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ABSTRACT 

Generative Adversarial Networks (GANs) have become a powerful tool for generating synthetic data, and they 

fill in the important gap concerning the lack or imbalance of real data with respect to healthcare applications. 

Annotated data for rare oncological diseases that would allow training machine learning models is not available. 

A modern system based on GANs, which uses conditional GANs (cGANs) and Wasserstein, is described here. 

The goal is to extend existing datasets and improve the outcomes of classifications for rare diseases. This is 

achieved by extensive preprocessing, the introduction of noise to avoid overfitting, and carefully executed 

validation procedures after synthesis to retain biological consistency and statistical coherence. Based on the 

experimental results presented, classifiers trained on augmented data produce much better sensitivity, specificity, 

and F1 scores than the baseline models, provided that the classes are significantly imbalanced. This study uses 

heatmap correlation analysis and distributional assessments between synthetic and real samples to measure data 

realism within a modular framework that fuses adversarial training and strict validation of synthetic data for 

augmentation in rare cases. Outcomes of the study support the idea that GAN-generated datasets offer a promising 

way to improve robust diagnostic models, thus addressing the data shortage that is rampant in oncology research. 

This research broadens the use of GANs in synthesising medical data, which enriches the growing toolkit of 

computational approaches to strengthen the early detection and categorisation of rare cancers that benefit from 

data-based techniques. 

Keywords: Generative Adversarial Networks, Synthetic Medical Data, Rare Oncological Diseases, Data 

Augmentation, Deep Learning, cGAN, WGAN, Classification. 

1. Introduction 

Because of the low frequency of oncological diseases, there are diagnostic challenges, especially since 

there are few adequately annotated datasets. This constraint causes a reduction in the performance of 

supervised learning algorithms, not least because they depend on large, annotated data collections. The 

usual augmentation techniques, like rotating, flipping, and adding noise, which do well with images, do 

not perform as well with structured clinical or genomic data. There is therefore a developing interest in 

generative modelling methods that are able to model elaborate data distributions and synthesise 

synthetic samples that are similar to the real ones. Response GANs are made up of two artificial neural 

networks: a generator and a discriminator, which compete against one another in a minimax game. The 

goal of the generator is to create data indistinguishable, by the discriminator, from the genuine instances. 

With successive training, the generator gradually learns to mimic the underlying data distribution. 

cGANs enhance the original architecture by incorporating class-specific details, which makes them 

especially suitable for supervised learning for such purposes as rare disease classification [2][3]. 
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GAN’s medical applications have already been proven in radiology [4], histopathology [5], genomics 

[6], and electronic health records [7]. With the challenge in training models because of the variability 

of patients and high-dimensional sets of features in oncology, GANs provide a highly valuable approach 

to handling class imbalance. When applied to rare cancers, the results are quite striking and will enable 

scientists to create models of simulated data sets that maintain clinical validity [8][9]. However, GANs’ 

applications for modelling rare diseases face a range of difficulties. Some of the most frequently 

occurring issues are overfitting, mode collapse and lack of diversity in the generated samples [10]. 

Resolution tends to require careful network configuration, reasonable hyperparameter choice, and post-

generation evaluation. Research shows that Wasserstein loss application, spectral normalization, and 

conditional embedding can help improve the stability and variability of produced samples in the GANs 

[11][12]. A GAN-based synthetic data generation strategy for the rare oncological diseases is proposed 

and evaluated in this research. The approach integrates radiomic and genomic characteristics in order 

to streamline multi-modal learning. The augmented data is used as the training set for a classification 

model that is assessed by means of classical metrics, such as accuracy, sensitivity, specificity, and F1 

score. Heatmap analysis and feature distribution plots are used to maintain the fidelity of the synthetic 

data. 

The validation of the proposed method is performed using datasets from The Cancer Genome Atlas 

(TCGA) [13] and Orphanet [14]. Experimental results underscore performance improvements for rare 

cancer classification. Built with the mind of the module, the pipeline is capable of managing various 

forms of data and is designed to offer a flexible framework for the augmentation of medical data in 

environments with small patient’ numbers. 

