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ABSTRACT

Quantum computing plays a significant role in simulating molecules and atoms and offers advantages in chemistry
over classical computing. The potential of Quantum Machine Learning (QML) can be used in drug discovery,
chemical reaction simulations, and Material design for pharmaceuticals. QML leverages quantum computing and
advanced machine learning to accelerate the identification of drug candidates, predict molecular interactions, and
optimize compounds. In this paper, we present a systematic review of the methods used for molecular property
prediction and molecular generation using quantum machine learning. We have included the recent research,
perspective, advantages, and challenges that must be addressed to achieve this task. The objective of this research
is not only to discuss current strategies and methods used for drug discovery but also to promote interdisciplinary
research in the field of quantum computing and chemistry for wellness.

Keywords: Quantum Machine Learning, Drug Discovery, Molecular Simulation, Molecule Generation, Noisy
intermediate-scale Quantum (NISQ).

1. Introduction

Identifying a new therapeutic drug requires extensive calculations, deep analysis of data, and simulation
of molecular structures so that biological interactions can be predicted and optimized. These tasks,
particularly those involving quantum chemistry, are too intricate for classical approaches to manage.
QML has the potential to improve the drug discovery process due to the power of quantum computing
integrated into machine learning. We have witnessed that quantum computers have surpassed classical
computers in solving many difficult problems, such as factorization of large prime numbers and
searching in unstructured databases [1,2]. The implementation of quantum computing is being explored
in agriculture, finance, communication, space, transportation, energy, and healthcare. Quantum
computing uses quantum phenomena such as superposition, interference, and entanglement to process
quantum information. In the early 1980s, Richard Feynman showed computation using quantum
information [3], which enabled the development of quantum hardware. Today, many countries and
organizations are developing quantum computers with different technologies such as superconducting
qubits, trapped ion-based qubits, photonics-based qubits, and neutral atom qubits to surpass the classical
computing limitations [4-8]. Companies like Google, IBM, and Rigetti are developing quantum
hardware, and there are also software frameworks like Qiskit (IBM) and Cirq (Google) that help
programmers run quantum algorithms.
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Quantum computing uses qubits to process information. Unlike classical bits, qubits can simultaneously
be in the state of 0 and 1, which enables quantum computing to process large amounts of data much
faster than classical computers. Qubits are represented as a point on the Bloch sphere. A qubit is
typically represented as a vector in a two-dimensional Hilbert space. In quantum mechanics, the state
of a qubit can be written as a superposition of the basis states (|0) and |1))

[y)=al0)+BI1) @)

Where |y) is the quantum state of the qubit, |0) and |1) are the basis states. o, and  are complex numbers
that represent the probability amplitudes of the qubit being in state |0} or | 1), respectively. Entanglement
is another crucial phenomenon of qubits. When two or more qubits become entangled, their quantum
states are no longer independent. The state of one qubit can depend on the state of another, even across
large distances. For example, consider two qubits in the entangled state:

|D+ :%(|00>+|11)) )

This means that if we measure the first qubit and find it in state |0), we know that the second qubit will
also be in state [0), and vice versa for |1).

Generally, drug discovery for any disease takes years and costs millions of dollars, because
simulating molecules is typically hard on classical computers. When quantum computing meets
machine learning, a new discipline emerges: quantum machine learning. Quantum machine learning
methods, such as deep generative and discriminative GANs, CNNs, and VAE can be used to generate
small drug molecules classify binding pockets in proteins, and generate large drug molecules [9].
Quantum machine learning is extensively used in chemistry to simulate the ions for finding the excited
and ground states [10]. Quantum algorithms running on NISQ devices open avenues for the study of
material design [11], protein folding [12], and chemical reaction dynamics [13]; these components are
critical for drug discovery. The main contribution of this paper is that it provides a detailed systematic
review of current methods and strategies that are being studied for drug design and discovery. It
promotes interdisciplinary research in quantum computing and chemistry. This paper also highlighted
the current challenges and future scope in drug design.

The paper is organized as follows. The first section is Introduction. In section 2, a comparison
is made between quantum and classical simulations for drug discovery. In section 3, we have covered
the literature review and previous work. Section 4 is a discussion about the approach and strategies used
for this task. In section 5, current challenges and future scope are discussed. Finally, the conclusion is
made in the last section.

2. Conventional ML vs Quantum ML approach

Conventional machine learning methods in drug discovery utilize deep neural networks, graph models,
and generative models in conventional computing platforms. The methods can handle big data in the
form of genetic sequences, clinical data, and molecular conformations. For example, deep learning
platforms are conventionally utilized to predict drug-target interactions, chemically optimize structures,
and determine molecular properties like toxicity and solubility [14]. Graph neural networks preserve
structural information about activities like binding affinity prediction and virtual screening using the
representation of molecules as graphs [15]. New drugs with targeted pharmacologic properties have
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also been developed effectively using generative models such as generative adversarial networks
(GANSs) and variational autoencoders (VAEs). Though development has taken place, the conventional
methods have not yet comprehensively accounted for the quantum component that defines molecular
interactions. Figure 1 shows a deep learning-based drug discovery pipeline that demonstrates the main
stages from data collection to molecule representation, model training, and prediction. Advanced neural
architectures are used at each stage to ensure accurate and efficient compound screening.

