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ABSTRACT 

Breast cancer is the most frequently encountered form of cancer among the populace, with women being more 

susceptible than men to its development. Catching it early increases the likelihood of survival, but due to the 

complex nature of masses and microcalcification, radiologists oftentimes fail to diagnose breast cancer properly. 

Radiologists use computer-aided diagnostic (CAD) systems to detect abnormalities; however, several 

uncertainties in breast cancer detection using mammograms make it challenging. The advancement of machine 

learning (ML) in the medical field for diagnosis and improving its accuracy is an inevitable futuristic step. ML 

techniques in breast cancer detection greatly help in early and accurate detection, thereby increasing the 

patient’s survival rate. This paper compares various popular machine learning techniques, such as support vector 

machine (SVM), random forest (RF), k-nearest neighbor (k-NN), and decision tree using the Wisconsin Breast 

Cancer dataset. The dataset consists of 569 biopsy samples, each characterized by 30 feature sets, classified as 

benign or malignant. The models were examined via a 70/30 train-test split and graded based on various metrics 

for performance evaluation, such as accuracy, precision, recall, F1 score, specificity, false positive rate, and 

false negative rate. The findings reveal that SVM performed with precision (94%) and specificity (97.22%), and 

RF found accuracy (92.40%) and F1 score (89.43%). These results indicate that approaches for machine 

learning, such as RF and SVM, substantially enhance the early detection of breast cancer, benefiting patient 

outcomes. Future studies should focus on looking at more comprehensive datasets and other techniques to 

improve diagnosis accuracy. 

Keywords: Machine learning; Breast cancer; Early detection; Classification;Medical Diagnosis 

1. Introduction 

The cancer that affects women worldwide with the highest prevalence is breast cancer, 

characterized by malignant growth that begins in breast cells. The most typical indicators of breast 

cancer are the emergence of a new lump or tumor, localized swelling or thickening of breast tissue, 

nipple retraction or spiraling inward, and nipple discharge (other than breast milk). Early detection 

through self-examination, mammograms, and other diagnostic tests can improve the chances of 

successful treatment. Surgical procedures, radiation therapy, chemotherapy, and hormone therapy are 

among the available treatments for breast cancer. The occurrence of breast cancer can vary depending 

on age, family history, and other factors. Regular breast cancer examinations and early detection can 

enhance the likelihood of effective therapy. Breast cancer is typically found in the ducts and lobules, 

with the former being the conduits for milk transport to the nipple and the latter being the milk-

producing glands. If the cells lining the milk ducts of the breast have become cancerous then it is 
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DCIS (Ductal carcinoma in situ). Lobular carcinoma in situ (LCIS) has cancerous cells in the linings 

of milk-producing glands (lobules) inside the breast. Women after puberty suffer from Breast cancer 

in every part of the country. Breast cancer has an increasing rate of occurrence in later life. In 2020, 

2.3 million women had breast cancer diagnoses globally, and the illness claimed 68,500 lives [1]. By 

2020, 7.8 million women have been diagnosed with breast cancer in the past five years. [1]. The high 

number of diagnoses of breast cancer makes it the most widespread cancer on the planet [1]. Breast 

cancer results in more disability-adjusted life years (DALYs) lost among women worldwide than any 

other cancer form [1]. Detecting breast cancer promptly may have a pivotal function in decreasing the 

rising number of deaths caused by the disease.  

Despite numerous increasing studies in the field of medicine and various technological 

developments contributing to cancer treatment, problems in cancer diagnosis still happen. Globocan 

2018 statistics indicate that breast cancer’s occurrence in women worldwide due to aging was 23.7 per 

100,000, and the mortality rate was 6.8 per 100,000 in 2018 [2]. A range of factors can trigger 

alterations to DNA or RNA, resulting in the conversion of healthy cells into cancerous ones, such as 

an increase in entropy, the natural aging of DNA and RNA, exposure to nuclear radiation, 

electromagnetic radiation, chemicals, bacteria, parasites, fungi, viruses, heat, food, water, cellular 

injury, and free radicals [3]. Effective tumor diagnosis is very important. A large number of tumors 

are benign (non-cancerous) in nature. However, incorrectly diagnosing a malignant tumor as benign 

can significantly reduce the effectiveness of the treatment. Early intervention and treatment of small, 

non-metastasized breast cancer typically result in a favorable outcome. Routine screening tests are a 

reliable method to detect breast cancer in the initial phases [4]. 

