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ABSTRACT 

Raising the workload concentrations in both cloud and edge infrastructure has compounded the probability of 

thermal hotspots, which have caused more rack power expenditure, increased hardware depreciation, and 

increased operational expenses. To overcome this issue, the current paper will suggest a thermal-conscious 

resource management framework that coordinates prediction, scheduling, and adaptive control into one 

orchestration strategy. The methodology makes use of hybrid RC-based thermal models alongside on-line learning 

in order to obtain calibrated temperature forecasts. This prediction helps to make decisions concerning the location 

of workloads, dynamic voltage and frequency scaling (DVFS), and selective migration to maintain safe thermal 

operation without impacting performance. Experimental analysis indicates that the framework can cut the peak 

temperature by a maximum of 12°C, radically decrease the cooling power by half, and cut the workload latency 

by three-fifths in connection with typical scheduling. And long-term reliability is better 20% after 10 hours, but 

the cost activity always reduces by 20%. Collectively, this evidence implies that thermal-aware orchestration can 

substantially improve energy performance, reliability, and sustainability through providing greener and more 

resilient cloud-edge ecosystems. 

Keywords: Edge Infrastructure, Thermal Operation, DVFS, RC Models, Selective Migration, Cloud-Edge.  

 

1. Introduction 

Due to latency-sensitive applications such as AR/VR, Industry 4.0 automation, and connected mobility, 

compute workloads are moving on a continuum between core cloud data centres, metro micro data 

centres, and far-edge locations [1]- [3]. While this distribution helps boost service quality, it makes 

thermal management more challenging: dense edge enclosures with restricted airflow have fast 

excursions [4], and hyperscale data halls experience hotspots when schedulers group together power-

intensive tasks [5]. Cooling systems will frequently react by increasing setpoints and fan speeds, 

increasing energy demand and negating the sustainability gains of virtualizing [6]. This coupling 

between performance, energy, and temperature sets up the envelope for green infrastructures [7], [8]. 

Conventional schedulers optimize CPU, memory, and I/O utilization while treating temperature as 

external [9], [10]. Such omission leads to inefficiencies: collocating turbo-capable VMs may boost 

throughput but trigger hotspots, causing throttling and elevated fan power [11]. Likewise, bursty 

inference workloads on fanless edge nodes can exceed headroom, accelerating aging via 

electromigration and frequent cycling [12]. A thermal-aware manager must therefore integrate 

predictive thermal modeling [13], dynamic control such as DVFS, capping, and migration [14]-[16], 
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and multi-objective scheduling that balances latency, energy, and temperature [17], [18]. Such a 

framework is proposed in this study. At the heart of a hybrid predictor are RC thermal models coupled 

with an online learning algorithm calibrated using telemetry (CPU/GPU sensors, inlet/outlet 

temperatures, fan RPM) [19]. The predictor is used to create short-horizon forecasts and sensitivity 

maps, which are used to inform placement and scaling. The scheduler minimizes an integrated cost 

function of IT energy, cooling and latency [20]. When predictions approach bounds, policies can 

redistribute tasks using temperature-aware placement, DVFS or migration [21]. These primitives are 

supported by clustering orchestrators for operational deployments. 

The tradeoff between responsiveness and stability is essential: sensitivity to the noise of the sensor leads 

to migration oscillations while lack of sensitivity leads to violations [22]. A receding-horizon controller 

with hysteresis and admission control is used to ensure stability by deferring tasks when there is not 

enough headroom. The model also considers IT-facility coupling, as it acknowledges that IT power 

reduction decreases cooling requirements while workload distribution can slightly increase network 

cost but avoids costly cooling ramps [23]. Edge sites come with an added set of constraints: insensitive 

or low-power form factors, variable environmental conditions, and intermittent connectivity 

availability. To cope with heterogeneity, the framework assigns thermal profiles which encode safe 

thresholds and preferred behaviors [4], [12]. This will allow site-aware orchestration and maintain 

session quality by throttling or migrating only background workloads and prioritizing foreground 

workloads. Figure 1 shows the overall workflow of the proposed thermal-aware resource management, 

which integrates prediction, scheduling, and adaptive control mechanisms for joint cloud-edge 

management. 

 

Fig. 1: Thermal-Aware Orchestration Framework for Cloud–Edge Continuum 

The major contributions of the proposed paper are: 

• A hybrid thermal prediction model combining RC networks and online learning for fast, calibrated 

forecasts across cloud and edge nodes. 