 

Fig.1 Graphical Abstract 

In Figure 1, the graphical abstract visualises the first stage of the pipeline, which is initiated through 

limited real patient data that is preprocessed and features extracted. This extracted feature set is used by 

a conditional GAN to create additional data samples. The authenticity of synthetic data is measured 

using a discriminator network. The consolidated dataset, comprising real and generated samples, is used 

to train a classifier dedicated to detecting rare cancers. A supplementary chart shows that data 

augmentation results in better accuracy, as evidenced in our results. The pipeline architecture has well-

defined, colour-labelled modules that clearly distinguish the flow of real and synthetic data through the 

pipeline. The aim is to transfer the GAN research into the clinical world, providing a meaningful 

applicability and scalability for the clinical representation of AI for rare disease diagnosis. The 

generation of synthetic data elevates the efficacy and uniformity of classifiers, affording superior early 

detection of rare cancers and better patient care. 

2. Related Research 

Generative Adversarial Networks (GANs) have transformed the synthesis of synthetic data in medical 

science, with great influence on the elimination of limitations inherent in the availability of inadequate 
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and imbalanced data for rare oncological diseases. Using adversarial training, GANs are able to create 

complex distributions of data that can even create very real synthetic data mimicking real patient data. 

For rare cancers, the reduced and sometimes lopsided datasets prevent the creation of effective 

diagnostic models, but GANs allow for diverse synthetic samples to be generated that support this 

process. 

Initial experiments focused on producing fake medical images so as to improve classifier accuracy. 

According to studies, the expansion of small pools of data by synthetic generation has improved the 

sensitivity and specificity of image-based diagnostic models. Adversarial techniques were implemented 

in computed tomography and magnetic resonance imaging, leading to the generation of synthetic 

tumour cuts that preserved important structural properties from real medical images. Conducted clinical 

assessments showed that it was hard for pathologists to categorise synthetic images as synthetic, from 

a superior visual acumen that was astutely acquired from adversarial training [15]. Then, researchers 

introduced class-conditional GAN variations allowing the generation of synthetic data conditioned on 

specific subtypes of tumours or clinical stages. By addressing class imbalance, this innovation enabled 

the retrieval of discriminative features from lowly represented categories in multi-label data sets. 

Conditional generators greatly improved precision and recall in model training with the help of 

augmented datasets [16]. 

Next-generation systems employed altered loss functions and stabilised gradient flows, which led to 

fewer artefacts and anatomical verisimilitude in produced samples. Investigations aimed at adding latent 

spaces having a defined structure to enable intentional modifications in synthetic samples. In the 

creation of ongoing clinical data, such as laboratory measurements or genomic expression profiles, 

these models showed clear benefits owing to a function to maintain underlying statistical correlations 

[17]. The use of synthetic augmentation was also applied to non-image medical formats such as tabular 

and sequential patient information, to further extend the diversity of the dataset. To adapt the GAN 

architecture to operate with discrete and categorical information, researchers succeeded in emulating 

diagnostic histories, gene sequences and treatment procedures. Apart from keeping statistical 

distributions, the generated data provided relevant variability in training sets, ultimately enabling 

classifiers to achieve better results on rare or intricate cases. The assessment of these studies refined its 

classification performance, particularly those of diseases which depend on sparse training data [18]. 

Several research groups insisted on the necessity to evaluate the clinical value of synthetic data going 

beyond mere visual or linguistic likeness. Domain-specific validation frameworks were proposed with 

the help of structural similarity indices, statistical proximity metrics, and expert-validated anatomical 

features for evaluation. Model effectiveness was measured by comparing the increase in classifier test 

set performance exhibited by unseen data sets, providing an indirect way of testing synthetic data 

validity. The multi-level approach applied in analysing the generated data guaranteed both visual 

similarity and practical clinical use [19]. Synthetic data production methods were aligned with evolving 

attention to data privacy and ethics. Investigators encouraged the use of adversarial training in scenarios 

where access to patient data is managed or secured to allow decentralised approaches to evolve. 