Accurate and reliable diagnosis is vital in the timely detection of breast cancer, as it helps 

classify tumors as benign and malignant. An effective detection strategy is characterized by a low rate 

of both false negatives (FN) and false positives (FP). Previously, mammography was deemed the 

most dependable and effective modality to use in the detection and diagnosis of breast cancer [5]. A 

combination of approaches is used for breast cancer analysis and detection including imaging, 

physical examination, and biopsy [6]. Mammography and ultrasound imaging techniques are used for 

breast cancer detection. Mammograms are images of breasts produced by X-ray. Effective screening 

of mammograms relies on Radiologists to detect signs of breast cancer [7]. Patients with unmistakable 

breast cancer situations may undergo mammogram and sonogram examinations with both benign (or 

nonspecific appearance) and normal [8]. A biopsy is an invasive surgical operation performed to 

corroborate the presence of symptoms related to breast cancer; however, it impacts the psychological 

and physical well-being of patients. Moreover, according to some research evidence, the density of 

the breasts can affect the accuracy of breast cancer detection by radiologists, with up to 30% of cases 

potentially being missed [9]. Evaluation of the mammograms for breast cancer is done with the aid of 

two robust potent indicators which are first, masses and second, micro-calcifications. Since masses 

often exhibit poor contrast in images, it is more arduous to detect masses than to detect micro-

calcification [10].  

Despite the rise in breast cancer cases over the last decade, mortality rates for breast cancer 

have dropped for women of all ages [11]. The positive trend of decreased mortality rates may be 

attributed to advancements in the treatment of breast cancer and the extensive implementation of 

mammography screening. Despite their proficiency, it is widely acknowledged that many experienced 

radiologists may still overlook a significant number of anomalies [12]. Furthermore, a substantial 

number of mammographic abnormalities that undergo biopsy ultimately prove to be non-cancerous. 

Factors such as training, experience, and subjective criteria can impact radiologists' ability to correctly 

interpret mammograms. The rate of inter-observer variations among trained experts has been observed 
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to be as high as 65-75% [13]. The use of computer-aided diagnosis (CAD) for examining 

mammograms can aid radiologists in the detection and classification of whether a mass is cancerous 

or not According to the literature survey, biopsies conducted on possible cancer cases yield benign 

results in 65-90% of cases, hence it is very crucial that to distinguish between the malignant and 

benign lesions, by developing such technique. Detection accuracy would greatly improve if we 

combine expert knowledge with CAD and ML techniques [32]. Its effectiveness can be witnessed 

through the results - detection accuracy with CAD was obtained above 90% and without CAD below 

80% [14]. For automated diagnostic systems, CAD approaches facilitate the continuous observation 

of a large patient population in the ICUs (Intensive Care Units) as the conventional methods rely on 

human observers for monitoring and diagnosing. The way these techniques operate is by converting 

diagnostic criteria that are primarily qualitative into a problem of feature classification that is more 

objective and quantitative [15]. Figure 1 shows the configuration of a classification system. No stage 

is independent as shown by the feedback arrows.  

 

  

Figure 1: The various phases of a standard CAD system used in cancer detection [16] 

Computers can learn on their own through ML, a subfield of Artificial Intelligence (AI), as long 

as they are exposed to datasets and gain knowledge through experience [17]. The widespread 

application of ML methods has been observed in recent decades for predictive model development 

supporting effective decision-making. By examining the dataset, these methods are used in cancer 

research to find patterns and predict whether a lesion is a benign cancer or a malignant cancer. 