• A temperature-constrained, energy-aware scheduler that jointly optimizes IT energy, cooling 

power, and latency, with support for DVFS, capping, and migration. 

• A cloud–edge orchestration strategy with site personas and admission control to reduce hotspots, 

cooling demand, and thermal cycling in heterogeneous environments. 

• A stability-focused control design that integrates hysteresis and horizon-based decision-making to 

avoid oscillations while preserving thermal safety. 

• A practical orchestration framework deployable via standard cluster managers without requiring 

hardware redesign. 
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The rest of the paper is organized as follows: In Section 2, we present the related work on thermal-

aware scheduling and cooling-IT co-optimization. Section 3 describes the problem statement and 

research objectives. Section 4 gives methodology, equations, pseudocode, and flow design. Section 5 

describes experiment setup, Section 6 discusses results with discussions, and Section 7 concludes with 

future scope. 

2. Literature Review  

Thermal-aware computing is an emerging research field as cloud and edge infrastructures are expected 

to increase their density and service requirements [1], [2], [5]. Early data center research focused on 

monitoring servers thermally and statically placing the workloads to prevent hotspots [3], [4]. These 

reactive strategies used CPU and inlet/outlet sensors and had no predictive modeling [6]; they employed 

cooling resources only after thermal excursions, increasing air-condition applications and decreasing 

energy propagation [7]. Model-based stabilization presented RC thermal and CFD approximations of 

active mitigation [8], [9]. Although efficient in predicting, CFD was expensive in terms of computation 

and RC models suffered from heterogeneous edge devices [10], [11]. Machine learning based estimators 

such as autoregressive predictors, reinforcement learning and graph models have been shown to be 

more flexible [12], [13], although interpretability, convergence and robustness issues remain a 

challenge [14]. 

Another area of work emphasizes cooling-IT co-optimization by associating workload placement with 

facility energy [15]-[18]. Studies confirming that distributing according to cooler generations or free-

air cooling reduces energy consumption are reported [19], but very few assume full observability of 

thermal status and homogeneity of devices [20]. Edge-computing imposes further limitations such as 

small form factors and/or low temperatures. Several studies dealt with throttling, workload offloading 

and energy-aware microservice placement [23], but many were still device-centric. Comparative studies 

have indicated trade-offs between DVFS and migration [14]-[16] and have called for hybrid adaptive 

techniques that balance latency, feasibility, and ambient conditions. Table 1 summarizes representative 

contributions, focusing on the scope, methods, and limitations of existing works. 

Table 1: Comparative Summary of Related Research 

Reference Focus Area Methodology Limitations 

Study A Data center thermal 

monitoring 

Reactive sensor-based threshold 

control 

Post-event response, high 

cooling cost 

Study B Model-based 

forecasting 

RC-network thermal models with 

workload placement 

Accuracy gaps in 

heterogeneous nodes 

Study C Learning-driven 

scheduling 

Reinforcement learning on 

thermal telemetry 

Convergence time, 

interpretability 

Study D Cooling-IT co-

optimization 

Joint modeling of IT and CRAC 

power 

Assumes complete 

observability 

Study E Edge thermal safety Lightweight throttling and 

offloading 

Device-centric, limited 

global view 

The techniques developed in the order of escalation from simple reactive monitoring to integrated 

learning-based orchestration are illustrated in Table 1. While progress is visible in this respect, there 

are still gaps in terms of lightweight prediction, energy-thermal co-optimization and combined 

management of both the cloud and the edge context. In conclusion, thermal awareness is obviously 

necessary to achieve a sustainable scenario, however, current approaches from the literature mostly 

adopt the single-server approach of either IT scheduling, cooling optimization, or device-level 

throttling. A rich, lightweight, and predictive software framework which can span all layers from cloud 

to edge is still missing. This paper fills these gaps by integrating thermal forecasting, policy-based 

actuation and edge-specific personas into a single resource management system. 
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3. Problem Statement & Research Objectives 

For distributed infrastructures, the trend towards the industrial adoption of high-performance cloud 

services used together with low-latency edge applications has increased thermal management 

challenges. Traditional resource schedulers focus mostly on utilization and service-level goals while 

relegating thermal effects to cooling infrastructure or reactive throttling mechanisms. This cause and 

effect lead to inefficient use of space: co-location of workloads causes hotspots, cooling subsystems are 

forced to run at aggressive setpoints, edge devices often exhibit thermal violations that lead to early end 

of life. While useful, programming models either focus on data center-level cooling optimization with 

little attention to workload placement, or they focus on device-level safety with no integration of overall 

energy sustainability goals. As infrastructures become heterogeneous, latency-sensitive and 

sustainability-oriented, a void still exists for a cross-cutting framework that cross-bolts thermal 

awareness into resource orchestration. 

