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ABSTRACT

Generative Adversarial Networks (GANSs) have become a powerful tool for generating synthetic data, and they
fill in the important gap concerning the lack or imbalance of real data with respect to healthcare applications.
Annotated data for rare oncological diseases that would allow training machine learning models is not available.
A modern system based on GANs, which uses conditional GANs (cGANSs) and Wasserstein, is described here.
The goal is to extend existing datasets and improve the outcomes of classifications for rare diseases. This is
achieved by extensive preprocessing, the introduction of noise to avoid overfitting, and carefully executed
validation procedures after synthesis to retain biological consistency and statistical coherence. Based on the
experimental results presented, classifiers trained on augmented data produce much better sensitivity, specificity,
and F1 scores than the baseline models, provided that the classes are significantly imbalanced. This study uses
heatmap correlation analysis and distributional assessments between synthetic and real samples to measure data
realism within a modular framework that fuses adversarial training and strict validation of synthetic data for
augmentation in rare cases. Outcomes of the study support the idea that GAN-generated datasets offer a promising
way to improve robust diagnostic models, thus addressing the data shortage that is rampant in oncology research.
This research broadens the use of GANs in synthesising medical data, which enriches the growing toolkit of
computational approaches to strengthen the early detection and categorisation of rare cancers that benefit from
data-based techniques.

Keywords: Generative Adversarial Networks, Synthetic Medical Data, Rare Oncological Diseases, Data
Augmentation, Deep Learning, cGAN, WGAN, Classification.

1. Introduction

Because of the low frequency of oncological diseases, there are diagnostic challenges, especially since
there are few adequately annotated datasets. This constraint causes a reduction in the performance of
supervised learning algorithms, not least because they depend on large, annotated data collections. The
usual augmentation techniques, like rotating, flipping, and adding noise, which do well with images, do
not perform as well with structured clinical or genomic data. There is therefore a developing interest in
generative modelling methods that are able to model elaborate data distributions and synthesise
synthetic samples that are similar to the real ones. Response GANs are made up of two artificial neural
networks: a generator and a discriminator, which compete against one another in a minimax game. The
goal of the generator is to create data indistinguishable, by the discriminator, from the genuine instances.
With successive training, the generator gradually learns to mimic the underlying data distribution.
cGANSs enhance the original architecture by incorporating class-specific details, which makes them
especially suitable for supervised learning for such purposes as rare disease classification [2][3].
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GAN’s medical applications have already been proven in radiology [4], histopathology [5], genomics
[6], and electronic health records [7]. With the challenge in training models because of the variability
of patients and high-dimensional sets of features in oncology, GANSs provide a highly valuable approach
to handling class imbalance. When applied to rare cancers, the results are quite striking and will enable
scientists to create models of simulated data sets that maintain clinical validity [8][9]. However, GANs’
applications for modelling rare diseases face a range of difficulties. Some of the most frequently
occurring issues are overfitting, mode collapse and lack of diversity in the generated samples [10].
Resolution tends to require careful network configuration, reasonable hyperparameter choice, and post-
generation evaluation. Research shows that Wasserstein loss application, spectral normalization, and
conditional embedding can help improve the stability and variability of produced samples in the GANs
[11][12]. A GAN-based synthetic data generation strategy for the rare oncological diseases is proposed
and evaluated in this research. The approach integrates radiomic and genomic characteristics in order
to streamline multi-modal learning. The augmented data is used as the training set for a classification
model that is assessed by means of classical metrics, such as accuracy, sensitivity, specificity, and F1
score. Heatmap analysis and feature distribution plots are used to maintain the fidelity of the synthetic
data.