Performance evaluation measures include classification accuracy, recall, and precision, and the area 

under the ROC [18] guides the assessment of how well these methods work. By analyzing and 

contrasting a breast cancer dataset, this research paper investigates the use of several innovative ML 

classifier models including SVM, k-NN, Random Forest, and Decision Tree to categorize tumors as 

either benign tumors or malignant tumors.  

2. Related Work 

Using Linear Discriminant Analysis, GLCM (Gray-Level Co-occurrence Matrix) and Optical 

Density Co-occurrence Matrix features were retrieved and used for breast cancer diagnosis in the 

work by Tai et al. [19]. Using an automated method, Nagi et al. [20] addressed the segmentation of 

the breast region from digital mammograms. Thresholding the mammogram at a constant grayscale 

level of 18 generated a binary mask. The binary mask was then filtered to remove artifacts, markers, 

and labels, thereby leaving only the breast region. However using a fixed grayscale intensity level for 

segmentation can lead to over-segmentation of the breast region, particularly in light of the presence 

of low-intensity pixels (below 18 grayscale) near the interface between the skin and air in 

mammograms. 

A novel approach to feature invention proposed by Butler et al. [21] uses previous knowledge of 

the physical processes involved in X-ray scatter to find new features more suited for cancer detection 

than current ones. Using a simple naive Bayes classifier, the method extracts high-level features from 

low-level pixel data. One difficulty in this work is the complicated character of X-ray scatter patterns 

from heterogeneous tissue samples. 
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To segment the breast region, Qayyum and Basit [22] proposed a method combining 

morphological procedures and adaptive thresholding.  The segmented mammography is then used to 

get a collection of features including statistical data, morphological features, and textural aspects. The 

SVM classifier classifies the mammogram as either benign or malignant using the specified feature 

set as input.  The proposed method was evaluated using two datasets: MIAS and DDSM. The findings 

reveal that the proposed method may identify cancer in mammograms and achieve accurate breast 

segmentation.  The authors found that in breast cancer diagnosis their approach might be an additional 

tool for radiologists. Htay and Maung [23] proposed a technique to find breast cancer in its underlying 

stages using K-Nearest Neighbor (k-NN) classification of mammography images and Gray Level Co-

occurrence Matrix (GLCM) based feature extraction. Mammography images using the GLCM method 

show textural characteristics like contrast, homogeneity, energy, and entropy. Using these variables, 

the k-NN classifier classifies the mammogram as benign or malignant. The researchers discovered 

that their proposed method might be a non-invasive way to identify early-stage breast cancer by 

allowing earlier intervention and therapy, hence improving patient outcomes.  

Based on the Random Forest (RF) algorithm, Dai et al. [24] propose a breast cancer diagnosis 

method. The technique classifies breast lesions as either benign or malignant using a range of clinical 

characteristics and imaging characteristics. The clinical attributes are age, menopausal status, and 

tumor size; the imaging features are texture features, shape features, and margin features. The 

proposed approach was evaluated using 569 breast lesion samples—357 malignant cases and 212 

benign ones. The dataset used in this study originated from the Wisconsin Breast Cancer Diagnostic 

Center. Particularly in settings without specialist radiologists, the authors found great promise for 

breast cancer diagnosis in their proposed approach using the RF algorithm. Hamed et al. [25] present 

a CAD system for breast cancer diagnosis based on ML algorithms. Machine learning models were 

trained and evaluated using the Wisconsin Breast Cancer Dataset, which comprised 569 breast cancer 

biopsy samples. The overall performance of many ML approaches including random forest, logistic 

regression, AdaBoost, decision trees, naïve Bayes, and conventional neural networks (CNNs) is 

compared. The results show that the RF approach had the greatest accuracy of 98.9% and a better F-

measure of 99% relative to the other methods. The paper emphasizes the need for further research in 

this domain, offers insightful analysis of the application of ML in healthcare, and finds that ML 

algorithms may assist in enhancing diagnostic accuracy and properly identifying breast cancer. 