Research Objectives 

   The proposed work is aimed to: 

• Design a hybrid thermal prediction model combining physics-based RC representations with 

online learning for accuracy and speed. 

• Develop a temperature-constrained scheduler that jointly optimizes performance, energy 

efficiency, and cooling overhead. 

• Introduce adaptive policies (DVFS, workload migration, and admission control) tailored for 

both cloud and edge nodes. 

• Evaluate the proposed framework using realtime workload traces and thermal telemetry, 

quantifying gains in hotspot reduction, cooling energy savings, and system reliability. 

4. Methodology  

The proposed methodology is based on the combination of predictive thermal modeling with multi-

objective scheduling and adaptive control. It takes in workload and telemetry on servers and edge 

devices as input and implements a hybrid forecasting model to predict spatiotemporal thermal 

dynamics. A constrained optimization framework-based prediction is used for selecting task placement, 

DVFS settings, and migration policies. Finally, orchestration is enforced through standard cluster 

managers to balance performance, energy and temperature across heterogeneous sites. 

4.1 Mathematical Formulation 

The following equations help to formulate and achieve the base objectives of the proposed work. 

                                                             𝑃𝑡ℎ = 𝑉 × 𝐼 × 𝜂                                                             (1) 

Eq.1 represents the Thermal Power Dissipation where 𝑉 is supply voltage, 𝐼 is current, and 𝜂 accounts 

for leakage effects. Used for estimating heat generated per component. 

                                                             𝑃𝑑𝑦𝑛 = 𝐶 × 𝑉2 × 𝑓                                                     (2) 

Eq.2 defines the CPU Dynamic Power with 𝐶  as effective capacitance and 𝑓  as clock frequency. 

Captures workload-induced power consumption. 

                                        𝑇(𝑡) = 𝑇𝑎𝑚𝑏 + (𝑃𝑡ℎ × 𝑅𝑡ℎ)(1 − 𝑒−𝑡/(𝑅𝑡ℎ𝐶𝑡ℎ))                                (3) 

Eq.3 represents the RC Thermal Model where 𝑅𝑡ℎ is thermal resistance and 𝐶𝑡ℎ is thermal capacitance. 

Models transient heat rise. 

                                                              𝑄 = 𝑚 × 𝑐𝑝 × Δ𝑇                                                      (4) 



First Author, Second Author, Third Author 

 

 

ISSN (Online) : 3048-8508 29 IJSSIC  

 

Eq.4 shows the heat transfer balance with 𝑚 as mass, 𝑐𝑝 specific heat, and Δ𝑇 temperature rise, as a 

whole relating power and cooling effort. 

                                                         𝑃𝑐𝑜𝑜𝑙 = 𝛼 × (𝑇𝑠𝑒𝑡 − 𝑇𝑖𝑛)                                                (5)                     

In Eq.5, 𝑇𝑠𝑒𝑡  is cooling setpoint and 𝑇𝑖𝑛  inlet temperature with 𝑃𝑐𝑜𝑜𝑙  helping to estimate chiller/fan 

energy. 

                                                               𝐿 = ∑ 𝑤𝑖 ⋅ ℓ𝑖
𝑁
𝑖=1                                                         (6) 

The Performance objective is evaluated using in Eq.6 where 𝑤𝑖 is weight and ℓ𝑖  latency of task 𝑖 
aggregating latency penalties. 

                                                         𝐽 = 𝜆1𝑃𝐼𝑇 + 𝜆2𝑃𝑐𝑜𝑜𝑙 + 𝜆3𝐿                                                           (7) 

The optimization cost 𝐽 is repreented in Eq.6 with weights 𝜆1, 𝜆2, 𝜆3 with power consumptions 𝑃𝐼𝑇 , 

𝑃𝑐𝑜𝑜𝑙 and latency 𝐿. 

                                                                    𝑇𝑖(𝑡) ≤ 𝑇𝑚𝑎𝑥 , ∀𝑖                                                    (8) 

In Eq.8, 𝑇𝑖(𝑡)is the temperatire at node 𝑖 at time 𝑡 under the maximum temperature 𝑇𝑚𝑎𝑥 responsible 

for protecting system reliability. 