Data Collection
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or graph-based
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predict molecular
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Figure 1. Deep learning-based workflow for drug discovery, from data preprocessing to compound
screening

Quantum machine learning is seeking to solve some of these challenges by using the properties of
quantum mechanics to enhance model processing power. Since molecules are quantum systems,
quantum algorithms are better placed to simulate them than classical models. VQC and quantum kernel
methods are employed to produce models that learn from small sets of data and make more accurate
predictions [16]. Quantum generative models like quantum GANs and hybrid quantum-classical VAEs
are under exploration to create new molecular structures by mapping structural properties to quantum
states [17]. Hybrid methods that cycle quantum circuits and classical deep learning models are trying
to leverage the strengths of the paradigms while avoiding the weaknesses of near-term quantum
hardware. Table 1 provides a technical comparison of classical and quantum machine learning
approaches in drug discovery.

While CML has come to a point of maturity and is being extensively used in real-world problems, QML
holds tremendous promise in addressing problems that are challenging for traditional computers,
especially in applications of complex molecular interactions. With the evolution of quantum hardware,
quantum machine learning is set to become an efficient and effective tool.
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Table 1: Comparison of classical and quantum machine learning approaches in drug discovery.

Aspects Conventional ML Quantum ML
Representation of | Vectorized features, SMILES, | Quantum states using amplitude or angle
data molecular  structures,  graph | encoding
structures
Methods to be used | CNN, RNN, Transformer, VAE, | Variational Quantum Circuit (VQC),
GAN Quantum Kernel, Hybrid Quantum-
Classical Network
Optimization Gradient descent with | Hybrid optimization (quantum circuits +
technique used backpropagation classical optimizer)
Computation Operates on classical bits, | Exploits quantum phenomena like
mechanism deterministic or stochastic model | superposition and entanglement
Tasks Property prediction, de novo drug | Quantum-enhanced property prediction,
design, DTI prediction quantum  simulation of molecules,
quantum generative design
Type of data Large labelled datasets, extensive | Potentially lower data requirements due to
pre-processing quantum advantage in expressivity
Issues Scalability, interpretability, | Hardware limitations, noise, and the
inability to model quantum | limited number of qubits.
interactions

In Figure 2 we show the workflow of quantum machine learning used in drug discovery. In the first
step, we need to choose the relevant dataset such as proteins and drug-like molecules. Due to the limited
number of available qubits, the dimensionality reduction technique is applied. Available data is in
classical form so there is a need to convert this data into quantum states. Several encoding approaches
such as amplitude or angle encoding schemes are used for this task. Quantum algorithms are applied
that transform data and measurements are taken.
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Figure 2. General process flow diagram for the hybrid quantum-classical algorithm.

3. Literature Review

Quantum computing has long been used more efficiently than traditional methods to simulate molecular
systems. Aspuru-Guzik et al. [18] discussed the concept of a quantum simulator for the electronic
structure problem. They showed the superiority of the quantum system over the classical approach in
molecule modelling. In [19], the authors used a variational quantum eigen solver (VQE) to solve the
small molecules problem, which illustrates the practical implementation of quantum algorithms in
chemistry. There are three important tasks where the QML techniques play a crucial role in the field of
drug discovery.
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a. Molecular Property Identification: Identifying molecular properties, such as toxicity, solubility, and
reactivity, is an important step for drug discovery, for which QML gives promising results. In [20],
the authors applied a SMILES-based string kernel combined with a quantum support vector classifier
to identify the ADME-Tox features of small molecules. They achieved ROC and AUC of 0.95 and
0.80 respectively, far better than the conventional counterpart techniques. Quantum variational ML
models are widely used nowadays, but they face the problem of trainability because of vanishing
gradients. To avoid this issue [21], they used Quantum Reservoir Computing (QRC) in gradient
computation not required at the quantum hardware level.

a. Drug-Target Interaction (DTI) Prediction: DTI is a process in which the drug molecule binds to or
affects a biological target (enzyme, receptor, or protein). Ruolan Chen et al. [22] published a research
article using a quantum version of SVM combined with a Variational Quantum Classifier (VQC) for
the DTI task. It shows enhanced accuracy on small datasets. In [16], the authors used a hybrid
quantum-classical deep learning model for binding affinity prediction in drug discovery. This
approach integrates a 3D spatial graphical CNN with an optimized quantum circuit. Quantum
simulation results depict a 6% improvement in prediction performance and are more stable compared
to their classical counterpart. The main aim is to find the dosage that maximizes the benefits and
minimizes the serious side effects of drugs. CNN can help in the selection of a drug, but it requires
a lot of data for training. So the objective is to find out the ML model that requires less data to train.
A hybrid quantum neural network can be an option if the amount of training data is less. In [23],
they proposed a hybrid approach of QCNN for drug effect prediction with 363 layers and 8 quantum
bits applied to a cancer dataset. The obtained result surpasses the conventional ML techniques by
15%.