Synthetic data, devoid of personal information, full of statistical specifics, allowed for representing 

unusual cancer cases within ethical boundaries. By this approach, synthetic augmentation was opened 

as an option for areas where conventional exchange of data was not possible or would be too tough 

[20]. Although significant progress has been made, there are several hindrances to GAN-based 

augmentation. A common issue that has been noted is a problem referred to as mode collapse, when 

generator outputs are repetitive, thereby reducing the diversity of the dataset. To fight mode collapse, 

the researchers have used a number of adjustments to the GAN architecture and the training process, 

among which are normalisation strategies and additional feedback from the discriminator. Despite these 

advancements, stability and diversity are still acute problems for the medical GAN-based approaches. 

Another significant problem is the requirement for approaches that would allow the interpretation of 

synthetic data to become feasible. Acknowledging the benefits of transparency and traceability in the 

synthesis of synthetic data, researchers have been putting measures in place to ensure that biases or 
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artefacts that could taint downstream evaluations are prevented from occurring. Scientists have begun 

employing explainability methods to shed light on the transparency that allows users to see the outputs 

of latent variables affecting synthetic data and learn how synthetic features depend on input ones. 

Through such a level of transparency, the field seeks to gain trust and support for the implementation 

of the synthetic techniques in high-impact medical applications. With the most recent research, 

researchers are engaging in further exploration of how cross-modality learning can be enhanced by 

creating models that can generate and synthesize data from various clinical sources like imaging, 

genomics, and structured records. The goal is to turn out integrated synthetic patient records that can 

handle several classification or prediction needs simultaneously. Initial results indicate that these 

techniques enhance the effectiveness of diagnostic models in the context of several data sources and 

reduce the necessity of needing a single data format for that purpose. 

Table 1: Summary of GAN Approaches for Rare Oncological Disease Data Augmentation 

Technique 

Type 

Features Limitations Data Modality Target Use 

Convolutional 

GAN 

Deep convolution-

based generation 

Limited diversity 

under noise 

Imaging 

(CT/MRI) 

Tumor 

classification 

Conditional 

GAN 

Class-aware 

generation 

Complex loss 

balancing 

Histology/Labels Subtype 

balancing 

Latent-Space 

GAN 

Interpretable latent 

representation 

Potential loss of 

detail 

Genomic 

expressions 

Gene mutation 

modelling 

Structured 

GAN 

Adapted for non-

image data 

Discrete data 

handling 

complexity 

Tabular medical 

data 

Diagnostic 

history input 

Stabilized GAN Gradient penalty or 

normalization 

High 

computational 

requirements 

Multi-modal 

datasets 

Rare case 

simulation 

Table 1 presents a comparison of principal GAN-based approaches used for rare cancer research, 

indicating their characteristics, drawbacks, type(s) of data that could be applicable and main 

applications. It gives a guide on how to decide the most favorable augmentation approaches based on 

the data modality as well as the classification goals. 

3. Problem Statement & Research Objectives 

Problems with availability, like limited availability of labelled, balanced, and diverse datasets, are 

considerable obstacles to rare disease classification in oncological diagnostics. In extreme class 

imbalance, old-style machine learning technologies tend to generate disappointing results because they 

struggle to recognize distinctive elements for minority classes. Moreover, the cost of acquiring new 

labelled data for rare cancers often proves prohibitively time-consuming and expensive, and in some 

cases, impossible, due to ethical or logistical constraints. Because of the complexity of the medical data 

and the diversity of patient profiles, it becomes harder still for models to generalize. These limitations 

highlight the need for techniques that can expand dataset size without compromising the penetrance of 

generated data in the true clinical and statistical properties. 

GANs can be potentially useful as they learn patterns that govern real data and create new samples that 

look very much like they are from the original set. Although GANs have promise, their applicability to 

rare oncological disease classification, especially for diverse data such as images, clinical reports and 

genomic data, has not been explored adequately so far. And in fact, the assessment of produced data for 

quality and performance in clinical applications is not always standardised. The creation of a strong 
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multi-modal framework for GAN augmentation is crucial to evaluate not only the benefit of the 

synthesis for performance but also its clinical applicability. 