3. Methodology 

The processes in the proposed approach are as follows: pre-processing, feature extraction, 

classification, and training/ testing of the input data.  The system intends to correctly classify 

mammography images as either normal or malignant by using models—SVM, Random Forest, 

Decision Tree, and k-NN. The dataset showed no signs of missing values. Extracted features, in both 

individual and combination form, constitute the input for ML classifiers like SVM polynomials, 

Decision Tree, k-NN, and Random Forests. Test-train split method was utilized to divide the data into 

training and testing sets, which were subsequently utilized to classify the benign and malignant cancer 

subjects. Figure 2 illustrates the methodology diagram. 
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Figure 2: Methodology 

 

3.1. Dataset Description 

The work is carried out by using Wisconsin Diagnosis Breast Cancer dataset supplied by the UCI 

Machine Learning repository. It contains 569 samples of biopsy images of breast masses, each labeled 

as either benign (not harmful) or malignant (cancerous). The dataset includes 30 features computed 

from the digitized images of biopsy specimens, including radius, texture, perimeter, etc. By 

employing the features, the observations were classified as either benign (357 observations) or 

malignant (212 observations). Benign cases are labeled using the '0' class, whereas malignant cases 

are labeled using the '1' class. 

Among various feature selection techniques, we made use of Ginni index as it provides a 

measure of impurity and is effective in identifying features that have a strong correlation with the 

target variable. The Ginni index aids in pinpointing the essential features that are crucial for attaining 

accurate breast cancer classification. The attributes selected by it for training are - 'radius_mean', 

'area_mean', 'perimeter_mean', 'compactness_mean', 'concave points_mean', 'concavity_mean', 

'radius_se', 'area_se', 'radius_worst', 'compactness_worst', 'perimeter_worst'. Figure 3 illustrates the 

distribution of different types of symptoms in our dataset. 
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Figure 3: Different types of symptoms distribution 

3.2. Training Set 

Test-train split is a technique in ML to gauge the efficacy of a model when applied to a dataset.  

Two subsets—the training set and the test set—comprise the randomly split dataset. The latter is 

employed to gauge the model's performance, whilst the former is utilized for model training. With a 

typical split ratio of 80/20 or 70/30, it is usual to have a bigger training set than a test set.  The test set 

lets us measure the model's performance on unknown data, therefore guaranteeing its generalization 

and preventing overfitting.  Our model uses a 70/30 split ratio. 

3.3. Simulation Model 

The simulation model was developed using Python, leveraging the capabilities of Scikit-learn 

(sklearn). Among other things, it provides a variety of tools for model selection, clustering, 

dimensionality reduction, regression, classification, and data preparation. Scikit-learn's algorithms are 

executed easily and effectively, therefore helping both learners and professionals. It also provides a 

uniform interface to many ML methods and straightforward integration with NumPy and Pandas and 

other scientific libraries in Python. Widely employed in enterprises as well as academia for various 

machine learning tasks, it has a robust network of users and collaborators. Scikit-learn (sklearn) does 

not use CSV files or raw images as input. Data must be preprocessed and converted into sparse 

matrices or numerical arrays, which may then act as input for sklearn algorithms. For instance, the 

pandas package reads the CSV file and transforms the data into a numerical array, which might then 

be used as input for sklearn algorithms. Similarly, for imagine datasets, features have to be extracted 

from the images and converted into numerical arrays before being input into sklearn algorithms. 

3.4. Machine Learning Techniques 

Based on the kind of learning involved, ML methods may be roughly classified into supervised 

and unsupervised learning.  In supervised learning, the computer is trained to provide the correct 

result using the labeled data instances.  Since it means dealing with unlabelled data and no output 

expectation, unsupervised learning is a more difficult process than supervised learning. 

