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ABSTRACT 

Current cryptographic systems and information security methods are largely based on the computational 

intractability and impracticability of reversing complex cryptographic algorithms and protocols. The foundation 

of secure communication and data protection strategies that we rely on a daily basis is provided by this 

computational difficulty. However, quantum computers with sufficient processing power could breach these basic 

security assumptions, making it possible to recover the cryptographic keys used to safeguard sensitive data and 

compromise widely used key exchange techniques. A viable strategy to counter the threat of quantum attacks and 

maintain standard security guarantees is hybrid systems. The software-based hybrid cryptographic framework that 

guarantees forward secrecy and contemporary cryptographic authentication while also integrating quantum-

resilient key establishment schemes, namely, quantum key distribution simulation and a post-quantum key 

encapsulation mechanism, in a manner that also combines their security properties to generate a hybrid key that 

remains secure as long as at least one underlying component remains uncompromised is experimentally 

implemented in this paper. We demonstrate how this approach can safeguard both real-time secure communication 

and long-term data protection against current threats as well as future quantum adversaries.  

Keywords: Cryptography, Data Protection, Hybrid Quantum Cryptography, Post-Quantum Cryptography, 

Quantum Key Distribution, Quantum Threat, Secure Communication.  

1. Introduction 

With the evolution of digital times, characterized by exponential increase in data generation, 

transmission, and storage, the challenges of securing communication and protecting data have grown 

more challenging. Rapid digital transformation calls for efficient techniques to preserve information in 

the long term since the amount of information to be secured is projected to relentlessly increase year by 

year [1]. Protecting confidential data from unauthorized access and capture efforts is essential, 

especially when it involves personal, financial, corporate, or governmental information. Cryptography 

aids information security and protects data defence throughout applications ranging from private 

communications to critical infrastructure. It ensures security services such as confidentiality, integrity, 

authenticity, and non-repudiation of information using the latest cryptographic algorithms and protocols 

which is the cornerstone of digital security by safeguarding information from unauthorized access, 

tampering, interception and other forms of cyber threats [2]. Recent research [3, 4] highlights how 

quantum computing postures noteworthy dangers to current state-of-the-art information protection 

mechanisms widely used for secure communication and data protection, which rely on symmetric, 
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asymmetric, and hash function schemes. These cryptographic schemes are built around the infeasibility 

of solving some mathematical problems with conventional computing methods within a reasonable 

timeframe, also known as the computational hardness of specific problems. However, when equipped 

with a sufficient number of qubits, quantum computers will be capable of employing quantum 

algorithms to solve these problems exponentially faster than classical computers. This shift in the 

paradigm of computation would render existing cryptographic systems vulnerable to vast quantum-

enabled assaults. With sufficient quantum capabilities, these devices could then retroactively decrypt 

information classified as sensitive and securely transmitted in today's environment. This means that 

information believed to be secure today could ultimately be exposed [5]. This paper presents an 

experimental implementation of a software-based hybrid cryptographic framework that combines 

contemporary cryptographic authentication with quantum-resilient key establishment techniques in 

response to the quantum threat. At the core of this hybrid framework is quantum key distribution 

(QKD), which leverages simulated quantum mechanics to provide a superior source of entropy for 

randomness in key generation. QKD simulation also enhances security by enabling the detection of any 

eavesdropping attempts. In the meantime, the computationally challenging post-quantum key 

encapsulation mechanism is Crystals-Kyber. By combining these security features, this hybrid 

framework makes sure that cryptographic keys are robust and unpredictable, providing defence against 

attacks made possible by quantum computing. The design and simulation of the system's operation are 

the main topics of this paper. Testing and analysis are then used to assess the system's performance. 

 

2. Background 

The basic purpose of cryptographic systems is to guarantee safe data transfer even, when possible, 

attackers are present. This is achieved by converting readable data, known as plaintext, into ciphertext, 

an encrypted (unreadable) format that hides the original data. The ciphertext can only be restored to its 

original readable state by an authorized recipient who has the right decryption mechanism (key and 

algorithm) [6]. In order to improve security, modern cryptographic techniques rely on computational 

complexity, employing incredibly long keys and sophisticated algorithms. Modern cryptographic 

techniques fall into two major categories: 

i. Symmetric Cryptography: This technique, also referred to as private-key cryptography, uses a 

shared "secret key" that is only known by the parties involved in the communication. Using this 

secret key, the sender encrypts plaintext into ciphertext, and the recipient uses the same secret key 

to decrypt the ciphertext back into plaintext. Although this approach is computationally efficient, it 

is still difficult to distribute and manage the secret key securely because the entire system's security 

is compromised if the key is lost, stolen, or intercepted during transmission [7]. 

 

ii. Asymmetric Cryptography: This technique, which is also referred to as public-key cryptography, 

employs a pair of keys; the recipient's "public key" is used to encrypt the data. The message can 

only be decrypted using the matching "private key," which is safely kept by the intended recipient. 

With a widely shared public key and a private key for each user, this method solves the key 

distribution issue that symmetric cryptography entails and guarantees that only the intended and 

authorized recipient can access the original data [8].  

The resilience of modern cryptography depends on factors such as key size and the computational power 

required to test all potential keys and break the algorithm. The concept of a “computationally secure 

scheme” implies that while it is theoretically possible to crack such a system, it remains practically 

impossible if the cost of breaking it outweighs the value it protects [9]. 
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3. Quantum Computing and It's Threat to The Current State-Of-The-Art in Information 

Protection 

The exponential growth of computational capabilities in recent decades has made it necessary to 

continuously improve cryptographic protocols in order to preserve their security margins against 

traditional computational attacks. Modern protocols are designed to withstand attackers using 

traditional computing techniques. The emergence of quantum computing, a technology whose 

capabilities and processing power far surpass those of existing paradigms, presents a new challenge as 

classical cryptographic architectures approach their physical limits. With the ability to compromise 

cryptographic systems that have long been thought to be impenetrable, this new technology poses a 

serious threat and opens up a new channel for cryptanalysis [10, 11]. 

“Quantum Computing” refers to a class of technologies that, by drawing on concepts from quantum 

mechanics like superposition, entanglement, and interference. In quantum computing, a qubit can exist 

in a superposition of states, in contrast to a classical bit, which can only exist in one of two states (0 or 

1) and is manipulated individually in classical computing. In order to speed up computation, a qubit can 

simultaneously represent 0, 1, or any combination of the two states. By connecting qubits in a way that 

makes their states dependent on one another regardless of distance, entanglement further increases 

computing power. Interference enables the probability amplitudes of qubit states to add constructively 

(strengthening each other) or destructively (cancelling each other out), which enables quantum 

algorithms to amplify correct solutions and reject incorrect ones [12]. This superposition, combined 

with quantum entanglement and interference, enables quantum computers to process and investigate 

multiple values simultaneously. Through application of these principles of quantum mechanics, 

quantum computation allows computations to be computed in parallel and can solve some 

computationally challenging problems exponentially faster than classical computers ever could [13], 

thereby directly impacting the security provided by modern cryptography. 