The validation of the proposed method is performed using datasets from The Cancer Genome Atlas
(TCGA) [13] and Orphanet [14]. Experimental results underscore performance improvements for rare
cancer classification. Built with the mind of the module, the pipeline is capable of managing various
forms of data and is designed to offer a flexible framework for the augmentation of medical data in
environments with small patient” numbers.
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Fig.1 Graphical Abstract

In Figure 1, the graphical abstract visualises the first stage of the pipeline, which is initiated through
limited real patient data that is preprocessed and features extracted. This extracted feature set is used by
a conditional GAN to create additional data samples. The authenticity of synthetic data is measured
using a discriminator network. The consolidated dataset, comprising real and generated samples, is used
to train a classifier dedicated to detecting rare cancers. A supplementary chart shows that data
augmentation results in better accuracy, as evidenced in our results. The pipeline architecture has well-
defined, colour-labelled modules that clearly distinguish the flow of real and synthetic data through the
pipeline. The aim is to transfer the GAN research into the clinical world, providing a meaningful
applicability and scalability for the clinical representation of Al for rare disease diagnosis. The
generation of synthetic data elevates the efficacy and uniformity of classifiers, affording superior early
detection of rare cancers and better patient care.

2. Related Research

Generative Adversarial Networks (GANSs) have transformed the synthesis of synthetic data in medical
science, with great influence on the elimination of limitations inherent in the availability of inadequate
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and imbalanced data for rare oncological diseases. Using adversarial training, GANs are able to create
complex distributions of data that can even create very real synthetic data mimicking real patient data.
For rare cancers, the reduced and sometimes lopsided datasets prevent the creation of effective
diagnostic models, but GANs allow for diverse synthetic samples to be generated that support this
process.

Initial experiments focused on producing fake medical images so as to improve classifier accuracy.
According to studies, the expansion of small pools of data by synthetic generation has improved the
sensitivity and specificity of image-based diagnostic models. Adversarial techniques were implemented
in computed tomography and magnetic resonance imaging, leading to the generation of synthetic
tumour cuts that preserved important structural properties from real medical images. Conducted clinical
assessments showed that it was hard for pathologists to categorise synthetic images as synthetic, from
a superior visual acumen that was astutely acquired from adversarial training [15]. Then, researchers
introduced class-conditional GAN variations allowing the generation of synthetic data conditioned on
specific subtypes of tumours or clinical stages. By addressing class imbalance, this innovation enabled
the retrieval of discriminative features from lowly represented categories in multi-label data sets.
Conditional generators greatly improved precision and recall in model training with the help of
augmented datasets [16].

Next-generation systems employed altered loss functions and stabilised gradient flows, which led to
fewer artefacts and anatomical verisimilitude in produced samples. Investigations aimed at adding latent
spaces having a defined structure to enable intentional modifications in synthetic samples. In the
creation of ongoing clinical data, such as laboratory measurements or genomic expression profiles,
these models showed clear benefits owing to a function to maintain underlying statistical correlations
[17]. The use of synthetic augmentation was also applied to hon-image medical formats such as tabular
and sequential patient information, to further extend the diversity of the dataset. To adapt the GAN
architecture to operate with discrete and categorical information, researchers succeeded in emulating
diagnostic histories, gene sequences and treatment procedures. Apart from keeping statistical
distributions, the generated data provided relevant variability in training sets, ultimately enabling
classifiers to achieve better results on rare or intricate cases. The assessment of these studies refined its
classification performance, particularly those of diseases which depend on sparse training data [18].

