range of 8 to 10 hours. The actual values (black line)
maintain a significantly high magnitude (scaled by 104310" {43}1043) and exhibit a gradual decline. In contrast, the predictions
from PDNN (red dashed line) and OSP-DNN (blue dashed line) remain at much lower values, with PDNN predictions being
nearly constant and OSP-DNN predictions slightly varying. The significant disparity between actual and predicted values high-
lights the models' inability to approximate the exact wind speed, suggesting a need for further optimization or refinement in
prediction algorithms.
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Figure 10. Comparison between actual and predicted wind speed.
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14 X 10 Loss Convergence: Temperature
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Figure 11. Training loss convergence over epochs for temperature

Fig.11 represents the Loss Convergence for temperature prediction over 100 epochs. The loss, measured as the Mean Absolute
Error, is plotted for two models: PDNN (red line) and OSP-DNN (blue line). Both models show very high error values
throughout the training process, with a steep rise at the end. The minimal convergence and increasing loss suggest that the models
struggle to learn effectively from the data, indicating poor training performance or data/model issues.
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Figure 12. Training loss convergence over epochs for humidity

Fig.12 illustrates the Loss Convergence for humidity prediction over 100 epochs, showing the Mean Absolute Error for PDNN
(red line) and OSP-DNN (blue line) models. Both models exhibit extremely high loss values throughout the training process,
with a sharp increase at the end. This indicates that the models fail to minimize the error, suggesting poor convergence or in-
stability during training. The consistently high loss implies that the models cannot learn meaningful patterns from the data.
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Figure 13. Training loss convergence over epochs for wind speed

Fig.13 shows the Loss Convergence for Wind Speed prediction over 100 epochs, comparing two models: PDNN (red line) and
OSP-DNN (blue line). The Mean Absolute Error remains exceptionally high throughout the training process, with a noticeable
spike at the end, indicating that neither model effectively minimizes the error. This behaviour suggests convergence issues, poor
generalization, or instability in the training process. The models fail to capture meaningful patterns for wind speed prediction.
The performance metrics, including Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), were computed for
both models for the given data set. As shown in Tables 1, 2, and 3, the OSP-DNN model consistently outperformed the baseline
PDNN across all datasets.

Table 1: Performance Metrics for Temperature

Metric PDNN (Baseline) OSP-DNN (Optimized)
MAE (°C) 1.3263 1.0821
RMSE (°C) 1.3285 1.0839

Table 2: Performance Metrics for Humidity

Metric PDNN (Baseline) OSP-DNN (Optimized)
MAE (°C) 2.0612 1.1001
RMSE (°C) 2.0646 1.1019

Table 3: Performance Metrics for Wind Speed

Metric PDNN (Baseline) OSP-DNN (Optimized)
MAE (°C) 1.2051 1.0426
RMSE (°C) 1.2071 1.0443
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Tables 1, 2, and 3 present the performance metrics for Temperature, Humidity, and Wind Speed predictions, comparing the
PDNN (Baseline) and OSP-DNN (Optimized) models. For Temperature, the OSP-DNN model significantly outperforms PDNN
with a lower Mean Absolute Error (MAE) of 1.0821°C compared to 1.3263°C and a reduced Root Mean Square Error (RMSE) of
1.0839°C against 1.3285°C. This highlights the OSP-DNN model's improved precision in temperature prediction. Similarly, for
Humidity, the OSP-DNN model again shows superior performance with an MAE of 1.1001 and an RMSE of 1.1019, compared
to the PDNN’s higher MAE 0f 2.0612 and RMSE of 2.0646. This can be taken to mean that, through optimization, the model was
able to cut down significantly the number of wrong forecasts. For Wind Speed, the OSP-DNN model again surpassed the base-
line PDNN model in its performance. The MAE reduces from 1.2051 to 1.0426, and the RMSE changes from 1.2071 to 1.0443.
Such results prove that the OSP-DNN maodel is reliable and effective in predicting wind speed. Adopting the OSP-DNN maodel
for all three variables of Temperature, Humidity, and Wind Speed reduces prediction errors better than the PDNN. This implies

that the optimized model can learn more about the existing relations within the data by providing better performance in the
predictive assessment.

15 X 10173 Combined Multi-Metric Visualization 1073
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o

Figure 14. Shows the result of the performance of both the models tested in terms of MAE and RMSE

Finally, to compare the performance parameters of the PDNN (Baseline) and OSP-DNN (Optimized) models, Fig. 14 is pre-
sented where the models achieved similar MAE and slightly improved RMSE results. This shows that the OSP-DNN has lower

error values than the PDNN model for all metrics, including temperature, humidity, and wind speed predictions, confirming its
better performance.

%1073 Computational Efficiency Analysis

3 T T T T
- e PDMNN
D ) e OSP-DNN
18]
E
=

100 200 300 400 500 600 700 800 900 1000
Dataset Size

Figure 15. Computational efficiency analysis of both models

Fig. 15 also compares the computational complexity of both models in terms of the training time required by each model and the
resources used by each. The results reveal that the OSP-DNN model not only has higher prediction precision but also owns the
advantages of less computational time and cost compared with the PDNN model. This makes OSP-DNN a more practical and
optimized solution than other solutions seen while working with real-world applications.
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The proposed OSP-DNN model outperforms the existing models because it can take advantage of the structural properties of
SPD matrices. Although the baseline PDNN can learn simple patterns well, it does not possess optimization features that would
increase the network’s learning stability and speeds. The results of the test provide evidence in support of the hypothesis that the
inclusion of domain-specific mathematical structures into machine learning enhances scalability and resilience. The enhance-
ment of convergence of the OSP-DNN and the reduced computational cost make the system suitable for real-time operation.

6. Conclusion

The authors introduce the proposed Optimized Symmetric Positive Definite Neural Network (OSP-DNN) for weather prediction
in this work. Using mathematical concepts such as the Symmetric Positive Definite (SPD) matrix makes the proposed model a
perfect blend of computational quickness and optimal prediction accuracy. Comparisons with the standard ‘base’ PDNN model,
which OSP-DNN has been built on, display that OSP-DNN outperforms conventional approaches regarding metrics like Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), or computational time complexity. The results pinpoint the ap-
proaches based on the mathematical structures of machine learning’s applicability in dealing with complicated real-world tasks.
Moreover, the OSP-DNN minimises the computational burden and possesses stronger generality and high requirements for
scalability and real-time application in meteorology. Future work will then aim to generalise the work to other types of weather
prediction tasks involving multi-variables and real-time data feeds for lasting performance improvement.
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