3.1 Quantum Algorithms and Their Challenge to Asymmetric, Symmetric Cryptography, and 

Hash Functions 

Asymmetric cryptosystems are secure based on computationally difficult mathematical problems. Two 

examples that underpin the theory are RSA, based on the difficulty of factorization of large integers (for 

example, products of two large primes), and schemes such as Diffie-Hellman and Elliptic Curve 

Cryptography (ECC), based on the hardness of the Discrete Logarithm Problem (DLP). The classical 

solution to these problems has sub-exponential or exponential time complexity, making them intractable 

using classical computation. Shor's quantum algorithm [14], in 1994, basically changed this paradigm 

by coming up with polynomial-time solutions for these problems. Shor's algorithm factors large integers 

(and thus breaks RSA) and solves the DLP over multiplicative groups (e.g., Diffie-Hellman) and 

additive groups (e.g., ECC), and hence breaks of these popular asymmetric cryptosystems, making them 

useless [15]. 

Symmetric cryptosystems derive their security from the computational difficulty of exhaustively 

searching through possible secret keys or values. One such system is the Advanced Encryption Standard 

(AES), where the biggest risk is a thorough key search. Brute-force attacks on AES keys are impractical 

in classical computing because of the large number of possible outcomes. To find the right answer to a 

search problem, all potential solutions must be methodically tested. Grover’s quantum algorithm [16], 

introduced in 1996, designed for such search tasks. In classical computing, searching an unsorted space 

of 𝑁 elements such as a cryptographic key space requires 𝑂(𝑁) operations in the worst case, as each 

element must be checked sequentially. Quantum computers, using Grover’s algorithm, accomplish this 

task in 𝑂(√𝑁) quantum operations, offering a significant speed advantage for large search spaces by 
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decreasing the search area over classical approaches. This quadratic speedup becomes even more 

pronounced as 𝑁 grows larger and could dramatically reduce the time required to discover an AES key. 

For example, AES-256, with 𝑁 = 2256  possibilities, a classical attack would need 2256 operations. 

Grover’s algorithm reduces the complexity to about 2256/2 = 2128 operations reducing the strength 

equivalent to AES-128 bit variant [17].  

Hash functions such as SHA-2/SHA-3, required to maintain data integrity and digital signatures, will 

similarly be compromised. The Brassard-Hoyer-Tapp (BHT) algorithm [18] that appeared in 1997, 

combines aspects of the classical birthday attack with Grover search affords a theoretical scaling of 

𝑂(2𝑛/3) for finding hash collisions. For instance, SHA3-256, normally offering 128-bit security, would 

be limited to about 85-bit security against quantum attacks [19]. This impending quantum threat 

requires research into new techniques to secure cryptographic processes in the post-quantum world. Of 

these alternatives, quantum key distribution (QKD) and post-quantum cryptography (PQC) present 

complementary strategies to attain resilient security. 

4. Overview of Quantum Key Distribution 

A technique for distributing keys that safely transmits encryption keys by utilizing the characteristics 

of individual light particles (photons) and the concepts of quantum mechanics. Photons, which are only 

moving particles that cannot be precisely replicated without changing or destroying their original state, 

are used in these systems to encode the keys. Since it alters their quantum state, any attempt to intercept 

or eavesdrop on these photons can be detected. Unauthorized interception is very challenging due to 

the intrinsic properties of these photons. Building on these basic characteristics, the BB84 protocol [20], 

which describes a systematic procedure for creating a secure shared key, is one of the most promising 

applications of quantum key distribution (QKD). By creating a random bit sequence made up of 0s and 

1s, the sender starts the process. Bits are selected with equal probabilities, which serves as the 

foundation for the cryptographic key. As indicated in Table 1, the sender simultaneously prepares the 

quantum states for each bit in the sequence by choosing an encoding basis at random from a set of four 

potential polarization states. Next, a corresponding quantum state (qubit) is assigned to each bit. By 

embedding the information in the photons' quantum states, this encoding makes sure that it can only be 

accessed under particular measurement circumstances [21].  

Table 1: Polarization states and their basis representations. 

Basis State Polarization 

Computational Basis (+) |0⟩ Horizontal polarization 

|1⟩ Vertical polarization 

Diagonal Basis (x) |+⟩ 45° polarization 

|−⟩ 135° polarization 

 

The prepared qubits are sent to the recipient through a quantum communication channel as part of the 

sender's quantum state transmission process. By maintaining the photons' quantum properties, this 

specialized channel enables the photons to be received by the receiver in the same polarization states as 

when they were sent. The receiver independently and at random chooses one of two possible 

measurement bases (diagonal or computational) for each qubit after receiving the qubits. Since each 

photon's basis selection is random, it is impossible for an eavesdropper to predict how the photons will 

be measured. A crucial component of the protocol's security is the receiver's measurement uncertainty, 

which prevents an eavesdropper from obtaining valuable information without being detected. 
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Depending on the basis selected, the measurement collapses the quantum state into a classical bit value 

(0 or 1). Following transmission and measurement, the sender and recipient compare the bases used for 

encoding and measuring each qubit in a public discussion known as Basis Reconciliation. Crucially, 

they don't reveal the actual bit values; they just reveal the basis choices [22]. As indicated in Table 2, 

they only keep the bits where their bases line up and discard the ones where they don't. The "raw key" 

is a shorter, shared bit sequence that is produced by this sifting process. 

Table 2: Possible outcomes of photon exchanges between the sender and receiver in the BB84 protocol. 

Sender’s 

Bit 

Sender’s 

Basis 

Sender’s 

Polarization 

Receiver’s 

Basis 

Receiver’s Measurement Outcome 

0 + Horizontal + 0 0 (Kept) 

0 + Horizontal x Equal chance of 0 or 1 Discarded 

1 + Vertical + 1 1 (Kept) 

1 + Vertical x Equal chance of 0 or 1 Discarded 

0 x 45° + Equal chance of 0 or 1 Discarded 

0 x 45° x 0 0 (Kept) 

1 x 135° + Equal chance of 0 or 1 Discarded 

1 x 135° x 1 1 (Kept) 

 

However, disparities between their keys are introduced by transmission flaws or possible 

eavesdropping. One party's sifted key (for example, the sender's) is selected as the reference, and any 

discrepancies with the receiver's key are identified as errors. This is one of the additional post-

processing steps that the sender and receiver take to guarantee the security and accuracy of their raw 

keys. Low-density parity-check (LDPC) codes and interactive error correction procedures are two 

methods used to fix these errors. These methods involve exchanging parity-check bits in order to 

identify and fix errors. The Quantum Bit Error Rate (QBER), which is computed as stated in (1), is used 

to evaluate the key's security. 