a. Molecular Generation and Design (de novo Drug Design): Sometimes it is necessary to generate
new drug-like molecules. Generative models like GANs and VAEs are widely used to do this task
but transforming them into huge chemical spaces is quite challenging. Quantum GANs and Quantum
Boltzmann Machines (QBMs) are the most popular models to generate molecular structures more
efficiently. Traditional GAN can identify drug candidates with the use of physical and chemical
properties and show affinity to binding with the receptor for therapeutic effect. However, classical
GANSs struggle with training difficulties and are unable to explore specific areas of the chemical
space. The enormous size of the area of search, which is made up of thousands of parameters,
restricts the models' practical relevance. Even to create a small molecule with up to 9 dense atoms,
a complete quantum GAN could require over 90 qubits. In [17], A hybrid quantum generator, which
allows different numbers of qubits and quantum circuit layers, along with a classical discriminator,
makes up the quantum GAN with a hybrid generator (QGAN-HG) model. Less than 20% of the
initial parameters are needed for the QGAN-HG to learn molecular distributions as effectively as its
classical version. In [24], a mixed quantum-classical framework for molecular design that blends
deep generative models with quantum computation. The researchers created a compact discrete VAE
with a latent layer that incorporates a Restricted Boltzmann Machine (RBM). By addressing the
large and intricate structure space of drug-like molecules, this method seeks to improve the
effectiveness of de novo drug discovery procedures.

4. Discussion

We are witnessing rapid growth in the number of available qubits, optimized quantum algorithms, and
reduced error quantum hardware. It is widely believed that in the near-term future, we will achieve
quantum supremacy in simulating molecules for drug design. From the previous studies, we have seen
that Quantum Machine Learning simulation can be helpful in drug discovery and design. With the help
of the expressive power of quantum circuits, we can simulate and predict the behaviour of complex
molecular systems. Quantum machine learning-based simulation can significantly reduce the time and
cost for drug discovery. QML can help in the optimization of chemical reactions and the study of
molecular structure.
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Figure 3. A detailed diagram of the process of Quantum Machine Learning (QML) for drug discovery

Fig.3 is a detailed explanation and working architecture of the procedure of the drug discovery pipeline.
Quantum neural networks (QNN) and their newer variants such as QCNN and QLSTM have commonly
been employed for drug discovery. QML helps in the early prediction of a molecule's potential for
suitable drug candidates which is essential for reducing cost and time. The performance of the QML
algorithm heavily depends on the selection of data embedding techniques [25,26]. For better
performance, we must select suitable embedding methods depending on the nature of the data.
Additionally, as the number of available qubits is less than the number of features in a dataset, to
accommodate important features we have to apply dimension reduction policies such as PCA and
Autoencoder as it also affects the performance of quantum algorithms.

5. Challenges and Future Directions

Advancements in quantum computing and its allied quantum machine learning offer significant
progress in drug discovery. However, the use of QML in drug design still faces challenges that need to
be entertained for efficiency.

Challenges:

e Hardware: A limited number of available qubits and short coherence time are restricting
quantum machine learning-based simulation in drug design.

e Noisy Qubits: Today's available qubits are noisy, which causes significant errors in measuring
qubits. To mitigate this challenge we must have more sophisticated error-correcting codes. The
development of a more noise-resilient qubit system will lead to the modelling of more complex
structures.

e Data Embedding: Drug discovery requires a large, high-quality, and curated dataset. For multi-
dimensional data, more robust data embedding will be needed, such as Density Matrix
Embedding Theory, to study complex molecular systems and characterize the energies of the
proteins.

e Quantum algorithms: Many quantum algorithms such as VQE are computationally expensive
and need to be optimized.

Future Scope:

¢ Methods to overcome non-trainability, barren plateau, and gradient computation must be
explored. Curated datasets must be prepared and made available to the public.

e Quantum Generative Adversarial Networks (QGANS) and quantum variational autoencoders
could design novel molecular structures with desired properties.

¢ Quantum Boltzmann machines can be explored for generating chemically viable drug
candidates.
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e Use of quantum computing to speed up molecular dynamics simulations, enabling real-time
modelling of protein-ligand interactions.

o Exploration of quantum algorithms for free energy calculations is required which is crucial for
drug binding affinity predictions.

e Inter-discipline research collaboration is required between experts from both fields. Open
source drug discovery framework must be developed to enable innovations.

6. Conclusion

In recent years, we have seen steady growth in the use of machine learning based methods for drug
discovery. Drug discovery using quantum machine learning is no longer a concept but an
implementation. Though QML is in its early stage, we have seen a variety of applications in
pharmaceutical and drug design, such as machine learning-based small molecule simulation and
molecular force field generation. In this paper, we have summarized the study of quantum machine
learning models such as QGANs, QLSTM, and VAE for drug discovery. In our study, we have found
that a mostly hybrid approach is employed for this task. We conclude that the effectiveness of QML
methods over classical ML for drug discovery is a topic of discussion, under which conditions QML
outperforms its classical counterparts. We believe that our work will provide an overview of recent
advancements in this field. We have highlighted the limitations that restrict breakthroughs in this field.
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