Research Objectives 

The main purpose of this research is to design and test a GAN-based system for synthesizing synthetic 

medical data (for the purpose of enhancing diagnostic quality for rare cancers). The major objectives of 

this study are: 

• To evaluate and compare different GAN architectures for the generation of synthetic 

medical data from different modalities of data (imaging, genomic, and tabular information). 

• To create balanced datasets which will enhance classifier performance in rare cancer types 

while maintaining clinical applicability and accuracy. 

• Developed and implemented reliable metrics that analyse how clinically valid and 

statistically sound the produced synthetic data are. 

• To investigate the impact of the use of synthetic data on the performance of the classifier, 

more directly on its sensitivity, specificity and total classification accuracy. 

– In order to increase the transparency of synthetic data generation through the incorporation of 

interpretability elements of GAN architecture. The purpose of the study is to create a proven practical 

process for analysing data that can be used to provide precise classification of rare oncological diseases. 

Based on GANs, this study aims to link the rare real-world data with advanced classification models 

with an emphasis on the clinical application and the current ethical practice in synthetic data 

implementation. These objectives will propel the development of a comprehensive method of dealing 

with the deficits of sparse and skewed data faced in medical research. 

4. Proposed Methodology 

 

The methodology focuses on employing a tailored Generative Adversarial Network (GAN) framework 

for generating synthetic medical data with an emphasis on enhancing classification performance for 

rare oncological diseases. The system leverages deep convolutional GAN architectures, loss 

minimization strategies, divergence metrics, and performance evaluation indices to iteratively train both 

the generator and discriminator. Feature-wise distance minimisation and statistical regularisation are 

applied to ensure that the synthetic data mirrors the real distributions. Below are the governing 

mathematical expressions that define the workflow: 

 

4.1 GAN Objective Function 

The core objective of a GAN is modelled as a min-max game between the generator 𝐺 and 

discriminator𝐷 . The generator aims to generate realistic data to fool the discriminator, while the 

discriminator aims to distinguish real from fake data. 

min⁡
𝐺

max⁡
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥∼𝑃data(𝑥)[log⁡ 𝐷(𝑥)] + 𝔼𝑧∼𝑃𝑧(𝑧)[log⁡(1 − 𝐷(𝐺(𝑧)))]   (1) 

In Eq. (1), 𝑃data(𝑥) denotes the real data distribution, 𝑃𝑧(𝑧) is the latent noise distribution, and 𝐺(𝑧) is 

the synthetic output. The discriminator 𝐷(𝑥)  returns the probability that input xxx is real. This 

expression enables adversarial training, balancing the discriminator and generator performances. 
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4.2 Generator Loss Function 

The generator loss is defined separately for practical optimization. It encourages the generator to 

produce outputs that maximize the probability of being classified as real by the discriminator. 

𝐿𝐺 = −𝔼𝑧∼𝑃𝑧(𝑧)[log⁡ 𝐷(𝐺(𝑧))]         (2) 

In Eq. (2), 𝐿𝐺 penalizes the generator when the discriminator identifies generated data as fake. Lower 

generator loss implies that the synthetic data closely mimics the real data distribution. It forms the basis 

for updating generator weights using backpropagation. 

4.3 Discriminator Loss Function 

The discriminator’s loss function combines the classification of both real and synthetic samples. It 

guides the discriminator to correctly distinguish between authentic and synthetic samples. 

𝐿𝐷 = −[𝔼𝑥∼𝑃data(𝑥)
 [ log ⁡ 𝐷 ( 𝑥 ) ] + 𝔼𝑧∼𝑃𝑧(𝑧)

 [ log ⁡ ( 1 − 𝐷 ( 𝐺 ( 𝑧 ) ) ) ]]     (3) 

Eq. (3) ensures that the discriminator strengthens its capability to correctly classify real and fake data 

during training. Higher discriminator accuracy results in more challenging generation tasks for the 

generator. 

 

4.4 KL Divergence Between Distributions 

To compare how well the synthetic data mimics real data, the Kullback-Leibler (KL) divergence is used 

to measure the distance between real and generated data distributions. 

