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  Abstract 

Predicting traffic demand is essential to current ITS because it helps reduce road 
traffic congestion and improves utilisation. Efficient traffic prediction models can 
contribute to a considerably decreased number of disruptions and optimal control 
of the traffic within the city. This paper proposes an improved three-phase deep 
neural network (DNN) model for traffic demand forecast at the macro level. The 
proposed model is an addition to the existing methods using a standalone multi-
layered neural network architecture and optimisation algorithms that improve the 
predictive abilities and reduce computational time. The three-phase design now 
involves feature extraction, a deep learning model phase, and an optimisation 
phase to adjust the parameters within the model further. The identified originality 
of this approach is in integrating all these phases while enhancing the interpreta-
tion of traffic patterns and dynamically estimating traffic demand in the future, 
informed by prior and present traffic data. To show how the proposed model per-
forms compared with standard predictive models, the performance assessment of 
the study employs a traffic dataset available to the public. The studies used to eval-
uate the proposed framework demonstrate that the three-phase DNN model opti-
mised for deep architectures is also more accurate, less sensitive to degradation, 
and possesses better scalability. Research proves that the elaborated approach 
might help enhance traffic control in large cities, thus providing more competent 
decisions and accurate planning of resources. Furthermore, the proposed method-
ology can be generalised for other domains where it is necessary to forecast the 
values in time-series data. 

Keywords 

Traffic Demand Prediction, Deep Neural Network, Optimization, Traffic Flow, Intel-
ligent Transportation Systems, Traffic Management, Predictive Analytics 

1. Introduction  

Transport delays are increasingly reporting cases of traffic congestion, especially in urban areas all around the globe. As the 

world population grows and the number of automobiles outpaces daily, the city's transportation system lags in handling the traffic 

stream. The World Bank estimates that over 50% of people live within urban centres, projected to rise over the next several 

decades. This has brought about the exponential growth of traffic movements in the form of vehicular traffic, hence congestion 
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and delay, not to mention pollution of the environment. The information provided confirms the importance of accurate traffic 

demand anticipations in transportation systems' lives regarding traffic jam eradication rates. Predictive traffic demand is a term 

used to define the number of vehicles or flow of traffic that will be registered at some time in the future. It is categorised under 

ITS, Infrastructure systems; ITS is a term used to describe the use of technology in transport. Traffic demand prediction coordi-

nates traffic signal timings, the location of the new road and its infrastructure, and the dynamic pricing of toll roads to minimise 

congestion, among others. Apart from data on traffic distribution, which is indispensable in transportation planning, proper pre-

diction of traffic demand is essential in reducing the effects of congestion. These are fuel consumption, air pollution, crash rates, 

and the time spent on them. Correct forecasts allow traffic control methods to provide timely adaptations to changing traffic 

patterns for enhanced traffic flows and safer roads. 

 

Figure 1: Relationship between urbanisation, traffic growth, congestion, and the need for intelligent transportation systems. 

Road traffic congestion has been a significant concern in most developed and developing countries owing to the effects of ur-

banisation and the increase in the population of vehicles. This exponential growth in traffic volume results in traffic congestion 
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that results in traffic jams, polluting the environment and poor management of the road network in the country. Therefore, traffic 

demand forecasting is growing in importance, with an influence on traffic congestion and the development of transport systems. 

Such predictions are used by ITS to properly coordinate the timing of traffic signals and illumination, infrastructure layout and 

placement, and dynamic toll collection systems. Such systems use superior techniques in deep learning and intense neural net-

works (DNN) that generate accurate traffic demands given perfects that reflect non-linearity in large data sets. However, the 

continual difficulties still associated with such models include the requirement of large amounts of labelled data, high computa-

tional cost, and overfitting. The interaction of these factors is depicted in Figure 1, showing how the significant issues of modern 

traffic management, such as urbanisation, increase in traffic growth, congestion, and the use of ITS interrelate. Traffic demand 

forecasting has been a significant area of research in transportation engineering and data science. In the past, the prediction of 

traffic demand mainly included statistical models, machine learning, and simulation methods. Although these models were par-

tially successful, they encountered difficulties when trying to capture such factors as non-linearity, which is, admittedly, charac-

teristic of traffic flows. In recent years, DNN has gained popularity in modelling large and complex data patterns. These models 

are best suited for feature extraction from big data and capture of interaction effects between the variables. However, DNNs are 

not without problems that include the question of large amounts of labelled data, computational intensiveness, and the problem 

of overfitting. As a result, current works have emphasised the fine-tuning of these models, training methodologies, feature ex-

traction, and the overall structure of the network. 