Several research groups insisted on the necessity to evaluate the clinical value of synthetic data going
beyond mere visual or linguistic likeness. Domain-specific validation frameworks were proposed with
the help of structural similarity indices, statistical proximity metrics, and expert-validated anatomical
features for evaluation. Model effectiveness was measured by comparing the increase in classifier test
set performance exhibited by unseen data sets, providing an indirect way of testing synthetic data
validity. The multi-level approach applied in analysing the generated data guaranteed both visual
similarity and practical clinical use [19]. Synthetic data production methods were aligned with evolving
attention to data privacy and ethics. Investigators encouraged the use of adversarial training in scenarios
where access to patient data is managed or secured to allow decentralised approaches to evolve.
Synthetic data, devoid of personal information, full of statistical specifics, allowed for representing
unusual cancer cases within ethical boundaries. By this approach, synthetic augmentation was opened
as an option for areas where conventional exchange of data was not possible or would be too tough
[20]. Although significant progress has been made, there are several hindrances to GAN-based
augmentation. A common issue that has been noted is a problem referred to as mode collapse, when
generator outputs are repetitive, thereby reducing the diversity of the dataset. To fight mode collapse,
the researchers have used a number of adjustments to the GAN architecture and the training process,
among which are normalisation strategies and additional feedback from the discriminator. Despite these
advancements, stability and diversity are still acute problems for the medical GAN-based approaches.

Another significant problem is the requirement for approaches that would allow the interpretation of
synthetic data to become feasible. Acknowledging the benefits of transparency and traceability in the
synthesis of synthetic data, researchers have been putting measures in place to ensure that biases or
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artefacts that could taint downstream evaluations are prevented from occurring. Scientists have begun
employing explainability methods to shed light on the transparency that allows users to see the outputs
of latent variables affecting synthetic data and learn how synthetic features depend on input ones.
Through such a level of transparency, the field seeks to gain trust and support for the implementation
of the synthetic techniques in high-impact medical applications. With the most recent research,
researchers are engaging in further exploration of how cross-modality learning can be enhanced by
creating models that can generate and synthesize data from various clinical sources like imaging,
genomics, and structured records. The goal is to turn out integrated synthetic patient records that can
handle several classification or prediction needs simultaneously. Initial results indicate that these
techniques enhance the effectiveness of diagnostic models in the context of several data sources and
reduce the necessity of needing a single data format for that purpose.

Table 1: Summary of GAN Approaches for Rare Oncological Disease Data Augmentation

Technique Features Limitations Data Modality Target Use

Type

Convolutional | Deep convolution- | Limited diversity | Imaging Tumor

GAN based generation under noise (CT/MRI) classification

Conditional Class-aware Complex loss | Histology/Labels | Subtype

GAN generation balancing balancing

Latent-Space Interpretable latent | Potential loss of | Genomic Gene mutation

GAN representation detail expressions modelling

Structured Adapted for non- | Discrete data | Tabular medical | Diagnostic

GAN image data handling data history input
complexity

Stabilized GAN | Gradient penalty or | High Multi-modal Rare case

normalization computational datasets simulation

requirements

Table 1 presents a comparison of principal GAN-based approaches used for rare cancer research,
indicating their characteristics, drawbacks, type(s) of data that could be applicable and main
applications. It gives a guide on how to decide the most favorable augmentation approaches based on
the data modality as well as the classification goals.

3. Problem Statement & Research Objectives

Problems with availability, like limited availability of labelled, balanced, and diverse datasets, are
considerable obstacles to rare disease classification in oncological diagnostics. In extreme class
imbalance, old-style machine learning technologies tend to generate disappointing results because they
struggle to recognize distinctive elements for minority classes. Moreover, the cost of acquiring new
labelled data for rare cancers often proves prohibitively time-consuming and expensive, and in some
cases, impossible, due to ethical or logistical constraints. Because of the complexity of the medical data
and the diversity of patient profiles, it becomes harder still for models to generalize. These limitations
highlight the need for techniques that can expand dataset size without compromising the penetrance of
generated data in the true clinical and statistical properties.

GANSs can be potentially useful as they learn patterns that govern real data and create new samples that
look very much like they are from the original set. Although GANSs have promise, their applicability to
rare oncological disease classification, especially for diverse data such as images, clinical reports and
genomic data, has not been explored adequately so far. And in fact, the assessment of produced data for
quality and performance in clinical applications is not always standardised. The creation of a strong
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multi-modal framework for GAN augmentation is crucial to evaluate not only the benefit of the
synthesis for performance but also its clinical applicability.