𝐷𝐾𝐿(𝑃 ∥ 𝑄) =∑ 𝑃(𝑖)𝑙𝑜 𝑔 (
𝑃(𝑖)

𝑄(𝑖)
)

𝑖
        (4) 

In this Eq. (4), 𝑃 represents the distribution of real samples and 𝑄 the distribution of generated samples. 

A lower KL divergence suggests high similarity between synthetic and real data, which is vital for 

downstream classification tasks. 

 

4.5 Frechet Inception Distance (FID) 

The Frechet Inception Distance quantifies the visual and statistical similarity between real and synthetic 

features extracted via an Inception network. It is widely used in generative model evaluation. 

FID =∥ 𝜇𝑟 − 𝜇𝑔 ∥2+ Tr(Σ𝑟 + Σ𝑔 − 2(Σ𝑟Σ𝑔)
1/2)      (5) 

In Eq. (5), 𝜇𝑟, 𝜇𝑔⁡and Σ𝑟, Σ𝑔 represent the mean and covariance of real and generated feature vectors, 

respectively. Lower FID values indicate greater realism and feature alignment between datasets. 

 

4.6 Binary Cross-Entropy Loss 

Binary classification tasks such as real vs. fake data discrimination use binary cross-entropy as the loss 

function, capturing the prediction error between the true and predicted labels. 

ℒ𝐵𝐶𝐸 = −[𝑦 log ⁡ ( 𝑝 ) + ( 1 − 𝑦 ) log ⁡ ( 1 − 𝑝 )]        (6) 
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In Eq. (6), 𝑦 is the true label (0 or 1), and 𝑝 is the predicted probability. This loss is essential for both 

generator and discriminator performance tuning during adversarial training. 

 

4.7 Feature Matching Loss 

Feature matching stabilises GAN training by minimising the distance between feature representations 

from real and generated samples, extracted from an intermediate discriminator layer. In Eq. (7), 𝑓(⋅) 

denotes feature extraction from the discriminator. This loss ensures the generator focuses on replicating 

real feature statistics rather than just fooling the discriminator. 

 

ℒ𝐹𝑀 =∥ 𝑓(𝑥) − 𝑓(𝐺(𝑧)) ∥2
2         (7) 

4.8 Classification Accuracy 

To evaluate model performance on rare disease classification, accuracy is computed as the ratio of 

correctly classified instances to total instances. 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
         (8) 

In Eq. (8), 𝑇𝑃 and 𝑇𝑁⁡True positives and true negatives, while 𝐹𝑃 and 𝐹𝑁𝑇ℎ𝑒𝑟𝑒⁡ are false positives 

and false negatives. Higher accuracy reflects improved classifier performance on augmented datasets. 

 

4.9 F1 Score 

The F1 score balances precision and recall and is especially important for imbalanced datasets such as 

rare oncological diseases. 

𝐹1 = 2 ⋅
Precision⋅Recall

Precision+Recall
           (9) 

In Eq. (9), Precision measures the correctness of positive predictions, and recall assesses completeness. 

A higher F1 score signifies balanced and robust classification performance, critical for rare disease 

identification. 

 

4.10 Recall and Precision Definitions 

Both recall and precision are important for determining classifier sensitivity and reliability, especially 

in skewed class distributions. The recall and precision can be calculated as Eq.(10) and Eq.(11). 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,          (10) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (11) 

These metrics identify how well the model captures relevant cases (recall) and the correctness of its 

positive predictions (precision). High values in both support confidence in the synthetic data utility for 

classification. 

 

4.11 Pseudocode 
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Input: Real dataset D = {X, Y}, noise dimension z_dim 

Output: Augmented dataset D' = {X_real ∪ X_fake, Y} 

 

Initialize Generator G, Discriminator D 

for epoch in 1 to N do 

    for batch in D do 

        z ← SampleNoise(z_dim) 

        y ← ClassLabels(batch) 

        x_fake ← G(z | y) 

        x_real ← batch data 

        D_loss ← ComputeWassersteinLoss(D, x_real, x_fake) 

        Update D using ∇D_loss 

        G_loss ← ComputeGeneratorLoss(G, D, z, y) 