 
𝑄𝐵𝐸𝑅 =  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑛𝑒𝑜𝑢𝑠 𝑏𝑖𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠ℎ𝑖𝑓𝑡𝑒𝑑 𝑘𝑒𝑦 𝑏𝑖𝑡𝑠
 

(1) 

For the BB84 protocol, the protocol is terminated if the QBER surpasses a threshold because high errors 

suggest potential eavesdropping or too much noise in the quantum channel [23]. Because any attempt 

by an eavesdropper to measure the quantum states disturbs them and introduces detectable errors, this 

ensures security. Privacy amplification is applied to mitigate any information leakage ℓ𝐸𝐶 from the 

error correction process in order to further improve security. Both the sender and the recipient compress 

their verified key using a two-universal hash function. The final secure key length 𝑙 is determined as 

specified in equation (2), 

 𝑙 = 𝑛 − ℓ𝐸𝐶 − 𝑠 (2) 

Where 𝑛 is the sifted key length, ℓ𝐸𝐶  accounts for the information revealed during error correction, and 

𝑠 is a security parameter ensuring negligible knowledge for an eavesdropper [24]. Despite offering 

superior security, QKD has significant drawbacks that prevent it from being widely used. QKD 

necessitates specialized hardware and infrastructure, like quantum channels or optical fibres, which are 

expensive and challenging to implement globally. Additionally, it is limited by distance, necessitating 

the use of quantum repeaters for communication over long distances. Furthermore, QKD is not feasible 

for large-scale networks because it is best suited for direct, point-to-point communication. Real-world 
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deployment is complicated by environmental noise, hardware flaws, and high maintenance costs [25]. 

Because of these difficulties, a different strategy is required, and post-quantum cryptography (PQC) is 

the solution. PQC is a crucial addition to QKD because of its scalability, flexibility, and affordability, 

which help to solve the more general issues with quantum-safe encryption. 

5. Overview of Post-Quantum Cryptography 

Quantum-resistant cryptographic techniques are being actively standardized by the National Institute of 

Standards and Technology (NIST). Unlike to QKD, post-quantum cryptography (PQC) is software-

based, and its security is based on mathematical algorithm problems that are computationally 

challenging and thought to be unsolvable even by a large-scale quantum computer. PQC can withstand 

attacks enabled by quantum computer and integrates easily into current digital infrastructure without 

the need for specialized hardware [26]. An outline of these completed mathematical families can be 

found below. 

i. Lattice-based cryptography: Lattice-based cryptography derives its security from the hardness of 

solving computational problems in mathematical lattices. This family includes CRYSTALS-Kyber, 

a key encapsulation mechanism (KEM) for secure key exchange [27], and CRYSTALS-Dilithium 

and FALCON, which provide digital signatures for authentication [28]. Most lattice-based key 

establishment algorithms are simple, efficient, and highly parallelizable. Additionally, some 

systems offer provable security under worst-case hardness assumptions, providing a stronger 

guarantee than average-case security. 

ii. Hash-based cryptography: Hash-based cryptography is based on the security properties of 

cryptographic hash functions. One of the selected algorithms in this family is SPHINCS+, which 

offers a stateless hash-based digital signature scheme [29]. This approach ensures long-term 

security against quantum attacks without relying solely on the security of lattice-based methods. 

iii. Code-based cryptography: Code-based cryptography leverages the hardness of decoding general 

error-correcting codes, a problem believed to remain intractable even for quantum computers. One 

of the selected algorithms in this category is HQC (Hamming Quasi-Cyclic), a key encapsulation 

mechanism (KEM) based on quasi-cyclic codes without relying on hidden trapdoors, which serves 

as a backup key encapsulation mechanism (KEM) alongside CRYSTALS-Kyber [30]. 

In terms of speed and performance, PQC systems are currently less effective than contemporary 

cryptography systems. They frequently need more memory, bandwidth, and processing power, 

particularly for large-scale applications. The intricacy of quantum-resistant algorithms and the 

requirement for strong security measures against quantum threats are the causes of this [31]. Threats to 

post-quantum cryptography (PQC) continue despite the theoretical difficulty of the underlying 

mathematical issues. Beyond the hypothetical prospect of massive quantum computers, the quantum 

threat also includes real-world developments in quantum or classical algorithms that target particular 

PQC schemes. For instance, quantum algorithms have been proposed to break multivariate and isogeny-

based PQC schemes, some of which were excluded from standardization efforts. This underscores that 

quantum threats to PQC are dynamic and evolving, necessitating continuous monitoring and evaluation. 

Relying solely on a single PQC algorithm carries the risk that unforeseen vulnerabilities will surface 

and expose data once the algorithm is implemented in real-world settings. By combining PQC with 

well-known classical primitives (like RSA), hybrid cryptosystems provide layered security, so that a 

single flaw wouldn't bring down the entire system. However, because hybrid PQC-classical systems 

still rely on mathematical presumptions that are susceptible to algorithmic or quantum advances, they 

do not overcome the fundamental drawbacks of computational cryptography. Furthermore, PQC 

schemes are susceptible to implementation errors such as fault injection vulnerabilities, side-channel 
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attacks, and changing standards, which call for flexible migration plans and constant attention to handle 

both theoretical and real-world risks [32, 33, 34]. 

6. Hybrid Quantum-Secure Cryptographic Framework 

In this section, we present our software-based hybrid quantum-secure cryptosystem implementation, 

detailing the selected cryptographic primitives and the experimental setup. The limitations of QKD and 

relying only on PQC or even hybrid PQC-classical systems are not enough for long-term security in the 

post-quantum era, as was covered in earlier chapters. Our design expands upon similar frameworks that 

incorporate the idea of authenticated key exchange (AKE) and key combiners, as suggested in [35, 36, 

37, 38, 39]. In particular, their method blends quantum-resistant and classically secure schemes. For 

secure communication and strong data protection, our method makes use of a comprehensive, tiered 

framework that combines post-quantum cryptography (PQC), quantum key distribution (QKD), and 

traditional cryptographic authentication. 

 

6.1 Experimental Setup and Implementation Workflow 

In order to provide a user-friendly web interface for initiating and managing various cryptographic 

convention scripts, our test setup makes use of Django, a Python-based web framework operating on a 

Windows-based operating system. The application is modularized into five distinct modules: quantum 

key distribution (QKD) simulation, kyber key exchange (KKE), key management system (KMS), 

quantum secure communication and encryption/decryption framework. These modules are made with 

C/C++ for the performance-critical parts and Python 3 for the high-level logic. As shown in Figure 1, 

the Django application uses sub-process calls to launch specific Python scripts for every cryptographic 

operation. Django does not store or process any experimental data that is sent or received in relation to 

key distribution, key exchange, or communication, even though it controls script execution, termination, 

and interfaces with a secured SQLite database to store cryptographic keys and user credentials. The 

cryptographic operations run as independent processes, each operating on unique ports, except for those 

within a specific module. Through the use of a Python TCP socket channel, QKD simulation, KKE, and 

secure communication modules enable end-to-end connections between sender and recipient parties. A 

VPN point-to-point tunnelling protocol (PPTP) is used exclusively to create the connection in cross-

network configurations, where the sender and the recipient are in different locations and connected to 

different subnets. In nearby organize arrangements (sender and recipient are in same area associated to 

same subnet), direct TCP socket connections are permitted, provided network isolation and firewall 

policies permit it.  

 

Assume that the communicating entities are sender (S) and receiver (R). In order to ensure that only 

verified parties can move forward with secure key establishment for both BB84 quantum key 

distribution (QKD) and kyber key exchange (KKE), our framework starts with a mutual authentication 

mechanism, as illustrated in Algorithm 1. 