Research Objectives

The main purpose of this research is to design and test a GAN-based system for synthesizing synthetic
medical data (for the purpose of enhancing diagnostic quality for rare cancers). The major objectives of
this study are:

e To evaluate and compare different GAN architectures for the generation of synthetic
medical data from different modalities of data (imaging, genomic, and tabular information).

e To create balanced datasets which will enhance classifier performance in rare cancer types
while maintaining clinical applicability and accuracy.

o Developed and implemented reliable metrics that analyse how clinically valid and
statistically sound the produced synthetic data are.

e To investigate the impact of the use of synthetic data on the performance of the classifier,
more directly on its sensitivity, specificity and total classification accuracy.

— In order to increase the transparency of synthetic data generation through the incorporation of
interpretability elements of GAN architecture. The purpose of the study is to create a proven practical
process for analysing data that can be used to provide precise classification of rare oncological diseases.
Based on GANSs, this study aims to link the rare real-world data with advanced classification models
with an emphasis on the clinical application and the current ethical practice in synthetic data
implementation. These objectives will propel the development of a comprehensive method of dealing
with the deficits of sparse and skewed data faced in medical research.

4. Proposed Methodology

The methodology focuses on employing a tailored Generative Adversarial Network (GAN) framework
for generating synthetic medical data with an emphasis on enhancing classification performance for
rare oncological diseases. The system leverages deep convolutional GAN architectures, loss
minimization strategies, divergence metrics, and performance evaluation indices to iteratively train both
the generator and discriminator. Feature-wise distance minimisation and statistical regularisation are
applied to ensure that the synthetic data mirrors the real distributions. Below are the governing
mathematical expressions that define the workflow:

4.1 GAN Objective Function

The core objective of a GAN is modelled as a min-max game between the generator G and
discriminatorD. The generator aims to generate realistic data to fool the discriminator, while the
discriminator aims to distinguish real from fake data.

min max V(D, 6) = Ey-p,,,0[108 DCO] + E,_p,»[log (1 = D(G(2)))] (2)

In Eq. (1), Py (x) denotes the real data distribution, P,(z) is the latent noise distribution, and G (z) is
the synthetic output. The discriminator D(x) returns the probability that input xxx is real. This
expression enables adversarial training, balancing the discriminator and generator performances.
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4.2 Generator Loss Function

The generator loss is defined separately for practical optimization. It encourages the generator to
produce outputs that maximize the probability of being classified as real by the discriminator.

L = —E;-p,(5[log D(G(2))] )

In Eq. (2), L; penalizes the generator when the discriminator identifies generated data as fake. Lower
generator loss implies that the synthetic data closely mimics the real data distribution. It forms the basis
for updating generator weights using backpropagation.

4.3 Discriminator Loss Function

The discriminator’s loss function combines the classification of both real and synthetic samples. It
guides the discriminator to correctly distinguish between authentic and synthetic samples.

Lp = ~[Ex~pyyy (0 [108 DOOIHE,-p,(»[log (1-D(G(2)))]] 3

Eqg. (3) ensures that the discriminator strengthens its capability to correctly classify real and fake data
during training. Higher discriminator accuracy results in more challenging generation tasks for the
generator.

4.4 KL Divergence Between Distributions

To compare how well the synthetic data mimics real data, the Kullback-Leibler (KL) divergence is used
to measure the distance between real and generated data distributions.

PP IQ) =) PMIog(5) @)

QW

In this Eq. (4), P represents the distribution of real samples and Q the distribution of generated samples.
A lower KL divergence suggests high similarity between synthetic and real data, which is vital for
downstream classification tasks.

4.5 Frechet Inception Distance (FID)

The Frechet Inception Distance quantifies the visual and statistical similarity between real and synthetic
features extracted via an Inception network. It is widely used in generative model evaluation.