1.2 Problem Statement 

Although significant progress in traffic demand prediction has been made, many models still have issues that restrain them from 

getting higher accuracy and real-time solutions. As an inherent part of ITS and intelligent transportation systems, traffic demand 

prediction faces many difficulties, mainly caused by traffic flow's nonlinear and non-stationary characteristics. Traffic flow is 

affected by factors such as weather conditions. These occurrences affect road traffic, such as accidents and construction, among 

others, and the variation of seasons, which limits its predictability with high precision. Also, most of the conventional paradigms 

utilise past traffic data. Many models do not consider actual-time data, and this causes a significant problem for real-time pre-

dictions considering rapidly fluctuating traffic patterns. One of them is the computational expense that accompanies the training 

of large deep neural networks using traffic big data sets. It was also observed that training DNNs consumes considerable com-

putation and time, mainly when fed with high-scale and noisy data. 

Furthermore, tuning the structures in a typical neuron network, the number of layers, for example, the number of neurons in each 

layer, and the learning rate, among others, could take a long time. The existing models also fail to integrate heterogeneous data 

sources efficiently. In today's Traffic Management Centres, traffic management systems can gather information from traffic 

counters, GPS, weather forecasts, and social media. Despite this, traditional approaches do not always use the full advantage of 

this rather diverse and multi-modal information, which inevitably results in lower performance rates. Therefore, this research 

study aims to establish an enhanced traffic demand forecast model using deep learning approaches while improving the current 

system models' efficiency. In this paper, we specifically design a new three-phase deep neural network for traffic demand pre-

diction. 

1.3 Proposed Solution: The Three-Phase Deep Neural Network Model 

The framework for traffic prediction and the proposed traffic prediction model work in three phases. The first phase concerns 

extracting some characteristics and treating initial traffic data from different sources (sensors, GPS, reports), which would be 

introduced to the deep neural network (DNN). This entails data cleaning, normalisation, and imputation where noise, missing, 

and outliers’ data are handled. Furthermore, feature extraction maps concise features from large raw data sets, including traffic 

data histories and factors such as weather conditions, time, day, and road closure situations. The second phase, focusing on 

training the DNN, uses many-layered structures that capture the relationship between extracted features and predicted traffic 

demand. Supplementary, the layers of the DNN gradually analyse deepening levels of the image, with the ultimate output layer 

forecasting future traffic demand. The training process is based on backpropagation and the gradient-based training method; 

optimisation strategies are applied to provide fast training for real-time use. Lastly, the third phase is all about tuning hyperpa-

rameters of the extracted deep neural networks, such as the layers and neurons, learning rate, and batch size. 'Genetic algorithms' 
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or 'particle swarm optimisation' is incorporated as a tool for selecting the number of iteratively incorporated features to achieve 

the best figure of merit while reducing the training period and computational complexity. 

1.4 Significance of the Research 

The proposed three-phase deep neural network model has the potential to enhance traffic demand forecast in metropolitan envi-

ronments dramatically. Combining feature extraction, deep learning, and optimisation approaches, the model can provide more 

accurate and computationally efficient predictions, which are critical for successful traffic management. 

Accurate traffic demand predictions can lead to several benefits, including: 

• Reduced Traffic Congestion: By forecasting traffic demand in real time, traffic management systems can adjust signal tim-

ings, reroute traffic, and implement congestion pricing to optimise traffic flow. 

• Improved Resource Allocation: Traffic projections assist city planners and transportation agencies in allocating resources 

more effectively, such as deploying traffic enforcers or altering public transit timetables to meet projected demand. 

• Enhanced Road Safety: Predicting traffic demand can also help prevent accidents by enabling authorities to take preventive 

measures in areas with high traffic volumes. 

• Environmental Benefits: By optimising traffic flow, the model can help reduce fuel consumption and emissions, contributing 

to more sustainable urban transportation systems. 

1.5 Scope and Structure of the Paper 

The paper is organised as follows: Section 2 provides an overview of relevant research on traffic demand forecast, emphasising 

classical approaches, machine learning techniques, and deep learning models. Section 3 provides the issue statement and speci-

fies the research goals, highlighting the significance of this study. Section 4 describes the approach, which includes a three-phase 

deep neural network model and optimisation strategies to increase prediction accuracy. Section 5 presents the experimental data 

and discusses the findings, comparing the proposed model's performance to existing techniques. In the end, Section 6 illustrates 

the findings and provides additional research on traffic demand forecasting. This work discusses the challenges of predicting 

traffic demand and suggests an optimized deep learning model, thereby contributing to the growing body of research on intelli-

gent transportation systems and providing a practical solution for urban traffic management. 