 

Algorithm 1 Pre-shared Key (PSK) Hash Validation Based Authentication 

1:  S → 𝑅: 𝐻𝑆 =  𝑆𝐻𝐴-256 (𝑃𝑆𝐾𝑆) 

2:  𝐻𝑅  ←  𝑆𝐻𝐴-256 (𝑃𝑆𝐾𝑅) 

3:  𝒊𝒇 𝐻𝑅 ≠ 𝐻𝑆  𝒕𝒉𝒆𝒏 "𝐴𝑏𝑜𝑟𝑡" 𝒆𝒍𝒔𝒆 𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑒 = "𝑆𝑢𝑐𝑐𝑒𝑠𝑠" 

4:  𝒓𝒆𝒕𝒖𝒓𝒏 𝐿𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 

A pre-shared key (PSK) is used by both the sender and the recipient. The pre-shared secret is subjected 

to a one-way SHA-256 hash, and the hash value is transmitted from the sender to the recipient via the 
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socket channel for authentication. In order to compare the received value with the hash of its stored 

PSK, the receiver independently calculates it. Authentication is successful if the hashes match, 

guaranteeing that any further communications are secure and authentic; if they don't, the protocol 

terminates. 

 

Figure 1: Experimental Setup of the Software-Based Hybrid Quantum-Secure Cryptosystem 
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Algorithm 2 describes how to start the BB84 protocol simulation in our hybrid framework after it has 

been authenticated. The open-source quantum computing framework Qiskit, created and maintained by 

IBM, has been chosen as the source for quantum key generation and offers a full suite of tools for 

creating and modelling quantum circuits. The higher entropy needed for key generation, specifically in 

bit values and basis selection, is accomplished using Aer, a high-performance quantum circuit simulator 

included in the qiskit framework, even though our simulation does not use any physical quantum 

channel or hardware. Aer creates quantum states (such as qubits in superposition and quantum 

measurement) in a regulated software environment by simulating quantum operations using classical 

computing resources. 

Algorithm 2 BB84 Quantum Key Distribution (QKD) simulation using Qiskit-Aer 

1:  𝑛 ←  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑏𝑖𝑡𝑠 

2:  𝑏𝑖𝑡𝑠𝑆  ←  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑅𝑎𝑛𝑑𝑜𝑚_𝐵𝑖𝑡𝑠. 𝐴𝑒𝑟(𝑛) 

3:  𝑏𝑎𝑠𝑖𝑠𝑆  ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑅𝑎𝑛𝑑𝑜𝑚_𝐵𝑎𝑠𝑖𝑠. 𝐴𝑒𝑟(𝑛) 

4:  𝑄𝐶  ← 𝐸𝑛𝑐𝑜𝑑𝑒. 𝐴𝑒𝑟(𝑏𝑖𝑡𝑠𝑆, 𝑏𝑎𝑠𝑖𝑠𝑆)  

5:  𝑆𝑒𝑛𝑑 (𝑄𝐶) 𝑡𝑜 𝑅 

6:  𝑏𝑎𝑠𝑖𝑠𝑅  ←  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑅𝑎𝑛𝑑𝑜𝑚 _𝐵𝑎𝑠𝑖𝑠. 𝐴𝑒𝑟(𝑛) 

7:  𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑏𝑖𝑡𝑠𝑅
←  𝑀𝑒𝑎𝑠𝑢𝑟𝑒. 𝐴𝑒𝑟(𝑄𝐶 , 𝑏𝑎𝑠𝑖𝑠𝑅) 

8:  𝑃𝑢𝑏𝑙𝑖𝑐 𝐶𝑜𝑚𝑝𝑎𝑟𝑒 (𝑏𝑎𝑠𝑖𝑠𝑆, 𝑏𝑎𝑠𝑖𝑠𝑅) 

9:  𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ←  {𝑖 | 𝑏𝑎𝑠𝑖𝑠𝑆[𝑖] = 𝑏𝑎𝑠𝑖𝑠𝑅 [𝑖]} 

10:  𝐾𝑟𝑎𝑤  ← {𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑏𝑖𝑡𝑠𝑅[𝑖] ∈  𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 } 

11:  𝐾𝑠𝑢𝑏𝑠𝑒𝑡  ← 𝑓𝑖𝑟𝑠𝑡 20% 𝑜𝑓 𝐾𝑟𝑎𝑤  

12:  𝐻𝑆
𝑠𝑢𝑏 ←  𝑆𝐻𝐴-256 (𝐾𝑠𝑢𝑏𝑠𝑒𝑡) 

13:  𝐻𝑅
𝑠𝑢𝑏 ←  𝑆𝐻𝐴-256 (𝐾𝑠𝑢𝑏𝑠𝑒𝑡) 

14:  𝒊𝒇 𝐻𝑆
𝑠𝑢𝑏 =  𝐻𝑅

𝑠𝑢𝑏 𝒕𝒉𝒆𝒏 𝐾𝑞𝑢𝑎𝑛𝑡𝑢𝑚 ←  𝐾𝑟𝑎𝑤 𝒆𝒍𝒔𝒆 "𝐴𝑏𝑜𝑟𝑡" 

15:  𝒓𝒆𝒕𝒖𝒓𝒏 𝐾𝑞𝑢𝑎𝑛𝑡𝑢𝑚 

Instead of depending on traditional pseudo-random number generators, the sender must produce a 

genuinely random bit sequence to act as the raw key in order to guarantee randomness. The sender 

builds quantum circuits in chunks using Qiskit's Aer simulator. This method guarantees computational 

viability by handling larger numbers of qubits efficiently, with each chunk operating on 16 qubits. Each 

qubit undergoes a uniform superposition operation created by the sender using Hadamard gates. In a 

similar manner, the sender determines how the qubits will be encoded and measured by selecting a 

random measurement basis for each qubit (computational '+' or diagonal 'x'). To get the random bits, 

the sender then uses measurement to collapse them. The resulting bit sequence is guaranteed to be 

genuinely random due to the intrinsic unpredictability of quantum measurement. Making use of the 

generated random bits and bases, the sender encodes each classical bit into a qubit as represented in 

table 3, by constructing a quantum circuit.  

Table 3: Quantum state preparation process on bit values via basis and gate operations. 

Bit Basis Gate Operations Applied Final Qubit State 

0 + None |0⟩ 
0 x H |+⟩ 
1 + X |1⟩ 
1 x X → H |−⟩ 
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The ground state |0⟩ for every qubit is where the encoding starts. A Pauli-X gate is used to flip the qubit 

to the |1⟩ orthogonal state, thereby encoding the bit value, if the classical bit to be encoded is 1. If not, 

it stays in the orthogonal state of |0⟩. A Hadamard gate is then used to rotate the qubit into the 

superposition state if the diagonal (x) basis is chosen as the basis for the qubit. This guarantees that the 

encoded bit is either 0 or 1 and that the qubit is prepared in either the |+⟩ or |−⟩ state, depending on the 

basis chosen. A string of encoded qubits is created during the encoding process by converting the 

classical information (bit and basis) into quantum states. The sender serializes each prepared qubit by 

logging the order of gate operations used during encoding in a structured JSON description, as this 

simulation does not use true quantum channels. The transmission of quantum states in a classical format 

over an unprotected network environment is then simulated by sending this abstract description of the 