3.4.1. Support Vector Machine (SVM) 

SVM, a popular and effective supervised ML model, is often used in cancer diagnosis and 

prognosis. The SVM algorithm employs the selection of critical samples from each class as support 

vectors and creates a linear function that divides and separates the classes in the broadest possible 
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manner. Therefore, the SVM algorithm is employed to map an input vector to high dimensional space 

to discover the best hyperplane for segregating the dataset into different classes [26]. The linear 

classifier aims to locate the most suitable hyperplane that maximizes the marginal distance [27]. 

The scatter plot depicted in Figure 4 showcases two classes with two properties. a𝑥1 + b𝑥2 is used to 

define a linear hyperplane. The objective is to determine values for a, b, and c which meet the criteria 

of a𝑥1 + b𝑥2≤ c for class 1 and that a𝑥1 + b𝑥2 > c for class 2 [26], [28]. SVM sets itself apart from 

other ML approaches by heavily relying on support vectors. The data sets that are in the closest 

proximity to the decision boundary are referred to as support vectors. The reasoning is that 

eliminating data points located further from the decision hyperplane has a lesser effect on the 

boundary than that of support vectors’ elimination. 

 

Figure 4: SVM generated hyperplanes [29] 

3.4.2. Random Forest (RF)  

Random Forest constructs several decision trees to create an ensemble of trees.  A single 

decision tree yields either a very specific model or a simple model [30]. Several decision trees are 

combined in the Random Forest ensemble ML technique to predict a result. It uses bootstrapped 

samples of the data with a random subset of the features for each tree to reduce overfitting and 

increase overall accuracy. It is commonly used for classification and regression tasks. Random Forest 

builds a number of decision trees (ensemble) and combines the predictions made by each decision tree 

to increase the model's overall accuracy. The trees in the forest are trained using bootstrapped samples 

of the data with a random subset of the features at each split, which adds randomness to the model and 

helps reduce overfitting. The output of a Random Forest is computed by aggregating the predictions 

of individual decision trees, either by averaging them (for regression) or by taking a majority vote (for 

classification). Random Forest is a type of bagging (bootstrapped aggregating) algorithm, which 

reduces the variance in the prediction and improves the stability of the model. Random Forest can 

handle missing values, and it is not necessary to scale the features. 

Finally, the classification of the observation in one category and the other is done by making a count 

of the trees. Classification of cases is based on a majority vote over the predictions generated by 

individual decision trees [31]. The Random Forest method's mechanics, as seen in Figure 5, consist of 

several decision trees cooperating to categorize data points. 
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Figure 5: A graphical representation of the mechanics of the random forest technique [29] 

 

3.4.3 Decision Tree 

A decision tree is a visual depiction of potential solutions to a decision contingent upon 

specific variables. It is among the most prevalent supervised learning models. Decision Tree breaks 

down the complex decisions or problems into smaller and simpler sub-problems. Tree-like structure, it 

displays the order of decisions and their possible outcomes.  Every leaf node is a decision or class 

label, while every internal node is a test of an attribute.  The route that leads from the root node to a 

leaf node reflects a series of decisions depending on the attributes and their value.  Every tree node is 

a decision point; branches show the possible results of the decision.  Every branch's termination 

denotes a prediction or a final result.  Classification or regression issues can be handled using the tree.  

Fields including data mining, ML, and predictive analytics often employ decision trees to solve issues 

and generate predictions.   

 

Figure 6: k-NN algorithm Illustration [4] 

3.4.4 k-NN 

A type of supervised learning called K-Nearest Neighbors (k-NN) is simple, non-parametric, 

and relies on instance-based reasoning used for running both regression and classification operations. 

The k-NN method predicts the label of the query instance by finding the k nearest neighbors of that 

instance and using their class labels (or target values for regression). Usually, Euclidean distance is 

employed to measure the distance between instances; nonetheless, alternative distance measurements 
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might also be applied. The selection of k is crucial as it may significantly affect the model's accuracy. 

A small k value makes the model more noise-sensitive, while a large k value can smooth the decision 

boundary and lower the model's data-fitting capacity. What makes k-NN a lazy learning algorithm is 

its lack of prior model construction. It waits instead until a prediction is needed and then constructs 

the model on the fly.  While training is slow, k-NN is rather quick for prediction. Easy to use and with 

fairly low computational needs, k-NN is a viable option for small datasets or tasks with few features. 