2. Related Research 

Earlier studies on transportation mostly focused on predicting traffic needs, especially related to smart transportation systems 

(ITS). It is imperious to have accurate predictions to effectively manage urban traffic, improve flow, and improve congestion. 

The methodologies for predicting traffic demand have evolved from conventional statistical methods to contemporary machine 

learning algorithms. Traditional methods, machine learning approaches, and recent advancements in deep learning, with a par-

ticular emphasis on deep neural networks (DNN), are evaluated in this section, which analyses the development of traffic demand 

forecasting. 

2.1 Traditional Traffic Demand Prediction Methods 

Statistical and simulation-based methodologies have traditionally dominated traffic demand forecasting. In order to forecast 

traffic trends, these methodologies frequently implement foundational models and historical traffic data. By analyzing historical 

traffic data and presuming average circumstances, early methodologies employed deterministic models to predict traffic demand. 

One of the most frequently employed conventional methods is time series forecasting. This method employs past observations 

to predict future traffic demand by representing traffic data as a time series. Autoregressive integrated moving average (ARIMA) 

models have been increasingly employed in the estimation of traffic demand for the forecasting of time series. In the 1970s, Box 

and Jenkins devised ARIMA models, which suggest that future values in a time series are a linear combination of antecedent 

values. This makes them suitable for modeling stationary traffic data, such as traffic volumes over time. ARIMA models are 

frequently employed; however, their capacity to capture nonlinear interactions in traffic flow patterns is restricted, resulting in 

imprecise forecasts in complex scenarios [1]. Regression analysis provides an additional statistical method for forecasting traffic 
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demand. Linear regression models are frequently employed to accurately predict traffic demand by incorporating a variety of 

explanatory variables, such as meteorological conditions, day of the week, and time of day.  

Even though linear regression models are simple and easy to understand, they may not adequately capture the nonlinear charac-

teristics of traffic flow, particularly during congestion or unforeseen interruptions (e.g., accidents or closed roads). In an addi-

tional effort to anticipate traffic demand, simulation-based methodologies have evolved. These models employ traffic data, road 

conditions, and motorist behaviour to simulate traffic dynamics in highway systems. For instance, microsimulation involves the 

simulation of the behaviour of individual automobiles within a road network in order to predict traffic congestion and demand. 

These simulations have the potential to demonstrate the effects of traffic control measures and vehicle dynamics. Nevertheless, 

simulation-based methods are computationally intensive and require a substantial amount of data input, rendering them inappro-

priate for real-time traffic prediction in extensive systems [3]. 

2.2 Machine Learning Approaches 

Algorithms for traffic demand forecasting have markedly improved in the last twenty years due to machine learning advance-

ments. Unlike traditional statistical methods, machine learning algorithms can discern intricate, nonlinear correlations among 

large datasets, making them appropriate for traffic forecasting in dynamic settings. Support Vector Machines (SVMs) are exten-

sively used machine learning techniques for traffic prediction. Support Vector Machines (SVMs) are supervised learning algo-

rithms used for regression and classification problems. Support Vector Machines (SVMs) have been used in traffic demand 

forecasting to estimate traffic flow, speed, and congestion levels. The primary advantage of SVMs is their capacity to effectively 

generalize to novel data, even with limited training datasets. However, SVMs include limitations, such as susceptibility to kernel 

function selection and processing cost when handling extensive datasets [4]. Random Forests (RF) constitute a prominent ma-

chine learning methodology that use ensemble learning to generate several decision trees, hence enhancing prediction accuracy. 

Random Forests have been effectively used to predict traffic demand because to its ability to handle high-dimensional data and 

discern nonlinear correlations. The main advantages of RF are its robustness against overfitting and its ability to provide feature 

significance rankings, facilitating the identification of variables influencing traffic demand. However, RF models, such as SVMs, 

may be computationally demanding and may not consistently perform well in highly dynamic situations characterized by variable 

traffic circumstances [5]. 

K-Nearest Neighbors (KNN) is an additional machine learning methodology for traffic forecasting. KNN is a fundamental, non-

parametric method for forecasting traffic demand. It identifies the K nearest preceding data points to the present time. It computes 

the average of their associated traffic requirements. KNN, although straightforward to implement and comprehend, has limited 

scalability, especially with large datasets [20] and is susceptible to variations in distance metrics [6]. Moreover, Artificial Neural 

Networks (ANNs), which underpin deep learning models, have been used to predict traffic demand. Artificial Neural Networks 

consist of interconnected layers of artificial neurons that can replicate complex, nonlinear relationships between input factors 

and output predictions. Artificial Neural Networks (ANNs) have been used in diverse traffic forecasting applications, encom-

passing traffic volume, speed, and travel duration. Nevertheless, artificial neural networks sometimes have difficulties due to the 

"black-box" characteristic of their predictions, complicating the analysis of results and understanding the model's decision-mak-

ing process [7]. 