FID =Il uy — pg 112+ Tr(E, + 2, — 2(Z,2,)V?) ®)

In Eq. (5), u4r, ug and X, X, represent the mean and covariance of real and generated feature vectors,
respectively. Lower FID values indicate greater realism and feature alignment between datasets.

4.6 Binary Cross-Entropy Loss

Binary classification tasks such as real vs. fake data discrimination use binary cross-entropy as the loss
function, capturing the prediction error between the true and predicted labels.

Lpcg = —[ylog (p)+(1—y)log (1-p)] (6)
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In Eq. (6), y is the true label (0 or 1), and p is the predicted probability. This loss is essential for both
generator and discriminator performance tuning during adversarial training.

4.7 Feature Matching Loss

Feature matching stabilises GAN training by minimising the distance between feature representations
from real and generated samples, extracted from an intermediate discriminator layer. In Eq. (7), f(*)
denotes feature extraction from the discriminator. This loss ensures the generator focuses on replicating
real feature statistics rather than just fooling the discriminator.

Ley =l f(x) = f(G(2)) I3 (7
4.8 Classification Accuracy

To evaluate model performance on rare disease classification, accuracy is computed as the ratio of
correctly classified instances to total instances.

TP+TN

Accuracy = —————— (8)
TP+TN+FP+FN

In Eq. (8), TP and TN True positives and true negatives, while FP and FNThere are false positives
and false negatives. Higher accuracy reflects improved classifier performance on augmented datasets.

4.9 F1 Score

The F1 score balances precision and recall and is especially important for imbalanced datasets such as
rare oncological diseases.

Precision-Recall

F, = )

Precision+Recall

In Eq. (9), Precision measures the correctness of positive predictions, and recall assesses completeness.
A higher F1 score signifies balanced and robust classification performance, critical for rare disease
identification.

4.10 Recall and Precision Definitions

Both recall and precision are important for determining classifier sensitivity and reliability, especially
in skewed class distributions. The recall and precision can be calculated as Eg.(10) and Eq.(11).

Recall = Lk , (10)
TP+FN
Precision = ks (11)
TP+FP

These metrics identify how well the model captures relevant cases (recall) and the correctness of its
positive predictions (precision). High values in both support confidence in the synthetic data utility for
classification.

411 Pseudocode

ISSN (Online) : 3048-8508 71 1JSSIC



Rahul Vadisetty, Himanshu Suyal

Input: Real dataset D = {X, Y}, noise dimension z_dim
Output: Augmented dataset D' = {X_real u X_fake, Y}

Initialize Generator G, Discriminator D
for epoch in 1to N do
for batch in D do
z < SampleNoise(z_dim)
y «— ClassLabels(batch)
x_fake — G(z |y)
x_real «— batch data

D _loss «— ComputeWassersteinLoss(D, x_real, x_fake)

Update D using VD_loss
G_loss «— ComputeGeneratorLoss(G, D, z, y)
Update G using VG _loss
end for
end for
D'— X realUG(z|y), Y
return D'

4.12 Flow Chart

Start: Input Real Dataset D = {X, Y}, Noise Dimension z_dim

!

Initialize Generator G and Discriminator D

'

For each epoch in 1o N

’w N All Epochs Done

For each batch in D Vext Epoch

jﬁu:[h inD All Batches Done

Sample noise vector z from P_z(z) End of Epoch Loop

'

Get class labels y for current batch

.

Generate synthetic data x_fake = G(z | y)

'

Extract real batch data x_real

[Next Batch l

Compute Discriminator Loss
(Wasserstein Loss or BCE Loss)

'

Update Discriminator D using vD_loss

;

Compute Generator Loss
(Feature Matching, Log Loss)

Update Generator G using vG_loss

—

End of Batch Loop

Generate final synthetic data G(z | y)

\

Augment Dataset: D' = X_real u X_fake, Y

'

Return Augmented Dataset D'