For huge datasets or high-dimensional feature spaces, however, it can be memory-intensive and 

computationally costly. Figure 6 shows an illustration of the k-NN method, which classifies data 

points by finding the closest neighbors. 

3.5.  Performance Metrics 

Performance metrics address the criteria applied for examining the efficacy of ML 

methodologies. Often, model evaluation in ML is based on several performance measures. These 

measures allow one to evaluate the model's capacity to accurately predict the target, its false positive 

and false negative balance, and its target distribution fit. The challenge and the measure that most 

closely matches the intended solution determine which metric is used. A confusion matrix showing 

the True Positive, True Negative, False Positive, and False Negative for the predicted and actual 

classes helps one to evaluate a model's performance. Other measures are specificity, false negative 

rate, and false positive rate. 

 

Accuracy = 
(True Positives + True Negatives) 

(True Positive + False Positive + True Negative + False Negative)
         (1) 

 

 

Precision = 
True Positives  

(True Positive + False Positive )
    (2) 

 

Recall = 
True Positives  

(True Positives + False Negatives)
    (3) 

 

F1 Score = 2 * 
(Precision ∗ Recall)

(Precision+ Recall) 
     (4) 

 

Specificity = 
True Negative  

(True Negative + False Positive)
    (5) 

 

                                    FPR = 
False Positive  

(True Negative + False Positive)
                      (6) 

 

FNR = 
False Negative  

(False Negative + True Positive)
    (7) 

 

4. Results and Discussion 

This study proposes a comparison of four ML algorithms—Random Forest, k-NN, Decision 

Tree, and SVM—run on an Intel Core i5 computer with 8 GB RAM. Python-based open source ML 

libraries like numpy, pandas, and Scikit-learn have been utilized by us. Jupyter Notebook, an open-

source web application, is employed to execute the program. The classifier was assessed by testing it 

with the Test-train split method. Here we selected the split ratio as 70/30. The split ratio of 398 
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training set observations to 171 testing set observations was obtained out of a total of 569 

observations. 

4.1. Result Analysis of SVM 

 

Figure 7: SVM confusion matrix (Benign indicates the 0 and Malignant indicates the 1) 

 

The SVM model for breast cancer detection has a higher precision for detecting malignant 

tumors compared to benign tumors. Tables 1 and Table 2 provide summaries of the findings. With a 

precision of 97.22%, the SVM model showed great accuracy in identifying malignant tumors, hence 

demonstrating a high reliability in its positive predictions.  The results from the SVM model for breast 

cancer detection show good precision for detecting malignant tumors at 97.22%, indicating that when 

the model predicts a tumor as malignant, it is likely to be correct. However, the recall rate for 

malignant tumors is lower at 86.777%, which suggests that the model may have missed some 

malignant tumors. For benign tumors, the model has lower precision at 74.603%, meaning that it may 

have predicted some benign tumors as malignant. However, the recall rate is higher at 94%, indicating 

that the model was effective at identifying most benign tumors. The overall F1-score of the model is 

91.703% for malignant tumors and 83.185% for benign tumors. Furthermore, the specificity (97.22%) 

demonstrates that the model can accurately recognize a significant percentage of true negative cases 

(i.e., correctly identifying cases that are not breast cancer), and the false positive rate (6%) suggests 

that the model is still making some incorrect classifications of cases as breast cancer when they are 

not. The false negative rate (13.22%), indicates that the model missed a small but significant number 

of malignant cases. These metrics are detailed in Table 1 and Table 2. Figure 7 shows the generated 

heatmap of the SVM confusion matrix. The SVM model's Receiver Operating Characteristic (ROC) 

curve, displayed in Figure 8, also offers a visual depiction of the model's performance stressing its 

capacity to tell benign from malignant tumors. 