quantum state over a typical TCP socket channel. The receiver uses the Aer simulator to independently 

generate random measurement bases after receiving the sender's description. The sender's flip and 

rotation sequence are not repeated by the recipient. Rather, the receiver measures each qubit to collapse 

it to a specific 0 or 1, records the measurement results as the receiver's candidate key bits, and applies 

the selected measurement basis directly to the received qubit states in chunks. This measurement 

procedure accurately mimics the entropy needed for raw key generation, particularly in bit values and 

basis selection, since it is genuinely random and unaffected by the sender's encoding operations. The 

receiver receives a complete sequence of measurement results by repeating this process for every chunk 

in batches. The sender and recipient publicly compare their selected bases following the measurement 

procedure. The raw quantum key (𝐾𝑟𝑎𝑤) is formed by keeping only the measurement results where their 

bases match. The security of this BB84 protocol simulation depends on the fact that any attempt to 

measure or alter this quantum circuit description in transit would introduce detectable errors, even 

though an eavesdropper could intercept it. The first 20% of (𝐾𝑟𝑎𝑤) is utilized as a key subset (𝐾𝑠𝑢𝑏𝑠𝑒𝑡) 

for verification in order to confirm the raw key's integrity and identify possible eavesdropping. A SHA-

256 hash of this subset is calculated by both parties, and the results are then shared. If the computed 

hashes match, it confirms that the entire raw key is secure, and the remaining 80% of 𝐾𝑟𝑎𝑤  is accepted 

as the final quantum key (𝐾𝑞𝑢𝑎𝑛𝑡𝑢𝑚). If the hashes do not match, it indicates a potential security breach, 

and the final key is aborted. 

The system uses the CRYSTALS-Kyber-1024 variant for post-quantum key establishment, building on 

the previously established authenticated connection. As stated in Algorithm 3, our framework's kyber 

key exchange (KKE) module facilitates quantum-resilient key exchange between the sender and the 

recipient. The sender initiates the key exchange by generating a key pair, consisting of a public key 𝑝𝑘𝑆 

and a secret key 𝑠𝑘𝑆. 

Algorithm 3 Kyber Key Exchange (KKE) 

1:  (𝑝𝑘𝑆, 𝑠𝑘𝑆) ←  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑘𝑒𝑦𝑝𝑎𝑖𝑟() 

2:  𝑆𝑒𝑛𝑑 (𝑝𝑘𝑆) 𝑡𝑜 𝑅 

3:  (𝑐, 𝑆𝑠𝑅) ←  𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒(𝑝𝑘𝑆) 

4:  𝑆𝑒𝑛𝑑 (𝑐) 𝑡𝑜 𝑆 

5:  𝑆𝑠𝑆 ←  𝑑𝑒𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒(𝑐, 𝑠𝑘𝑆) 

6:  𝐾𝑘𝑦𝑏𝑒𝑟 ←  𝑆𝑠 ← 𝑆𝑠𝑆 = 𝑆𝑠𝑅  

7:  𝒓𝒆𝒕𝒖𝒓𝒏 𝐾𝑘𝑦𝑏𝑒𝑟 

The sender transmits 𝑝𝑘𝑆 to the receiver, who uses 𝑝𝑘𝑆 to perform an encapsulation operation. This 

encapsulation generates a ciphertext 𝑐 and a shared secret 𝑆𝑠𝑅, computed internally by the receiver. The 

ciphertext 𝑐  is then sent back to the sender, who uses 𝑐  and their secret key 𝑠𝑘𝑆 to perform a 
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decapsulation operation, resulting in their own shared secret 𝑆𝑠𝑆 . The kyber algorithm ensures 

that 𝑆𝑠𝑆 = 𝑆𝑠𝑅, establishing a common shared secret 𝐾𝑘𝑦𝑏𝑒𝑟 known only to both parties. An adversary 

without knowledge of 𝑠𝑘𝑆  cannot recover the shared key from 𝑝𝑘𝑆 and 𝑐  thanks to this one-round 

exchange, which is based on the hardness of the Module‐Learning‐With‐Errors (MLWE) assumption 

and provides IND-CCA2 security, guaranteeing confidentiality and integrity even against adaptive 

chosen-ciphertext attacks. In order to prevent information leakage and guarantee post-quantum security, 

this shared secret is obtained using lattice-based operations that include noise injection and 

reconciliation. 

Algorithm 4 Hybrid Key Derivation Function (HKDF) 

1:  𝐾𝑞𝑢𝑎𝑛𝑡𝑢𝑚  ←  𝑓𝑟𝑜𝑚 𝑄𝐾𝐷 

2:  𝐾𝑘𝑦𝑏𝑒𝑟  ←  𝑓𝑟𝑜𝑚 𝐾𝐾𝐸 

3:  𝐾𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑  ←  𝐾𝑞𝑢𝑎𝑛𝑡𝑢𝑚 || 𝐾𝑘𝑦𝑏𝑒𝑟 

4:  𝑠𝑎𝑙𝑡 ←  𝑎 𝑓𝑖𝑥𝑒𝑑, 32 𝑏𝑦𝑡𝑒 𝑠𝑒𝑐𝑢𝑟𝑒 𝑠𝑎𝑙𝑡 𝑣𝑎𝑙𝑢𝑒  

5:  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ←  {𝑡𝑖𝑚𝑒𝑐𝑜𝑠𝑡 = 4, 𝑚𝑒𝑚𝑜𝑟𝑦
𝑐𝑜𝑠𝑡

= 102400, 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚 = 8, ℎ𝑎𝑠ℎ𝑙𝑒𝑛 = 64} 

6:  𝐾ℎ𝑦𝑏𝑟𝑖𝑑 ← 𝐴𝑟𝑔𝑜𝑛2𝑖𝑑(𝐾𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 , 𝑠𝑎𝑙𝑡, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

7:  𝒓𝒆𝒕𝒖𝒓𝒏 𝐾ℎ𝑦𝑏𝑟𝑖𝑑 

Both the quantum key (𝐾𝑞𝑢𝑎𝑛𝑡𝑢𝑚) and the kyber key (𝐾𝑘𝑦𝑏𝑒𝑟) are sent to the key management system 

(KMS) after they are acquired. Using a hybrid key derivation function (HKDF) developed in Algorithm 

4, the KMS is the primary component in charge of overseeing hybrid key generation. A single combined 

key (𝐾𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ) is created by concatenating these two keys. To maintain security and guarantee 

deterministic behaviour, a fixed salt value is added. The Argon2id key derivation function is used to 

process the combined key and salt. To achieve a well-balanced trade-off between security and 

computational efficiency, the Argon2id function is configured with particular parameters that have been 

carefully chosen. a four-iteration time cost, boosting resistance to even quantum enabled brute-force 

attacks. Significant memory-hardness is provided by a memory cost of 102400 KB, which makes it 

challenging for attackers to use specialized hardware like GPUs or ASICs. By optimizing CPU core 

utilization, a parallelism level of 8 increases hashing efficiency. By avoiding collisions, the 64-byte 

hash length guarantees an output size that is adequate for cryptographic strength. Together, these 

parameters help create the hybrid key (𝐾ℎ𝑦𝑏𝑟𝑖𝑑 ), which successfully combines the computational 

security of post-quantum cryptography with the information-theoretic security of QKD. In our hybrid 

framework, this hybrid key can now be utilized for symmetric encryption in the data protection module 

and quantum secure communication. 