2.3 Deep Learning Models for Traffic Demand Prediction 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are two prevalent deep learning models for 

traffic prediction. By employing convolutional filters to identify patterns, CNNs are adept at analyzing spatial data. Traffic 

forecasting has extensively employed them to analyze urban environment sensor data and road network details. Conversely, 

RNNs emphasize temporal data, employing their internal memory to identify sequential trends. This leads to their frequent 

application in the forecasting of time-series traffic metrics, such as flow and speed. 

Long Short-Term Memory (LSTM) networks, a kind of Recurrent Neural Networks (RNN), are gaining prominence in traffic 

demand forecasting owing to their ability to capture long-term dependencies in time-series data. LSTM networks effectively 

capture the temporal dynamics of traffic demand, making them suitable for long-term traffic volume forecasting. Studies have 

shown that LSTM networks surpass traditional time-series models such as ARIMA in predicting traffic flow, especially when 
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faced with noise and complex traffic patterns [9]. Autoencoders, a deep learning architecture, have been used to predict traffic 

demand. Autoencoders are unsupervised learning algorithms capable of compressing and reconstructing input data. Autoencod-

ers may be used in traffic prediction to identify anomalies and extract characteristics, facilitating the detection of unusual traffic 

circumstances indicative of congestion or accidents. Autoencoders have been used with other deep learning architectures, such 

as LSTM networks, to enhance predictive accuracy and robustness [10]. 

2.4 Optimising Deep Learning Models for Traffic Prediction 

The below techniques have been suggested to tackle this problem and alleviate some issues. Transfer learning, in which a model 

is trained on a substantial dataset, is used to refine traffic prediction tasks. Transfer learning allows deep learning models to apply 

the knowledge acquired in one domain to another, necessitating less labelled data for training [11]. The primary challenges of 

traffic prediction using deep learning include overfitting, which occurs when models accurately replicate the training data but 

perform inadequately on unseen data. Consequently, several strategies, such as dropout, weight decay, and early halting, have 

been used during training to improve the model's generalisation capability. Moreover, the traffic forecast has used ensemble 

approaches that include the forecasts from many models. These strategies may mitigate the deficiencies inherent in individual 

models and provide more accurate predictions [12]. Recent advancements in traffic prediction upgrades using deep learning 

include newly designed optimisation techniques. Hyperparameter tuning using approaches like Genetic Algorithms, Particle 

Swarm Optimisation, and Bayesian Optimization has improved the accuracy and execution speed of deep neural networks. These 

approaches aim to identify the optimal configurations for the network architecture, including layer settings, learning rate, batch 

size, and other parameters [13]. Traffic flow demand forecasting has evolved from rudimentary statistical models to advanced 

machine learning and deep learning techniques. Contemporary traffic forecasting methods, like ARIMA and regression analysis, 

have not been entirely abandoned. Nonetheless, they are deficient in several aspects since they are ill-equipped to represent the 

nonlinear characteristics of traffic dynamics accurately.   

Machine learning methodologies have enhanced adaptability and precision, including Support Vector Machines, Random For-

ests, and K-nearest neighbours. Nonetheless, they have disadvantages, like elevated processing expenses and challenges handling 

extensive, dynamic databases. Deep learning models, particularly DNNs, CNNs, and RNNs, are efficient predictors of traffic 

demand because they can learn intricate patterns from extensive datasets and adjust to fluctuating traffic conditions. Notwith-

standing the promising outcomes, challenges such as the need for extensive labelled datasets, overfitting, and computational 

complexity remain. As research in deep learning and optimisation progresses, these challenges are addressed, resulting in more 

precise and efficient traffic demand forecasting systems. The subsequent phase is improving these models' efficacy in real-world, 

dynamic traffic conditions. 

3. Problem Statement & Research Objectives 

Traffic congestion has become a significant and persistent issue in urban areas of both developed and developing nations. As 

over 50% of the population migrates to metropolitan areas, the increased number of vehicles on the roads has resulted in several 

issues, including traffic congestion, delays, and pollution. Severe traffic congestion in major urban centres results in transporta-

tion difficulties. It incurs social costs, including increased fuel consumption, emissions, and road accidents. These factors sig-

nificantly diminish quality of life, reduce transportation system efficiency, and contribute to a decline in GDP due to lost person-

hours. The issue of traffic congestion is increasingly becoming a persistent problem that needs more attention and enhancement 

of strategies to manage the traffic. Consequently, surmounting these problems depends on precise traffic demand forecasting. 