 
 

 

 

 

 



Prachi Rawat, Rashmi Saini, Anuj Kumar 

 

ISSN (Online) : 3048-8516 55 IJCMA  

 

Table 1 SVM performance measurement metrics 

Tumor Type Precision Recall F1-score 

Malignant 97.22% 86.777% 91.703% 

Benign 74.603% 94% 83.185% 

 

 

Table 2 Performance Measurement Indices of SVM 

Specificity 94% 

False positive rate 6% 

False negative rate 13.22% 

 

 

Figure 8: ROC curve of SVM 

4.2. Result Analysis of Random Forest 

The Random Forest (RF) model was assessed by employing many performance criteria to 

determine its efficacy in breast cancer detection. With benign tumors marked by '0' and malignant 

tumors marked by '1', the RF model's confusion matrix shown in Figure 9 offers a comprehensive 

breakdown of the model's predictions. The RF model's performance criteria are presented in Table 3 

and Table 4. The model achieved a high precision of 95.37% for detecting malignant tumors, 

indicating that the model can accurately classify tumors as malignant with a low rate of false 

positives. The model successfully identified a large fraction of the actual malignant tumors in the 

dataset, as seen by the recall value of 92.793%. For detecting benign tumors, the model achieved a 

precision of 87.302%, indicating that it accurately identified a high proportion of benign tumors with 

a low rate of false positives. With a recall value of 91.667%, the model demonstrated a strong ability 

to identify actual benign tumors in the dataset. A satisfactory balance between precision and recall for 

both malignant and benign tumor classes was reflected by the F1-score values of 94.063% and 

89.431%, respectively.  
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Figure 9: RF confusion matrix (Benign indicates the 0 and Malignant indicates the 1) 

 

 

Table 3 Performance Measurement Indices of RF 

Tumor Type Precision Recall F1-score 

Malignant 95.37% 92.793% 94.063% 

Benign 87.302% 91.667% 89.431% 

 

 

Table 4 Performance Measurement Indices of RF 

Specificity 91.67% 

False positive rate 8.33% 

False negative rate 7.20% 

 

 

 

Figure 10: ROC curve of RF  
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The model's specificity of 91.67% is high, indicating that it correctly identified a high 

proportion of actual negative cases (benign tumors) in the dataset. Nonetheless, the 8.33% false 

positive rate suggests that the model's capacity to correctly identify negative cases requires further 

work. The false negative rate of 7.20% indicates that the model missed a small proportion of actual 

malignant cases in the dataset, indicating that the model's sensitivity has the potential to be further 

enhanced. Figure 10 shows the Random Forest model’s ROC curve, showing its ability to identify 

benign and malignant tumors. 

4.3. Result Analysis of Decision Tree 

 
Figure 11: Decision Tree confusion matrix (Benign indicates the 0 and Malignant indicates the 1) 

 

Table 5. Performance Measurement Indices of Decision Tree 

Tumor Type Precision Recall F1-score 

Malignant 92.593% 91.743% 92.166% 

Benign 85.714% 87.097% 86.399% 

 

 

 

Table 6. Performance Measurement Indices of Decision Tree 

Specificity 87.09% 

False positive rate 12.90% 

False negative rate 8.25% 

 

 

Figure 12: ROC curve of Decision Tree 
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The Decision Tree model's breast cancer detection ability was assessed using various criteria. Figure 

11 illustrates the error matrix of the Decision Tree model, designating benign tumors as '0' and 

malignant tumors as '1'. Table 5 and Table 6 enumerate the performance metrics of the Decision Tree. 

The classifier correctly identified the majority of the malignant tumors with a high level of precision 

of 92.593% while scoring 91.743% recall and 92.166% F1-score. For the benign class, 85.714% 

precision, 87.097% recall, and 86.399% F1-score are achieved, which indicates that the classifier 

correctly identified most of the benign tumors with a relatively lower level of precision compared to 

the malignant tumors. The specificity of 87.09% and false positive rate of 12.90% indicate that the 

classifier correctly identified most of the benign tumors but also misclassified some of the malignant 

tumors as benign. The false negative rate of 8.25% suggests that the classifier missed some of the 

malignant tumors, which could potentially lead to serious consequences in a real-world scenario. The 

ROC curve of the Decision Tree model in Figure 12 reveals its ability to distinguish between 

malignant and benign tumors. 