In our hybrid framework, as shown in Algorithm 5, the quantum secure communication module starts 

by obtaining a 64-byte hybrid key (𝐾ℎ𝑦𝑏𝑟𝑖𝑑) from the key management system (KMS). In order to 

confirm the sender's and recipient's legitimacy, this key is first used in a timestamp-based mutual 

HMAC authentication procedure. The sender sends the receiver the current timestamp (𝑇1) to begin the 

authentication process. The receiver instantly determines if 𝑇1is within the permitted time drift of ±30 

seconds. The protocol is terminated by the receiver if the timestamp 𝑇1  is not current. Following 

successful validation, the receiver replies with its own timestamp (𝑇2) and an HMAC of 𝑇1, which is 

calculated using the shared hybrid key. The sender makes two checks after receiving this response. The 

sender first confirms that 𝑇2 is new (that is, within the permitted time drift); next, the sender confirms 

𝑇1's HMAC. The sender terminates the protocol if either of these checks is unsuccessful. A final HMAC 

check can be carried out by the recipient if the sender responds with an HMAC of 𝑇2. The receiver 
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aborts if the final HMAC does not match. Authentication is deemed successful only if all HMACs match 

and timestamp validations are successful on both ends. This mutual authentication method ensures 

resistance to replay attacks while verifying that both parties have the same hybrid key and are time-

synchronized. 

Algorithm 5 Quantum Secure Communication Protocol 

1:  𝑇𝑛𝑜𝑤 ←  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑢𝑛𝑖𝑥 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 

2:  𝐾ℎ𝑦𝑏𝑟𝑖𝑑 ← 64 𝑏𝑦𝑡𝑒 𝐻𝑦𝑏𝑟𝑖𝑑 𝐾𝑒𝑦 𝑓𝑟𝑜𝑚 𝐾𝑀𝑆 

3:  𝑆 → 𝑅: 𝑇1 

4:  𝑅 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑠 |𝑇1 − 𝑇𝑛𝑜𝑤| ≤ ±30 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 → 𝑒𝑙𝑠𝑒 𝑎𝑏𝑜𝑟𝑡 

5:  𝑅 → 𝑆: 𝐻𝑀𝐴𝐶 (𝐾ℎ𝑦𝑏𝑟𝑖𝑑 , 𝑇1), 𝑇2 

6:  𝑆 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑠 |𝑇2 − 𝑇𝑛𝑜𝑤| ≤ ±30 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 → 𝑒𝑙𝑠𝑒 𝑎𝑏𝑜𝑟𝑡 

7:  𝑆 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑠 𝐻𝑀𝐴𝐶 (𝐾ℎ𝑦𝑏𝑟𝑖𝑑 , 𝑇1) 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 → 𝑒𝑙𝑠𝑒 𝑎𝑏𝑜𝑟𝑡 

8:  𝑆 → 𝑅: 𝐻𝑀𝐴𝐶 (𝐾ℎ𝑦𝑏𝑟𝑖𝑑 , 𝑇2) 

9:  𝑅 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑠 𝐻𝑀𝐴𝐶 (𝐾ℎ𝑦𝑏𝑟𝑖𝑑 , 𝑇2) 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 → 𝑒𝑙𝑠𝑒 𝑎𝑏𝑜𝑟𝑡 

10:  𝐾𝑒𝑝ℎ𝑒𝑚𝑒𝑟𝑎𝑙  ←  𝐸𝑝ℎ𝑒𝑚𝑒𝑟𝑎𝑙 𝐾𝑒𝑦 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒(𝑆, 𝑅) 

11:  𝐾𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑  ←  𝐾ℎ𝑦𝑏𝑟𝑖𝑑  || 𝐾𝑒𝑝ℎ𝑒𝑚𝑒𝑟𝑎𝑙 

12:  𝑠𝑎𝑙𝑡 ←  𝑎 𝑓𝑖𝑥𝑒𝑑, 32 𝑏𝑦𝑡𝑒 𝑠𝑒𝑐𝑢𝑟𝑒 𝑠𝑎𝑙𝑡 𝑣𝑎𝑙𝑢𝑒  

13:  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ←  {𝑡𝑖𝑚𝑒𝑐𝑜𝑠𝑡 = 4, 𝑚𝑒𝑚𝑜𝑟𝑦𝑐𝑜𝑠𝑡 = 102400, 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚 = 8, ℎ𝑎𝑠ℎ𝑙𝑒𝑛 = 32} 

14:  𝐾𝑠𝑒𝑠𝑠𝑖𝑜𝑛 ← 𝐴𝑟𝑔𝑜𝑛2𝑖𝑑(𝐾𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑, 𝑠𝑎𝑙𝑡, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

15:  𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 ←  𝐴𝐸𝑆-𝐺𝐶𝑀-256. 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐾𝑠𝑒𝑠𝑠𝑖𝑜𝑛 , 𝐷𝑎𝑡𝑎, 𝑛𝑜𝑛𝑐𝑒) 

16:  𝐷𝑎𝑡𝑎 ←  𝐴𝐸𝑆-𝐺𝐶𝑀-256. 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐾𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, 𝑛𝑜𝑛𝑐𝑒) 

17:  𝒓𝒆𝒕𝒖𝒓𝒏 Secure Channel Established 

After mutual authentication is successful, the Kyber algorithm is used to exchange ephemeral keys. 

Two security variants are supported by this exchange: Kyber512 for standard security and Kyber768 

for advanced security. To guarantee strong forward secrecy, each ephemeral key (𝐾𝑒𝑝ℎ𝑒𝑚𝑒𝑟𝑎𝑙 ) is 

generated specifically for a single session and then discarded right away. Lastly, a combined key 

(𝐾𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) is created by concatenating the hybrid key (𝐾ℎ𝑦𝑏𝑟𝑖𝑑) and ephemeral key (𝐾𝑒𝑝ℎ𝑒𝑚𝑒𝑟𝑎𝑙). The 

final 32-byte session key (𝐾𝑠𝑒𝑠𝑠𝑖𝑜𝑛) is obtained by passing this into the hybrid key derivation function 

(HKDF). This session key is used as input for Advanced Encryption Standard (AES) algorithm, the "De 

facto standard" for fast encryption of large amounts of data and is widely recognized by major 

authorities as quantum-safe. Utilizing 256-bit variant of AES in Galois/Counter Mode (GCM), for both 

encryption and decryption of all data exchanged across LAN or WAN to secure the overall 

communication.  

By applying the Hybrid Key Derivation Function (HKDF) and concatenating the user's password with 

the hybrid key (𝐾ℎ𝑦𝑏𝑟𝑖𝑑 ), the encryption/decryption system in our hybrid framework obtains the 

symmetric key. To choose files, users must first register or log in. The files are then safely encrypted 

and kept, as seen in Figure 1. Only with the correct user password can decryption be accomplished; if 

the password is incorrect, decryption will fail. Long-term data at rest is protected by this method, which 

makes sure it's safe even if it's intercepted or accessed without permission. 