Fig.2 outlines the training pipeline for a GAN-based synthetic data augmentation framework used in

rare oncological disease classification
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The flowchart (Figure 2) outlines the training pipeline for a GAN-based synthetic data augmentation
framework used in rare oncological disease classification. It begins with the input of a real dataset D =
{X,Y} and the initialization of the generator G and discriminator D. The model undergoes iterative
training over multiple epochs, and within each epoch, it processes the dataset in batches. For each batch,
a noise vector z is sampled and class labels y are extracted to condition the generator, which then
produces synthetic data G(z | y). The real batch data is also extracted and both are fed into the
discriminator. Loss functions—such as Wasserstein loss or binary cross-entropy—are computed to
update the discriminator, while the generator is refined based on feature matching and log loss. This
process repeats across all batches and epochs. Once training concludes, final synthetic data is generated
and merged with the real dataset to create an augmented dataset D’. This augmented dataset is then
returned for downstream classification tasks, with the entire process focused on enhancing the model's
performance on imbalanced and limited real-world data scenarios.

5. Results and Discussion

Here, we make a thorough analysis of synthetic data created by GANs benefits for rare cancer
classification performance. By merging synthetic and real datasets, we explore improvement of
accuracy, precision, recall, and Fl-score on various performance metrics. A variety of visual
representations and tabular data show how GAN-based augmentation overcomes the lack of quantity
and balance in our cancer analysis. The comparison of models trained with real and augmented datasets
shows that synthetic data generated using the GAN technology is of very high fidelity and biological
accuracy which significantly enhances classifier results. The results demonstrate that generative models
have the ability to augment the performance of clinical decision-support systems specifically under
scenarios where there are few annotated data.

100

Accuracy (%)

Real Data Real + Synthetic

Fig.3 Bar Plot of Classification Accuracy — Real vs. Real+Synthetic Datasets

The bar chart in Figure 3 shows the accuracy of a CNN trained with the original real rare cancer dataset
vs. a CNN trained with data augmented with GAN-generated synthetic samples. Operating on pure real
data, the classifier has performance of about 78.5%; the inclusion of GAN generated samples increases
this to 91.2%. These findings reveal the extent to which synthetic data addresses the class imbalance
and the issues associated with data sparsity common in the scarce annotated rare oncological data. The
accuracy of each bar is supported by error bars reflecting +1 standard deviation of fivefold cross
validation results. The expanded second bar shows that augmentation results in higher model stability
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and applicability. The results confirm that GAN-produced samples succeed at preserving diagnostic
characteristics critical for proper classification. The picture illustrates the advantages of GANs as a way
of augmenting data in clinical machine learning settings.
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Fig.4 Line Plot of F1-Score vs. Training Epochs (With and Without GAN Augmentation)

In Figure 4, we are able to observe the evolution of F1-scores for two models during their training
epochs. Two models that were used to make comparisons include one which only learns from real data
and the other which learns from real and fake data. Stock market GAN-augmented curve depicts a
steeper and more reliable upward trend, which achieves a plateau at approximately 0.93 by epoch 40;
This performance is of particular importance in healthcare, as the F1-score tells us how well the model
can predict a balance between precision and recall in an imbalanced data set. The plot, therefore,
confirms that GAN-based methods do increase the model’s convergence as well as its ability to
generalise to instances it has not seen before. The anomalies that were identified in the unaugmented
model reflect unstable training compared with the relatively steady learning of introducing synthetic
samples. As a generalization, the graph validates that rich-feature data augmentation provides
significant benefits for rare cancer classifiers.