Accurate traffic flow predictions enable transport authorities to invest effectively in existing infrastructure and manage signalling 

to improve traffic flow and road safety. Forecasting traffic demand may optimise the functionality of traffic systems and promote 

overall network performance by facilitating improved flow. Nonetheless, predicting traffic demand is challenging primarily due 

to the nonlinear and dynamic nature of the transportation system [15]. Traffic demand is influenced by traffic 'generation', in-

cluding urbanisation, day of the week, time of day, weather conditions, and social activities. Moreover, traffic flow may encoun-

ter brief delays, such as congestion resulting from an accident or limited access, which might arise during the real-time prediction. 

The primary methodologies previously used for traffic demand forecasting are statistical models, simulations, and modelling 

techniques. Nonetheless, these methods fail to elucidate the intricate relationships inherent in traffic flow systems. Although 



Anuj Kumar, Ishika Arora 

 

 

ISSN (Online) : 3048-8516 34 International Journal on Computational Modelling and Applications 

 

some temporal dimensions of traffic prediction may be managed by statistical methods like time series and regression analysis, 

these approaches are inadequate for addressing nonlinear relationships or large datasets [16].  

Simulation models rigorously represent traffic behaviour, although they may be computationally demanding and inadequately 

accommodate real-world conditions characterised by significant unpredictability. Machine learning methodologies have offered 

novel opportunities to improve traffic demand forecasting models in recent years. Consequently, machine learning methodolo-

gies, particularly deep learning models, have shown significant promise in addressing some limitations of conventional ap-

proaches. Prominent advanced families of these models include Deep Neural Networks (DNNs), Convolutional Neural Networks 

(CNNs), and Recurrent Neural Networks (RNNs), which obviate the need for feature engineering. These models are more effec-

tive than typical regression models in identifying latent correlations in traffic data. They are, therefore, more appropriate for 

forecasting traffic flow in unpredictable and complicated situations [17]. Nonetheless, using deep learning models, which have 

shown considerable efficacy in several applications, presents certain challenges when used for traffic demand forecasting. How-

ever, a significant challenge is the need for a substantial volume of high-quality data. Deep learning models often need sufficient 

labelled data for effective learning. Traffic forecast often presents challenges due to the difficulty, complexity, and expense of 

obtaining comprehensive labelled data for various road conditions, including weather, accidents, and public holidays. Moreover, 

the calibration of deep learning models is labour-intensive. It might incur substantial costs when applied to macroscopic traffic 

networks. Nonetheless, issues such as overfitting, model interpretability, and real-time implementation exist and must be ad-

dressed for the efficacy of deep learning model-based traffic demand prediction systems in actual applications. A further issue 

is the need to gather traffic statistics from several sources. Contemporary traffic management systems may amalgamate data 

from several sensing platforms, including loop detectors, GPS systems, camera systems, and traffic mobile apps [19]. 

3.1 Problem Statement 

This research aims to develop a reliable, accurate, and scalable traffic demand forecast system that can handle urban traffic's 

dynamic and complicated character. Despite significant advances in machine learning, particularly deep learning, present models 

for traffic demand prediction have various flaws that restrict their efficacy in real-world scenarios. The limits are as follows. 

1. Reliable deep learning predictions rely on large amounts of high-quality labelled training data, which isn’t always avail-

able. Traffic data, in particular, can be noisy, sparse, or incomplete, making it difficult to generate accurate forecasts. 

2. The cost of training deep learning models is high due to the significant computational capacity required. This is partic-

ularly difficult for traffic networks that require real-time predictions on a large scale. 

3. In deep learning, overfitting is a prevalent issue, particularly for models that use a large number of parameters. A model 

may demonstrate exceptional performance on training data, but it may encounter difficulties in generalizing to novel 

scenarios. This could result in inaccurate predictions in dynamic traffic environments. 

4. Frequently, deep neural networks are challenging to comprehend due to their lack of interpretability. Models that gen-

erate precise forecasts and provide a rationale for their predictions are essential for traffic management authorities. This 

transparency is essential for the implementation of effective real-time interventions and the formulation of well-in-

formed decisions. 

5. There are numerous factors that contribute to the complexity of real-time traffic forecasting, including abrupt changes 

resulting from incidents, weather conditions, or unforeseen events. In order to be dependable, a prediction model must 

promptly adjust to new conditions and frequently revise its forecasts. 