 

4.4. Result Analysis of k-NN 

Various measures were used to gauge the breast cancer detection ability of the k-Nearest 

Neighbors (k-NN) model. With benign tumors as '0' and malignant tumors as '1', Figure 13 displays 

the confusion matrix indicating the predicted outcomes of the model. Table 7 and Table 8 list key 

performance indicators (KPI). The k-NN classifier achieved 96.296% precision and 88.889% recall 

for malignant tumors while scoring a precision of 79.365% and a recall of 92.593% for benign 

tumors. The F1-score for malignant tumors was 92.444%, and for benign tumors, it was 85.47%. The 

k-NN classifier achieved a specificity of 92.59%, indicating that it correctly identified 92.59% of the 

benign tumors. The false positive rate was 7.40%, indicating that the k-NN classifier misclassified 

7.40% of the benign tumors as malignant. The false negative rate was 11.11%, which means that 

11.11% of the malignant tumors were incorrectly classified as benign. Figure 14 illustrates the ROC 

curve, emphasizing the ability of the model to tell the difference between malignant and benign 

tumors. 

 
Figure 13: k-NN confusion matrix (Benign indicates the 0 and Malignant indicates the 1) 

 

 

Table 7. Performance Measurement Indices of k-NN 

Tumor Type Precision Recall F1-score 

Malignant 96.296% 88.889% 92.444% 

Benign 79.365% 92.593% 85.47% 
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                          Table 8. Performance Measurement Indices of k-NN 

Specificity 92.59% 

False positive rate 7.40% 

False negative rate 11.11% 

 

 

 

Figure 14: ROC curve of k-NN 
 

The results presented in Table 9 show that SVM has the best Precision score and Specificity 

performance measure but Random Forest has the best recall, F1 score, and accuracy performance 

measure over k-NN, Decision Tree, and SVM. SVM showed the least False Positive Rate among the 

classifiers while Random Forest has the least False Negative Rate. 

 

Table 9: Performances Measure Indices 
 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

In this study, we evaluated various machine-learning techniques for breast cancer diagnosis 

utilizing the Wisconsin Breast Cancer dataset. We examined the methods for categorizing tumors as 

either malignant or benign depending on key diagnostic metrics. All models performed strongly, with 

each showing particular strengths in different evaluation criteria. Random Forest was the most 

effective classifier overall, with 92.40% accuracy, 87.30% recall, and an 89.43% F1 score. Results 

show Random Forest has the best balance between correctly identifying malignant tumors while 

minimizing false classifications. In reducing false positives, the SVM attained 97.22% specificity and 

94% precision. Both decision tree and k-NN show above 90% accuracy, showing diagnostic 

reliability. 

Model Performance during Testing Phase (in %) 

 SVM 
Decision 

Tree 
k-NN 

Random 

Forest 

Accuracy 88.89 90.64 90.06 92.40 

Precision 94 88.52 92.59 91.67 

Recall 74.6 85.71 79.37 87.30 

F1 score 83.19 87.10 85.47 89.43 

Specificity 97.22 93.52 96.30 95.37 

FPR 2.78 6.48 3.70 4.63 

FNR 25.40 14.29 20.63 12.70 
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The findings have important implications for clinical practice. Automated tumor classification 

using ML reduces inter-observer variability in mammography analysis. The comparison results 

clearly show which algorithms to choose based on clinical needs; while SVM is best for confidently 

detecting cancer, the study demonstrates that the Random Forest has superior overall accuracy. Future 

studies could integrate these algorithms with ensemble or deep learning techniques to enhance 

performance. Diverse data and imaging techniques may improve efficacy. This research employs ML 

to enable the timely detection of breast cancer. 
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