N N 7N
e DisCriminator Loss
e (Generator Loss

I

20 40 60 80 100
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Loss

Fig.5 Overlayed Line Plot — Discriminator and Generator Loss Over Epochs

As Fig. 5 shows, we plot both generator and discriminator losses during 100 training iterations to
visualize adversarial training. Within the early stages of training, the discriminator demonstrates high
progression, with rapidly diminishing losses; the generator, on the other hand, demonstrates its poorer
learning pace through increased losses. Longer training shows that the losses oscillate about an
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equilibrium value and this demonstrates the GAN’s convergent ability. This trend shows strong
adversarial equilibrium because neither network consistently dominates system dynamics. Smooth
convergence and a stable point of intersection in the curves close to epoch 50 highlight the regular
optimisation of GANs, important for the realistic creation of medical synthetic data. These temporary
fluctuations of loss curves are expected because of the mismatch till the pace of mini-batch sampling
and stochastic optimization. The plot helps to visualize process of training model which demonstrates
successful minimization of the concerns concerning mode collapse and discriminator outperforming the
generator.
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Fig.6 Heat map — Pearson Correlation Between Real and Synthetic Features

In Figure 6, the Pearson correlation coefficients are projected with respect to real over GAN-generated
feature vectors for the top 15 oncological biomarkers. Strong similarity, reflected by prominent diagonal
dominance and correlation coefficients close to 1.0, is evident Major features like BRCA1, EGFR and
HER2 are the most striking. The consistently low values of the off diagonal elements show low level
of feature leakage and negligible cross correlation thus strengthening the above findings. Looking
closely at the heatmap, one can observe that the generator preserved inter-feature similarities that are
typical for cancer data as a whole. The presence of a dark blue and green along the diagonal highlights
a sharp congruency between synthetic and real feature vectors. By using visual encoding, the distinction
between deviations or misrepresentations in the synthetic feature space becomes quite intuitive to find.
This analysis makes it possible to confirm that the synthetic data reflects the real distribution properly
both statistically and from the point of view of biology.

- = = Real Data
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Loss

Fig.7 Line Plot — Classification Loss vs. Epochs (Real vs. Augmented)
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The training loss trends for a deep CNN model during 50 epochs are shown in Figure 7, including real
and augmented data from the GAN. The plot for synthetic data reveals a slow and steady reduction in
loss towards an ultimate stabilized value of about ~0.08 much less than the ~0.23 posted by real-only
group. This demonstrates that data enrichment results in the improvement of model convergence and
lower error rates for bias and variance. The learning stability is improved with more constant curve in
the augmented dataset, which is supported by having a greater number of representative samples. The
oscillations in the baseline model’s performance are indicative of overfitting due to the lack of
representation of uncommon cases. The plot indicates that the GAN-based data augmentation process
contributes to the more efficient feature extraction and reduced model uncertainty accordingly resulting
in improved diagnostic outcomes.

I Real Data
0.95 [ Augmented Data
0.9

0.85

0.8

Score

0.75

0.7

0.65

06
Precision Recall F1 Score

Fig.8 Bar Chart — Comparison of Precision, Recall, and F1 Scores

Again, Figure 8 shows, that the precision, recall, and F1-scores of models differ on real and augmented
data. The augmented data model is routinely shown to be better than the real-data-only model at an
order of gain 12% to 18% across all metrics. The greatest gain (in recall) demonstrates that the model
can be better at identifying real cases of rare cancers (0.72 to 0.91). Such metrics are important in clinics
as even failure to diagnose positively can lead to serious repercussions. The continual performance
enhancement over all metrics shows that the model is retentive of both precision and recall and does
not compromise on one for the other. The figure shows that classifier performance is markedly
improved when GAN-augmented data is used for uncommon diseases.
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Fig.9 Heatmap — Confusion Matrix (Augmented Dataset Classification)
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Performance on the GAN-augmented dataset is shown in detail on Figure 9. Rows signify the actual
classes of rare cancer and while columns represent the predicted classes of the same cancer types. The
matrix indicates clear diagonal dominance with >90% values which imply excellent true positive
performance to each class. Values in off-diagonal cells are small, which means that misclassifications
are rare. Color gradients from deep green to soft yellow clearly separate zones of precisely classified
from areas of errors. The design helps provide an intuitive estimate of the classifier accuracy for clinical
researchers. The matrix shows augmentation guarantees that the results across all classes are reliable,
cutting down on the typical problem where minority classes are not accurately predicted.