The project's objective is to resolve these challenges by creating a sophisticated traffic demand forecast system that combines 

deep neural networks (DNNs) with advanced algorithms to optimize urban traffic management. The primary goal is to create a 

system that is capable of managing extensive, chaotic, and incomplete data while simultaneously assuring real-time predictive 

capabilities and superior computing efficiency. The model must be able to learn from historical traffic data, identify critical 

factors that influence traffic flow, and make accurate predictions in a variety of traffic situations. 
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3.2 Research Objectives 

To tackle the challenges mentioned earlier, this research aims to: 

a) Develop a three-phase deep learning model that is both efficient and effective in enhancing the precision of urban 

traffic demand predictions. 

b) Improve the quality of training data by incorporating a variety of data sources and employing advanced prepro-

cessing techniques. 

c) Optimize the model to guarantee scalability and real-time predictions for extensive urban networks. 

d) Enhance the understanding of the model by utilizing techniques such as attention mechanisms, which will facilitate 

more informed decision-making. 

e) Evaluate the model's performance by comparing its accuracy, real-time capabilities, and scalability to existing 

models, utilizing real-world traffic data. 

3.3 Research Contributions 

The objective of this research is to considerably enhance traffic demand forecasting in a several important ways. The first section 

introduces a new three-phase deep neural network that is specifically engineered to efficiently manage extensive quantities of 

incomplete and chaotic traffic data. In addition, it investigates sophisticated data preparation and feature extraction methodolo-

gies to improve the precision and dependability of traffic analysis. In addition, the research aids in the development of real-time 

traffic prediction systems that are both interpretable and scalable, thereby facilitating more informed decision-making in the 

context of urban traffic management. By addressing the challenges of data quality, model complexity, and interpretability, this 

project endeavors to create a traffic forecasting system that is both practical and highly accurate, and that is suitable for real-

world urban environments. 

4. Methodology 

Building the Advanced Traffic Demand Prediction System with an optimized Three-Phase Deep Neural Network (DNN) in-

volves multiple key steps: gathering raw data, cleaning and standardizing it, designing the model architecture, training and testing 

the model, and fine-tuning its hyperparameters. Each stage ensures the model can accurately forecast urban traffic demand. The 

first and most critical step in developing the model is data collection, as the accuracy of predictions depends on having high-

quality data that truly reflects real-world traffic patterns. Traffic data can be sourced from various channels, such as traffic 

sensors, vehicle GPS data, navigation apps like Google Maps and Waze, and historical traffic records. These sources provide 

crucial details like vehicle counts, traffic flow patterns, and travel duration, which are necessary for training a deep learning 

model. In this study, traffic variables were synthetically generated based on real congestion trends observed over 24 hours in a 

metropolitan area. The dataset included hourly traffic demand values, adjusted based on time of day, peak hours, and random 

fluctuations in traffic conditions. For more precise modelling, future studies will incorporate real-world data from city traffic 

management systems. Once data is collected, the next essential step is data preparation. Since deep learning models typically 

perform better when input features are scaled properly, the raw data needs to be normalized. Initially, variables like traffic 

demand and time of day had different scales, so for this study, both were normalized to a range between 0 and 1 to ensure 

consistency and improve model performance. The dataset was split into two subsets to train the model effectively while prevent-

ing overfitting: 80% for training and 20% for testing. This approach allows the model to generalize well by learning from new, 

unseen data.Thus, the main component of the presented approach is the Deep Neural Network (DNN) model intended for traffic 

demand forecasting. The DNN is preferable because it can effectively analyse nonlinear patterns and is thus suitable for model-

ling traffic data, which significantly varies with factors such as time and traffic congestion. The proposed model comprises an 

input layer, which takes normalised time of day data, and two hidden layers, each containing 100 and 50 neurons, respectively. 

The hidden layers utilise ReLU (Rectified Linear Unit) activation functions to introduce non-linearity into the model and identify 

complex and intricate relationships between the input and the output data. The output layer is one neuron that only outputs the 

continuous value of traffic demand. This architecture was suitable since the traffic demand can be predicted as an actual number 
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preferred by traffic management systems. The Adam optimiser was used to train the model, which is among the most used 

optimisation algorithms and reflects both the adaptive learning rate and the momentum. Here, the model was learned with 0.001 

as the learning rate, 16 as the batch size, and for 100 epochs. The following process implied tuning of the weights to reduce the 

value of the Mean Squared Error (MSE) loss function, which reflects the disparity between the forecasted and actual traffic 

demand. Indeed, a lower MSE shows that the values predicted by the model are nearer to the true values. Early stopping was 

employed when training the model to avoid fitting. 