7. Results and Discussions 

The experimental outcomes of our software-based hybrid quantum-secure cryptosystem 

implementation are shown in this section. The evaluation of computational efficiency, key generation 
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and establishment rates, authentication mechanisms, and overall system performance in secure 

communication contexts was made possible by the controlled software-based environment in which all 

tests were carried out. Two laptops running Windows operating system made up the experimental 

testbed. The receiver had an AMD Ryzen 5 3450U processor with 7.89 GB of usable RAM, and the 

sender had an Intel Core i5 1235U processor with 15.3 GB of usable RAM. Both same-network and 

cross-network configurations were used for system-to-system communication. The average internet 

speed during testing was around 8 Mbps (±2 Mbps), regardless of the network configuration. This 

bandwidth is representative of a normal home broadband connection and provides a useful starting point 

for assessing how well the system performs in actual network scenarios. 

 

By carrying out 1,000 authentication rounds between the sender and the recipient, the test results for 

pre-shared key (PSK) hash validation assess the authentication process's timing and performance 

benchmarks. 

Table 4: PSK hash validation-based authentication benchmarks. 

Entity Network 

Type 

PSK 

Length 

(bytes) 

Average 

Connection time 

(𝝁𝒔) 

Average 

Authentication 

Processing time (𝝁𝒔) 

Average Total 

Round Time 

(𝝁𝒔) 

Sender Same 

Network 

 

32 

217.50 26.12 244.67 

Receiver 201.59 7.88 213.27 

Sender Cross 

Network 

238.64 32.72 276.84 

Receiver 224.23 9.38 239.51 

 

As detailed in Table 4, transitioning from same-network to cross-network environments increased 

average connection time, which measures the time needed to establish a network connection between 

the sender and receiver, by 9.7% for the sender and 11.2% for the receiver. This time includes the TCP 

handshake and any network-level delays during the connection setup phase. The computational 

overhead of the authentication mechanism, which is raised by 25.3% for the sender and 19.0% for the 

recipient, is reflected in the authentication processing time, which includes the time spent on the 

authentication logic itself, such as hashing the PSK, comparing the hashes, and validating the 

authentication request. While the receiver authenticated instantly upon hash matching, the sender's 

authentication time was typically longer because they had to wait for the receiver's authentication to be 

completed. Overall, the full authentication round trip grew by 13.2% on the sender side and by 12.3% 

on the receiver side. 

 

The benchmarking between the sender and receiver involved 1,000 rounds with 300 simulated qubits 

to evaluate the performance of the BB84 protocol simulation. The aggregated key metrics are shown in 

Tables 5 and 6. The sender's bits-per-basis generation time, quantum transmission time, and basis 

comparison time all increased by 2.3%, 34.6%, and 22.4%, respectively, when switching from same-

network to cross-network environments. While the overall protocol time increased by 9.3%, the sender's 

key generation throughput increased by 16.6%. Quantum state receiving time, measurement time, basis 

comparison time, key generation throughput, and overall protocol time all increased by 24.5%, 8.8%, 

19.4%, and 19.6%, respectively, on the receiver side. However, these increases aside from network 

latency depend on the computational efficiency of generating quantum random bits and measurement 

bases using quantum circuits. This process includes the overhead of initializing quantum registers, 
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applying gate operations and preforming measurement using Aer simulator. Quantum state transmission 

time, on the other hand, is influenced primarily by network latency and captures the duration required 

to transmit the quantum state (i.e., circuit operations) from the sender to the receiver, including the 

overhead of data serialization and deserialization. 

Table 5: Benchmarking sender-side BB84 quantum key establishment simulation. 

 

Entity Network 

Type 

Average 

Bits/Basis 

Gen Time 

(𝝁𝒔) 

Average 

Quantum 

Transmission 

Time (𝝁𝒔) 

Average 

Basis 

Comparison 

Time (𝝁𝒔) 

Average Key 

Generation 

Throughput 

(𝒃𝒊𝒕𝒔/𝝁𝒔) 

Average 

Total 

Protocol 

Time (𝝁𝒔) 

Sender Same 

Network 

713476.28 597.16 33.07 

 

3.97 2772853.18 

Sender Cross 

Network 

730116.81 803.76 40.49 4.63 3032039.52 

 

Table 6: Benchmarking receiver-side BB84 quantum key establishment simulation. 

 

Entity Network 

Type 

Average 

Quantum 

State 

Receiving 

Time (𝝁𝒔) 

Average 

Quantum 

State 

Measurement 

Time (𝝁𝒔) 

Average 

Basis 

Comparison 

Time (𝝁𝒔) 

Average Key 

Generation 

Throughput 

(𝒃𝒊𝒕𝒔/𝝁𝒔) 

Average 

Total 

Protocol 

Time (𝝁𝒔) 

Receiver Same 

Network 

8409.37 1094627.97 29.84 3.31 1192704.43 

Receiver Cross 

Network 

10468.70 1191467.76 35.64 4.32 1426241.22 

 

 

Using the Kyber-1024 variant between the sender and the recipient, key-pair generation, encapsulation, 

and decapsulation times over 10,000 rounds each were measured in order to assess the computational 

efficiency and key establishment rates of the Kyber Key Exchange (KKE). For every iteration of the 

benchmark process, a new key pair was generated. The sender then decapsulated each ciphertext after 

the recipient benchmarked encapsulation across 10,000 randomly generated ciphertexts using the 

sender's public key. 

Table 7: Average execution times of KKE operations using Kyber-1024. 

 

Entity Network 

Type 

Average Key Pair 

Generation time 

(𝝁𝒔) 

Average 

Encapsulation 

time (𝝁𝒔) 

Average 

Decapsulation 

time (𝝁𝒔) 

Average Shared 

key Establishment 

time (𝝁𝒔) 

Sender Same 

Network 

150.50 - 472.25 1350.19 

Receiver - 251.30 - 1316.74 

Sender Cross 

Network 

152.61 - 506.61 1642.77 

Receiver - 339.43 - 1626.18 
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In order to guarantee accurate performance metrics, the shared secret was verified against the original 

during this process, which measured the efficiency of encapsulation and decapsulation. Table 7 displays 

the averages that were obtained by averaging all timing samples across all iterations. According to the 

findings, switching to a cross-network environment increased the sender's key-pair generation time by 

1.4%, the decapsulation time by 7.3%, and the overall shared-key establishment time by 21.7%. Both 

the shared-key establishment time and the receiver's encapsulation time increased by 23.5% and 35.1%, 

respectively. These percentage increases demonstrate how network conditions and processing power 

affect KKE performance. 

 

Different output lengths were used to benchmark the hybrid key derivation function's (HKDF) 

performance. The procedure starts with a 32-byte kyber key and a 256-bit quantum key, which are 

concatenated and run through the HKDF. Prior to going through the HKDF, these two keys are 

concatenated. The core benchmark runs 1,000 timed iterations for each hash length (16, 32, 64 bytes), 

measuring the total elapsed time. We aggregated all timing samples as average values across all 

iterations and the resulting averages are presented in Table 8. 

 

Table 8: Performance metrics of HKDF in hybrid key generation processes. 