Table 2: Input Parameters for GAN Training

Parameter Description Value/Range Applied In

Learning Rate Learning rate  for | 0.0002 Generator, Discriminator
optimizer

Epochs Training cycles 500 GAN Training

Latent Dim (z) | Noise vector size 100 Generator Input

Batch Size Number of samples per | 64 Training Phase
iteration

Lambda Gradient penalty | 10 WGAN Loss

(Penalty) coefficient

Table 2 provides the necessary input parameters that have been used to train the GAN architecture in
regards to synthetically creating medical data. Both the generator and the discriminator are optimized
using a learning rate of 0.0002 to control weight adjustments during optimization, as reported in
previous studies. The algorithm was run for 500 epochs, a figure determined experimentally as optimal
for the convergence process. As with earlier research, we maintain the input noise vector size at 100
using the latent dimension \( z \). 64-wave batch size is selected to achieve the best of training speed
and reliability of the model. In order to guarantee that approximately Lipschitz continuous and to
strengthen the WGAN adversarial training, a gradient-penalty coefficient (A) of 10 is incorporated into
the formulation of the WGAN loss. Such parameter choices represent an exact optimization of the
mentality that drives the generation of very realistic synthetic data.

Table 3: Classification Result Metrics

Cancer Type | Accuracy F1 Score Precision Recall
(%)

Chordoma 91.2 0.89 0.85 0.93

Thymoma 88.7 0.87 0.82 0.92

Ovarian Carc. | 94.1 0.91 0.90 0.92

Sarcoma 90.5 0.88 0.84 0.91

Mesothelioma | 89.8 0.86 0.83 0.89

As an overview of the evaluation metrics for five rare forms of cancer, Table 3 presents the findings
when GAN-generated data is used in a classification model. The model presents staggering overall
accuracy, reaching 94.1% for ovarian carcinoma and presenting results that are extremely promising
for both chordoma (91.2%) and sarcoma (90.5%). F1 scores, which combine the precision and recall
measures, lie in a reliable range of 0.86 - 0.91 indicating good performance across difficult class
distribution. Both of them pertain to precision and recall, which are robust across the dataset implying
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that the classifier provides reliable results for both confirming positives and mining out a wide variety
of relevant information. Collectively, these results prove the utility of the use of synthetic data to
improve the diagnostic accuracy of models of rare oncological conditions.

6. Conclusion

Genrating Adversial Networks (GANSs) are employed in this study to demonstrate the possibility of
addressing the usual deficiency of scarce and unbalanced data in novel cases of oncology classifications.
By synthesizing medical data in various forms (imaging, genomic, and tabular), the work demonstrates
that GAN augmenta-tion significantly improves the ability of the classifier to do a good job when data
is scant. Based on metrics of statistical fidelity and clinical realism, this work corrobo-rates that
simulated data creates an effective increase in model sensitivity, specificity and global accuracy. In
addition, the fact that synthetic data preserves essential clin-ical values without imposing biases or
distortions voices the possibility concerning GANs usage in actual diagnosis practices. The current
research supports the urgent demand for multi-modal synthetic data in order to increase the robustness
and gen-eralization skills of classifiers in rare cancer classification. However, major difficulties remain
particularly regarding the scalability of the GAN-based approaches to multi-ple datasets and clinical
settings. Further investigation is necessary to create more advanced GAN architectures to work with
huge and complex medical data sets. It will be critical to have synthetic data created with interpretable
outputs and open processes for clinical application. The improvement of cross-modality GAN models,
intended to bridge the data heterogeneity, is promising in terms of increasing the gen-eralizability of
classifiers in this field. Looking forward, the researchers will focus on improving privacy-preserving
GAN paradigms in order to provide synthetic data gen-eration in decentralized or regulated form, where
data protection standards are strict, without compromising the quality of research enhancement.
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