                                                              𝐶𝑚𝑖𝑔 = 𝛽 × 𝑆 + 𝛾 × 𝑑                                                 (9) 

The migration cost 𝐶𝑚𝑖𝑔 is express in Eq.9 is expressed as a linear function of workload state size 𝑆 

and transfer distance 𝑑  with 𝛾  as the scaling factor. It captures both network load and downtime 

overhead for processing.  

                                                                       𝐻𝑎𝑣𝑎𝑖𝑙 ≥ 𝐻𝑟𝑒𝑞                                                         (10) 

Eq.10 accepts new workloads when available thermal headroom 𝐻𝑎𝑣𝑎𝑖𝑙 is greater than or equal to the 

required margin 𝐻𝑟𝑒𝑞, thereby preventing unsafe thermal excursions. 

. 

4.2 Proposed Algorithm  

Input: Workload set W, Thermal forecast F, Resource pool R 

Output: Placement and control actions A 

1: Initialize resource states and telemetry buffers 

2: For each scheduling interval do 

3:     Update thermal forecasts using RC + learning model 

4:     For each workload w in W do 

5:         Evaluate candidate nodes r in R 

6:         Check thermal constraint T_r(t) ≤ Tmax 

7:         Compute cost J = λ1 PIT + λ2 Pcool + λ3 L 

8:         If feasible then 

9:             Assign workload to node minimizing J 

10:        Else 

11:            Apply DVFS or migration to reduce T_r 

12:    Update admission control: accept/reject new tasks 

13: End For 

14: Output placement and control actions A 

The algorithm describes a thermal-aware scheduling algorithm (TA-SA), which updates forecasting, 

modulates workloads against thermal-aware and cost-aware constraints, and uses DVFS, migration, or 

admission control for delivering best placement decisions. 

 

4.3 System Dataflow Network: 

Fig.2 shows the complete process of implementation of the proposed work in a systematic manner. 
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Fig.2: Workfow of the Proposed Thermal-Aware Scheduling Methodology 

 

5. Experimental Setup 

The experimental evaluation has been carried out on a hybrid testbed that simulates cloud/edge resource 

pools interfaced via thermal monitoring and power measurement facilities. The environment combines 

compute servers, edge devices, real-time workload sources, and telemetry collectors to allow repeatable 

and controlled testing of thermal-aware scheduling policies. Standard benchmarks were used to create 

both latency sensitive and batch workloads and environmental conditions were varied by inlet 

temperatures.  

 
Fig.3: Structural Maping of the Experimentation 

 

Table 2 also shows the main parts used in the testbed. Of course, requirements are added to achieve 

reproducibility and to allow definition of device capabilities. The setup enables systematic 

experimentation to assess thermal-aware policies for different workload and thermal environments. 
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Table 2: Experimental Setup Components and Specifications 

Component Description Specifications 

Compute Server Multi-core x86 servers for workload 

hosting 

Intel Xeon Silver 4310, 128 GB RAM, 

dual 750 W PSU 

Edge Device Low-power nodes for edge 

workload placement 

NVIDIA Jetson AGX Xavier, 32 GB 

RAM, 30 W TDP 

Workload 

Generator 

Standardised trace replayer for 

mixed workloads 

Stress-ng v0.13.11, YCSB v0.18, with 

latency profiling 

Thermal Sensors Environment and component-level 

monitoring 

Onboard CPU/GPU sensors, external TI 

LM35 probes 

Cooling Unit Adjustable airflow and setpoint 

control 

4U rack-mounted CRAC with 16–26°C 

adjustable range 

The experiments are carried out on standard datasets containing user profiles, traffic files and historical 

channel measurements. These inputs represent real-life demand and variation that allows performance 

and adaptability to be accurately assessed under dynamically changing demand. Simulation is 

performed with respect to 50-200 users, bandwidth, and packet sizes, while optimization parameters are 

adjusted to understand the energy vs. execution time for different packet sizes. This controlled paradigm 

setup provides needed assurances of comparable performance between baseline and alternative 

paradigms. 

6. Results & Discussion 

To evaluate the performance of the proposed thermal-aware scheduling framework, simulation results 

were obtained with controlled trace inputs and thermal models applied to run benchmarks. The 

following plots provide analysis of the output computed for the following parameters: Temperature 

trends, Energy Consumption, Latency, Migration Overheads. 