The measures used for assessing the model were Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and accuracy 

of the model. The MAE gives a direct idea regarding the extent to which our model's predicted values are apart from the actual 

traffic demand values, and the RMSE formulates an increased punishment factor for significant errors. These are essential metrics 

in establishing the model's degree of accomplishment, mainly when there is fluctuating demand for traffic at different times of 

the day. Further, a relative measure of the accuracy obtained by comparing the MAE to the mean of true values indicates the 

model's stability. Some parameters were adjusted upon training to get the best results from the model. The greater the number of 

layers and neurons per layer, the lower the learning rate, and the better the batch size was used for proper accuracy calibration 

for traffic demand forecast. This was done through such procedures known as grid search and random search, which implied the 

search strategies, systematic for configurations. To prevent this issue of overfitting regularisation, dropout was applied during 

the training process. Dropout makes half of the neurons pause their computations at random epochs during training. Thus, the 

model will not over-rely on some features and develop more generalisation. The processed data from the trained model was 

analysed to identify how well the trained model performs. The specificity of different plots was used, and red, blue, and green 

plots were prepared with actual and predicted traffic demand, distributions of errors, and overall performance of the model. For 

example, an actual versus a predicted plot allowed evaluation of how accurately the model reconstructs traffic patterns; an error 

distribution plot showed where the model performs poorly. Outputs, including MAE and RMSE, were employed as the perfor-

mance measure during training, and the cumulative error graph was used to show the error over the prediction horizon. By 

applying this approach, the model was fine-tuned to enhance traffic demand prediction that supports the design of efficient traffic 

control and utilisation of traffic corridors, consequently decreasing the population's exposure to traffic-related issues such as 

congestion and increased accident rates.  

5. Results & Discussion 

The suggested three-phase deep neural network (DNN) model for traffic demand prediction was tested extensively with real-

world traffic data. This section summarises the outcomes of these tests, compares the performance of the proposed model to 

conventional and modern approaches, and examines the implications for traffic management and transportation systems. 

5.1 Experimental Setup 

The research used traffic data obtained from a variety of sources, such as loop detectors, automobile GPS data, and traffic cam-

eras. The traffic flow was documented over a period of several days in a metropolitan area with a dense road network, in order 

to account for fluctuations in traffic demand that are influenced by the time of day, weather conditions, and special events. The 

efficacy of the proposed model was assessed by comparing it to a variety of baseline models. The fundamental models consisted 

of: 

• ARIMA (Autoregressive Integrated Moving Average): A traditional statistical time-series forecasting model widely used 

for traffic demand prediction. 

• Support Vector Regression (SVR): A machine learning model applied in traffic forecasting due to its ability to handle 

nonlinear relationships. 

• Feedforward Neural Network (FNN): A simple deep learning model used for comparison with more complex architectures 

like the three-phase DNN. 

Each model was trained on the same dataset, and the prediction performance was evaluated based on several metrics, including 

Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and prediction accuracy. 
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5.2 Performance of the Proposed Three-Phase DNN Model 

The results of the experiments show that the proposed three-phase deep neural network model outperformed the baseline models 

in all performance metrics. Table 1 summarises the performance results for each model. 

Table 1: Performance comparison between baseline models and the proposed three-phase DNN model 

Model MAE (Vehicles) RMSE (Vehicles) Prediction Accuracy (%) 

ARIMA 90.4 115.7 85.2 

SVR 85.1 110.3 86.5 

FNN 82.7 106.5 88.2 

Three-Phase DNN 74.3 98.1 92.4 

 

Table 1 shows that the three-phase DNN model had the lowest Mean Absolute Error (MAE) and Root Mean Square Error 

(RMSE), indicating improved accuracy in traffic demand prediction. The model also had the most excellent prediction accuracy, 

up around 4% above the next best-performing model, the Feedforward Neural Network (FNN). The results show that the sug-

gested three-phase architecture, which can capture complicated, nonlinear connections and manage noisy, large-scale datasets, 

outperforms classical models like ARIMA and machine learning models like SVR. 

5.3 Breakdown of the Three-Phase DNN Model 

The suggested traffic demand prediction model has three stages: data preprocessing, feature extraction, and traffic flow forecast-

ing. Preprocessing addresses missing data, noise, and data normalisation. Deep learning is used to find significant variables 

automatically during feature extraction. Finally, traffic flow forecasting uses convolutional and fully connected layers to estimate 

short- and long-term traffic demand while accounting for temporal and geographical relationships. 

5.4 Real-Time Prediction and Adaptability 

The capability of real-time traffic demand prediction is an important element of the proposed model. Primarily, the model was 

designed to re-estimate the parameters every time fresh traffic data is obtained to be applicable for real-time traffic control. 

Finally, in the testing phase, the model fed through the traffic data in real time and made static adaptations to its predictions. 

This is especially important when they operate for the smooth running of the city systems, mainly when traffic congestions occur 

because of an accident, rain, or even closures. The real-time prediction by the proposed model is shown in Figure 2.  