        Update G using ∇G_loss 

    end for 

end for 

D' ← X_real ∪ G(z | y), Y 

return D' 

 

4.12   Flow Chart 

 

 

Fig.2 outlines the training pipeline for a GAN-based synthetic data augmentation framework used in 

rare oncological disease classification 
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The flowchart (Figure 2) outlines the training pipeline for a GAN-based synthetic data augmentation 

framework used in rare oncological disease classification. It begins with the input of a real dataset 𝐷 =

{𝑋, 𝑌} and the initialization of the generator 𝐺⁡ and discriminator D. The model undergoes iterative 

training over multiple epochs, and within each epoch, it processes the dataset in batches. For each batch, 

a noise vector 𝑧 is sampled and class labels 𝑦 are extracted to condition the generator, which then 

produces synthetic data 𝐺(𝑧 ∣ 𝑦). The real batch data is also extracted and both are fed into the 

discriminator. Loss functions—such as Wasserstein loss or binary cross-entropy—are computed to 

update the discriminator, while the generator is refined based on feature matching and log loss. This 

process repeats across all batches and epochs. Once training concludes, final synthetic data is generated 

and merged with the real dataset to create an augmented dataset 𝐷′. This augmented dataset is then 

returned for downstream classification tasks, with the entire process focused on enhancing the model's 

performance on imbalanced and limited real-world data scenarios. 

 

5. Results and Discussion  

 

Here, we make a thorough analysis of synthetic data created by GANs benefits for rare cancer 

classification performance. By merging synthetic and real datasets, we explore improvement of 

accuracy, precision, recall, and F1-score on various performance metrics. A variety of visual 

representations and tabular data show how GAN-based augmentation overcomes the lack of quantity 

and balance in our cancer analysis. The comparison of models trained with real and augmented datasets 

shows that synthetic data generated using the GAN technology is of very high fidelity and biological 

accuracy which significantly enhances classifier results. The results demonstrate that generative models 

have the ability to augment the performance of clinical decision-support systems specifically under 

scenarios where there are few annotated data. 

 

 

Fig.3 Bar Plot of Classification Accuracy – Real vs. Real+Synthetic Datasets 

The bar chart in Figure 3 shows the accuracy of a CNN trained with the original real rare cancer dataset 

vs. a CNN trained with data augmented with GAN-generated synthetic samples. Operating on pure real 

data, the classifier has performance of about 78.5%; the inclusion of GAN generated samples increases 

this to 91.2%. These findings reveal the extent to which synthetic data addresses the class imbalance 

and the issues associated with data sparsity common in the scarce annotated rare oncological data. The 

accuracy of each bar is supported by error bars reflecting ±1 standard deviation of fivefold cross 

validation results. The expanded second bar shows that augmentation results in higher model stability 
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and applicability. The results confirm that GAN-produced samples succeed at preserving diagnostic 

characteristics critical for proper classification. The picture illustrates the advantages of GANs as a way 

of augmenting data in clinical machine learning settings. 

 

Fig.4 Line Plot of F1-Score vs. Training Epochs (With and Without GAN Augmentation) 

In Figure 4, we are able to observe the evolution of F1-scores for two models during their training 

epochs. Two models that were used to make comparisons include one which only learns from real data 

and the other which learns from real and fake data. Stock market GAN-augmented curve depicts a 

steeper and more reliable upward trend, which achieves a plateau at approximately 0.93 by epoch 40; 

This performance is of particular importance in healthcare, as the F1-score tells us how well the model 

can predict a balance between precision and recall in an imbalanced data set. The plot, therefore, 

confirms that GAN-based methods do increase the model’s convergence as well as its ability to 

generalise to instances it has not seen before. The anomalies that were identified in the unaugmented 

model reflect unstable training compared with the relatively steady learning of introducing synthetic 

samples. As a generalization, the graph validates that rich-feature data augmentation provides 

significant benefits for rare cancer classifiers. 