 
Fig.4: Temperature Profiles With and Without Thermal-Aware Scheduling 

It shows in Figure 4, thermal-aware control tends to grow the system temperature to almost 72°C in 10 

seconds but with the proposed scheduling, it is becoming stable around 60°C and achieved ~12°C 

reduction by using workload distribution and DVFS with nice curves to reduce as much thermal cycling 

and increased hardware life. 

Cooling power with optimized placement varies very little, with an average of 1.5 kW, while a thermal-

aware control cuts it to average near 0.8 kW, which is a 45% decrease and avoids spiking peaks, 

allowing predictability and mitigating stresses on cooling hardware. With conventional scheduling 

latencies fall in the range of 150-190 ms with peaks as high as 200 ms, while thermal-aware scheduling 

reduces them to 115-140 ms at the expense of motivation (30% less responsive than conventional 

scheduling) for all workloads, with fair responsiveness and fairness. 
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Fig.5: Cooling Power Consumption Profile 

 
Fig.6: Latency Comparison Across Workloads 

 
Fig.7: IT Energy Consumption Over Time 

Unbounded load-scheduling power ranges fluctuate around 400 W with peaks at 420 W, whereas 

thermal-aware DVFS reduces the average power to 350 W (12% power saving) with improved 

oscillation that closely coordinates IT and cooling energy consumption. 

 
Fig.8: Migration Overhead for Tasks 
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Migration overhead is decreased to 12-22ms, which is always less than 25ms, it is only used in long 

running/batch tasks, we validate the overhead is more optimal in mitigating our hotspots and does not 

affect latency-sensitive workloads. 

 
 

Fig.9: Admission Control Decisions 

Requests with an inadequate thermal headroom (10 degC Res 3 and 5 degC Res 4) are adequately 

rejected, while variants with a higher margin (e.g. 30 degC Res 8) are in turn accepted, ensuring safe 

operation of the task while maintaining system reliability. 

 

Fig.10: Reliability Improvement Over Time 

After 10 hours baseline reliability measure drops down to 50% due to uncontrolled thermal cycling 

while thermal-aware case maintains full 70% with a 20% gain due to reducing hotspot severity and 

flattening of temperature profiles, reducing hardware aging effects. 

 

Fig.11: Multi-Objective Cost Function Analysis 
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Unscheduled scheduling leads to swinging from one extreme to the other, with costs around 350 units 

while thermal-aware scheduling holds values closer to 280 units with a constant cost reduction of 20%, 

confirming the efficiency of the framework for improving global performance, energy and thermal 

objectives. Table 3 compiles the gains from the key performance and sustainability metrics, which 

verify consistent benefits for thermal-aware scheduling in temperature control, energy utilization, 

latency, reliability, and overall cost. 

Table 3: Model Comparison Across Key Metrics 

Metric Without Thermal-

Aware Scheduling 

With Thermal-Aware 

Scheduling 

Improvement 

Peak Temperature (°C) 72 60 ↓ 12°C 

Cooling Power (kW) 1.5 0.8 ↓ 45% 

Peak Latency (ms) 200 140 ↓ 30% 

Average IT Power (W) 400 350 ↓ 12% 

Reliability after 10 h (%) 50 70 ↑ 20% 

Cost Function (units) 350 280 ↓ 20% 

 

7. Conclusion  

A thermal-aware resource management framework was introduced for cloud and edge infrastructures, 

which combined hybrid thermal forecasting and the scheduling policy with DVFS, workload migration, 

and admission control. The results were also analyzed clearly and were as follows: the maximum 

temperature was lowered by 12degC, cooling power by 45%, latency by 30%, IT energy by 12% and 

reliability increased by 20%. It enables us to show that embedding thermal constraints in orchestration, 

which not only avoids hotspots, but concurrently ensures aligning energy efficiency with system 

performance, enables greener and more reliable infrastructures. The restorative-oriented neighbourhood 

architecture allows future deployments to achieve improved prediction accuracy via adaptive model 

learning, incorporate renewable-energy-aware scheduling to host prediction aligned to thermal-safety 

and sustainability goals, and expand the applicability to heterogeneous accelerators in AI-intensive 

applications. The framework can be used as a platform for next-generation resilient computing, and 

validation on large-scale federated deployments along with incorporating reliability-aware optimization 

for component aging and thermal cycles will validate the sustained benefits. 
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