 

Hybrid Key Size (bytes) Hybrid Key Size (bits) Hybrid Key Generation Time (𝝁𝒔)  

16-bytes 128-bits 77614.89 

32-bytes 256-bits 78469.48 

64-bytes 512-bits 79988.59 

 

According to the findings, the key-generation time increased by 1.1% when the HKDF output size was 

increased from 16 bytes to 32 bytes and by another 1.9% when the output size was increased from 32 

bytes to 64 bytes. Overall, there was about a 3.1% slowdown when going from 16 to 64 bytes. These 

modest increases imply that the system can manage larger key sizes with little degradation in 

performance, demonstrating that the HKDF process is computationally efficient and not significantly 

affected by changes in key size. 

 

Connection establishment time, which measures the amount of time needed to establish a network 

connection between the sender and the recipient, together with the time needed for the TCP handshake 

and any network-level delays, mutual authentication using HMAC-SHA256, ephemeral key exchange 

with the Kyber-768 variant, and final 32-byte session key derivation time using HKDF, was used to 

assess the performance of the quantum-secure communication protocol.  

 

Table 9: Timing benchmarks for final session key establishment in secure communication module. 

 

Entity Network 

Type 

Average 

Connection 

time (𝝁𝒔) 

Average 

Authentication 

time (𝝁𝒔) 

Average Ephemeral 

Key Exchange Time 

(𝝁𝒔) 

Final Session Key 

Derivation Time 

(𝝁𝒔) 

Sender Same 

Network 

358.25 142.56 912.02 129748.28 

Receiver 215.39 255.13 526.78 128640.70 

Sender Cross 

Network 

373.76 160.80 1024.77 135521.01 

Receiver 220.21 291.56 579.55 132708.26 
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Table 9 shows the average times for each phase based on an aggregate of more than 1000 iterations. 

The findings showed that switching to a cross-network configuration increased processing times by a 

moderate percentage. Connection time increased by 4.3%, authentication time by 12.8%, key exchange 

time by 12.4%, and session key derivation time by 4.4% for the sender. The receiver experienced a 

2.2% increase in connection time, a 14.3% increase in authentication time, a 10.0% increase in key 

exchange time, and a 3.2% increase in session key derivation time. Since the receiver completes the 

final HMAC verification, as outlined in Algorithm 5, the mutual authentication time on the receiver 

side is typically longer. Since the sender decrypts the ciphertext to obtain the session key, while the 

recipient does so during encapsulation, the sender's ephemeral key exchange time is also usually longer. 

 

Table 10: Performance metrics for secure data transmission between sender and receiver. 

 

Network 

Type 

Original Data Size 

(𝒃𝒚𝒕𝒆𝒔) 

Average 

Data 

Encryption 

Time (𝝁𝒔) 

Encrypted 

Data Size 

(𝒃𝒚𝒕𝒆𝒔) 

Average Data 

Transmission 

time (𝝁𝒔) 

Average Data 

Decryption 

time (𝝁𝒔) 

Same 

Network 

10485760 ~ 10 Mb 71482.48 18641400 764874.07 71185.75 

52428800 ~ 50 Mb 340388.37 93206800 13558543.83 332458.25 

104857600 ~ 100 Mb 714252.20 186413560 51581528.87 705429.30 

Cross 

Network 

10485760 ~ 10 Mb 80366.53 18641400 851783.23 79186.70 

52428800 ~ 50 Mb 359014.40 93206800 13628053.47 361850.70 

104857600 ~ 100 Mb 735369.87 186413560 53955467.73 718725.00 

 

Table 10 describes the timing metrics for safe data transfer between sender and recipient over various 

network types. The system's processing times increase moderately when switching between same-

network and cross-network environments. The average data encryption time, transmission time, and 

decryption time all rise by about 12.5%, 11.4%, and 11.4%, respectively, for a 10 MB file. The 

encryption time increases by approximately 5.5%, the transmission time by only 0.5%, and the 

decryption time by 8.8% for a 50 MB file. Encryption rises by 3.0%, transmission by 4.6%, and 

decryption by 1.9% at the 100 MB scale. These differences imply that although cross-network 

configurations do result in extra latency, especially during transmission phases, the overall effect stays 

within a reasonable range. Notably, the encryption and decryption times remain proportionally balanced 

between sender and receiver, indicating that the cryptographic load is well-distributed. 

 

Table 11: Encryption and decryption speeds of large data files for Data-at-Rest security. 

Original Data Size (GB) Average Data Encryption 

Time (𝒎𝒔) 

Average Data Decryption 

time (𝒎𝒔) 

1 1530.32 1494.58 

10 18749.22 18143.31 

25 49876.21 44245.56 

50 90867.62 88867.62 

100 183762.54 180222.71 

 

As shown in Table 11, the encryption and decryption times increase linearly with data size increases 

from 10 GB to 25 GB, 50 GB, and even 100 GB. With encryption and decryption times growing 

proportionately with data size, the system exhibits consistent performance characteristics.  
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The performance benchmarks mentioned above was computed after quick, unrecorded warm-up runs 

to stabilize any just-in-time optimizations, we utilized a high-resolution performance counter to record 

exact timestamps before and after each operation, converting the elapsed nanoseconds to microseconds 

for readability, and we turned off Python's garbage collector to prevent intermittent pauses.  

 

The overall performance of this software-based hybrid quantum secure cryptosystem is significantly 

influenced by network conditions. Our simulations above results demonstrate how important network 

infrastructure is to efficacy and efficiency. Entities benefit from more reliable and consistent 

communication channels when they are on the same network, which lowers latency. The increase in 

transmission time during cross-network environments, however, is not due to inefficiencies in the 

cryptographic protocol itself, but rather to anticipated network latency. However, even under the more 

complicated cross-network configurations, the system showed resilience and retained good 

computational efficiency in terms of key establishment, hybrid key generation, and data transmission 

speeds. This implies that the system can manage the difficulties presented by various network 

circumstances while preserving its security and performance characteristics. 

 

8. Conclusions 

The study's conclusion emphasizes how urgently cryptographic systems must be modified for the 

upcoming quantum computing era, where conventional approaches will face existential challenges. The 

study shows how the mathematical underpinnings of existing encryption schemes could be 

compromised by sufficiently sophisticated quantum computers, making sensitive data susceptible to 

retroactive decryption. This work proposed a hybrid cryptographic framework to overcome this 

difficulty. The practical use of this research to protect data and communications from quantum threats, 

both short-term and long-term, is what makes it significant. The framework's simulation-based 

methodology, which generates the required entropy for quantum key generation by simulating quantum 

properties instead of real quantum channels or hardware, further emphasizes its practical implications. 

The system's overall security for safe communication and data protection is further improved by the 

authentication procedures used during key establishment and the forward secrecy attained through 

ephemeral key exchange. Nonetheless, the study admits a number of shortcomings: Performance 

benchmarks, especially in high-throughput settings, highlight possible bottlenecks in key generation 

and distribution processes. Therefore, future research should concentrate on maximizing the 

performance of hybrid systems through hardware acceleration and algorithmic enhancements. Lastly, 

to ensure interoperability across the world's digital infrastructure, post-quantum algorithms must be 

harmonized with current protocols through cooperative standardization efforts. 
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