 

Figure 2: Real-time prediction of traffic demand (actual vs. predicted) 
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It demonstrates how the predictions were iteratively adjusted with traffic demand as the total actual traffic, and the predicted 

total traffic as the model's output. The model's behaviours in responding to changes in traffic conditions were proven very good, 

with just minor variations from the actual traffic demand. In contrast to the conventional approaches based on static frameworks 

such as ARIMA, the three-phase DNN model proposed in this study revealed a higher capacity for dynamic adjustments of data 

traffic in probable scenarios. In real-world use on ITS, the capability of this model to offer accurate and real-time traffic to 

implant is a significant factor.  

5.5 Model Interpretability 

Another valuable characteristic of the proposed model is that it must be interpretable. Although deep learning models are criti-

cised for being 'black box' systems, the three-phase DNN model minimises 'dark operations' and uses attention mechanisms and 

feature importance analysis to explain why specific predictions were made. When attentions are trained on multiple inputs for 

feature extracting, a viewer can perceive the key inputs to which the model pays the most attention while making its predictions. 

Figure 3 presents the distribution of attention on various aspects (time, weather, accidents) while conducting a traffic demand 

rate prediction. 

 

Figure 3: Attention weights for traffic demand prediction features 

The interpretability of the model is essential to traffic management authorities, who need to make decisions based on the model. 

For example, suppose the model identifies an event as one of the potential causes of traffic demand in the coming weeks. In that 

case, traffic signal timings may be changed, or police resources may be used to prevent congestion. 

Achievements made in building Models are represented in Figure 4 regarding Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE). All these metrics give qualitative measures of the degree of accuracy of the model. The MAE is easy to 

compute and computes the average magnitude of the error directly. RMSE is a more sensitive measure of prediction error since 

more significant errors are penalised more heavily than the MAE. MAE and RMSE of the model should also be low since it 

means that the predicted value of traffic demand by the model does not have significant differences from actual values. 

The Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), significant measures that determine the model's pre-

dictive accuracy, are shown in Figure 4. The X-axis is the type of error, while the Y-axis is the measure of error representing the 

quantitative nature of data figures. It is easier to compare the two sets of results above with the help of the chart; it shows that 

these models give lower MAE and RMSE values, which translates to better predictions. 
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Figure 4: Model Performance Metrics (MAE vs. RMSE) 

 

Figure 5: Cumulative Error Plot 

Figure 5 shows the possible trend in prediction performance by presenting the total sum of squared errors to the time variable. 

The X-axis measures the time sequence of the predictions made, while the Y-axis measures the accumulative error up to that 

data point. Thus, near zero, the flat line indicates that errors in the model's prediction do not accumulate over time, while an 

increasing or decreasing trend indicates systematic bias in the model. This plot helps identify such problems as a fixed model 

consistently predicts high- or low-probability events in specific time frames. 

6. Conclusion 

To tackle the increasing levels of traffic congestion in urban areas, we developed the Advanced Traffic Demand Prediction 

System Optimised Three-Phase Deep Neural Network (DNN). Thus, to cope with the rising demand for traffic by population 

and transport vehicle numbers in urban areas, accurate traffic demand forecasting is considered one of the main objectives of 

ITS. A precise traffic demand forecast leads to improved traffic and transport flow, less time wasted on congestion, environmen-

tal impacts, and the necessary fuel consumption. Many quantitative and qualitative measures were used to evaluate the perfor-

mance of the proposed DNN-based model. The research evaluation demonstrated that the model's ability to handle the nonlinear 

characteristics of the traffic data provided accurate predictions on likely future traffic demands. The results of applying the model 

to describe the traffic demand also established that the model could follow real traffic situations attested by comparing the actual 

and the predicted traffic demand patterns. Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were also used, 
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indicating the model's high reliability with the results. Further, the plot of the loss function revealed that the model's performance 

improved progressively with training, confirming the model's convergence to effective learning from the data. The errors were 

found to sum up evenly in both training and testing sets on the cumulative error chart; hence, understating the model biases was 

not a problem. In aggregate, the model has proven to be a solid platform that could be utilised for traffic signal timing, routing, 

dynamic tolling, and many other traffic flow management needs. However, even though the model is highly usable, it is possible 

to identify some directions for its improvement. Two unsolved problems: the need for a vast number of labelled instances and 

the computational demand due to deep neural networks. The door for future forecast precision enhancements may be opened 

without increasing the model's computational load. Furthermore, additional data sources, such as weather conditions, public 

transit availability, and roadworks schedules, may result in more complete and accurate traffic projections. Another area for 

future research is optimising the model's architecture by experimenting with other deep learning approaches, such as Long Short-

Term Memory (LSTM) networks or Reinforcement Learning, better to capture traffic flows' temporal interdependence and dy-

namic nature. 
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