 

Fig.5 Overlayed Line Plot – Discriminator and Generator Loss Over Epochs 

As Fig. 5 shows, we plot both generator and discriminator losses during 100 training iterations to 

visualize adversarial training. Within the early stages of training, the discriminator demonstrates high 

progression, with rapidly diminishing losses; the generator, on the other hand, demonstrates its poorer 

learning pace through increased losses. Longer training shows that the losses oscillate about an 
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equilibrium value and this demonstrates the GAN’s convergent ability. This trend shows strong 

adversarial equilibrium because neither network consistently dominates system dynamics. Smooth 

convergence and a stable point of intersection in the curves close to epoch 50 highlight the regular 

optimisation of GANs, important for the realistic creation of medical synthetic data. These temporary 

fluctuations of loss curves are expected because of the mismatch till the pace of mini-batch sampling 

and stochastic optimization. The plot helps to visualize process of training model which demonstrates 

successful minimization of the concerns concerning mode collapse and discriminator outperforming the 

generator. 

 

Fig.6 Heat map – Pearson Correlation Between Real and Synthetic Features 

In Figure 6, the Pearson correlation coefficients are projected with respect to real over GAN-generated 

feature vectors for the top 15 oncological biomarkers. Strong similarity, reflected by prominent diagonal 

dominance and correlation coefficients close to 1.0, is evident Major features like BRCA1, EGFR and 

HER2 are the most striking. The consistently low values of the off diagonal elements show low level 

of feature leakage and negligible cross correlation thus strengthening the above findings. Looking 

closely at the heatmap, one can observe that the generator preserved inter-feature similarities that are 

typical for cancer data as a whole. The presence of a dark blue and green along the diagonal highlights 

a sharp congruency between synthetic and real feature vectors. By using visual encoding, the distinction 

between deviations or misrepresentations in the synthetic feature space becomes quite intuitive to find. 

This analysis makes it possible to confirm that the synthetic data reflects the real distribution properly 

both statistically and from the point of view of biology. 

 

Fig.7 Line Plot – Classification Loss vs. Epochs (Real vs. Augmented) 



Rahul Vadisetty, Himanshu Suyal 

 

 

ISSN (Online) : 3048-8508 76 IJSSIC  

 

The training loss trends for a deep CNN model during 50 epochs are shown in Figure 7, including real 

and augmented data from the GAN. The plot for synthetic data reveals a slow and steady reduction in 

loss towards an ultimate stabilized value of about ~0.08 much less than the ~0.23 posted by real-only 

group. This demonstrates that data enrichment results in the improvement of model convergence and 

lower error rates for bias and variance. The learning stability is improved with more constant curve in 

the augmented dataset, which is supported by having a greater number of representative samples. The 

oscillations in the baseline model’s performance are indicative of overfitting due to the lack of 

representation of uncommon cases. The plot indicates that the GAN-based data augmentation process 

contributes to the more efficient feature extraction and reduced model uncertainty accordingly resulting 

in improved diagnostic outcomes. 

 

Fig.8 Bar Chart – Comparison of Precision, Recall, and F1 Scores 

Again, Figure 8 shows, that the precision, recall, and F1-scores of models differ on real and augmented 

data. The augmented data model is routinely shown to be better than the real-data-only model at an 

order of gain 12% to 18% across all metrics. The greatest gain (in recall) demonstrates that the model 

can be better at identifying real cases of rare cancers (0.72 to 0.91). Such metrics are important in clinics 

as even failure to diagnose positively can lead to serious repercussions. The continual performance 

enhancement over all metrics shows that the model is retentive of both precision and recall and does 

not compromise on one for the other. The figure shows that classifier performance is markedly 

improved when GAN-augmented data is used for uncommon diseases. 

 

Fig.9 Heatmap – Confusion Matrix (Augmented Dataset Classification) 
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Performance on the GAN-augmented dataset is shown in detail on Figure 9. Rows signify the actual 

classes of rare cancer and while columns represent the predicted classes of the same cancer types. The 

matrix indicates clear diagonal dominance with >90% values which imply excellent true positive 

performance to each class. Values in off-diagonal cells are small, which means that misclassifications 

are rare. Color gradients from deep green to soft yellow clearly separate zones of precisely classified 

from areas of errors. The design helps provide an intuitive estimate of the classifier accuracy for clinical 

researchers. The matrix shows augmentation guarantees that the results across all classes are reliable, 

cutting down on the typical problem where minority classes are not accurately predicted. 

Table 2: Input Parameters for GAN Training 

Parameter Description Value/Range Applied In 

Learning Rate Learning rate for 

optimizer 

0.0002 Generator, Discriminator 

Epochs Training cycles 500 GAN Training 

Latent Dim (z) Noise vector size 100 Generator Input 

Batch Size Number of samples per 

iteration 

64 Training Phase 

Lambda 

(Penalty) 

Gradient penalty 

coefficient 

10 WGAN Loss 

Table 2 provides the necessary input parameters that have been used to train the GAN architecture in 

regards to synthetically creating medical data. Both the generator and the discriminator are optimized 

using a learning rate of 0.0002 to control weight adjustments during optimization, as reported in 

previous studies. The algorithm was run for 500 epochs, a figure determined experimentally as optimal 

for the convergence process. As with earlier research, we maintain the input noise vector size at 100 

using the latent dimension \( z \). 64-wave batch size is selected to achieve the best of training speed 

and reliability of the model. In order to guarantee that approximately Lipschitz continuous and to 

strengthen the WGAN adversarial training, a gradient-penalty coefficient (λ) of 10 is incorporated into 

the formulation of the WGAN loss. Such parameter choices represent an exact optimization of the 

mentality that drives the generation of very realistic synthetic data. 

Table 3: Classification Result Metrics 

Cancer Type Accuracy 

(%) 

F1 Score Precision Recall 

Chordoma 91.2 0.89 0.85 0.93 

Thymoma 88.7 0.87 0.82 0.92 

Ovarian Carc. 94.1 0.91 0.90 0.92 

Sarcoma 90.5 0.88 0.84 0.91 

Mesothelioma 89.8 0.86 0.83 0.89 

As an overview of the evaluation metrics for five rare forms of cancer, Table 3 presents the findings 

when GAN-generated data is used in a classification model. The model presents staggering overall 

accuracy, reaching 94.1% for ovarian carcinoma and presenting results that are extremely promising 

for both chordoma (91.2%) and sarcoma (90.5%). F1 scores, which combine the precision and recall 

measures, lie in a reliable range of 0.86 - 0.91 indicating good performance across difficult class 

distribution. Both of them pertain to precision and recall, which are robust across the dataset implying 
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that the classifier provides reliable results for both confirming positives and mining out a wide variety 

of relevant information. Collectively, these results prove the utility of the use of synthetic data to 

improve the diagnostic accuracy of models of rare oncological conditions. 

6. Conclusion 

Genrating Adversial Networks (GANs) are employed in this study to demonstrate the possibility of 

addressing the usual deficiency of scarce and unbalanced data in novel cases of oncology classifications. 

By synthesizing medical data in various forms (imaging, genomic, and tabular), the work demonstrates 

that GAN augmenta-tion significantly improves the ability of the classifier to do a good job when data 

is scant. Based on metrics of statistical fidelity and clinical realism, this work corrobo-rates that 

simulated data creates an effective increase in model sensitivity, specificity and global accuracy. In 

addition, the fact that synthetic data preserves essential clin-ical values without imposing biases or 

distortions voices the possibility concerning GANs usage in actual diagnosis practices. The current 

research supports the urgent demand for multi-modal synthetic data in order to increase the robustness 

and gen-eralization skills of classifiers in rare cancer classification. However, major difficulties remain 

particularly regarding the scalability of the GAN-based approaches to multi-ple datasets and clinical 

settings. Further investigation is necessary to create more advanced GAN architectures to work with 

huge and complex medical data sets. It will be critical to have synthetic data created with interpretable 

outputs and open processes for clinical application. The improvement of cross-modality GAN models, 

intended to bridge the data heterogeneity, is promising in terms of increasing the gen-eralizability of 

classifiers in this field. Looking forward, the researchers will focus on improving privacy-preserving 

GAN paradigms in order to provide synthetic data gen-eration in decentralized or regulated form, where 

data protection standards are strict, without compromising the quality of research enhancement. 
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