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ABSTRACT

Raising the workload concentrations in both cloud and edge infrastructure has compounded the probability of
thermal hotspots, which have caused more rack power expenditure, increased hardware depreciation, and
increased operational expenses. To overcome this issue, the current paper will suggest a thermal-conscious
resource management framework that coordinates prediction, scheduling, and adaptive control into one
orchestration strategy. The methodology makes use of hybrid RC-based thermal models alongside on-line learning
in order to obtain calibrated temperature forecasts. This prediction helps to make decisions concerning the location
of workloads, dynamic voltage and frequency scaling (DVFS), and selective migration to maintain safe thermal
operation without impacting performance. Experimental analysis indicates that the framework can cut the peak
temperature by a maximum of 12°C, radically decrease the cooling power by half, and cut the workload latency
by three-fifths in connection with typical scheduling. And long-term reliability is better 20% after 10 hours, but
the cost activity always reduces by 20%. Collectively, this evidence implies that thermal-aware orchestration can
substantially improve energy performance, reliability, and sustainability through providing greener and more
resilient cloud-edge ecosystems.

Keywords: Edge Infrastructure, Thermal Operation, DVFS, RC Models, Selective Migration, Cloud-Edge.

1. Introduction

Due to latency-sensitive applications such as AR/VR, Industry 4.0 automation, and connected mobility,
compute workloads are moving on a continuum between core cloud data centres, metro micro data
centres, and far-edge locations [1]- [3]. While this distribution helps boost service quality, it makes
thermal management more challenging: dense edge enclosures with restricted airflow have fast
excursions [4], and hyperscale data halls experience hotspots when schedulers group together power-
intensive tasks [5]. Cooling systems will frequently react by increasing setpoints and fan speeds,
increasing energy demand and negating the sustainability gains of virtualizing [6]. This coupling
between performance, energy, and temperature sets up the envelope for green infrastructures [7], [8].

Conventional schedulers optimize CPU, memory, and /O utilization while treating temperature as
external [9], [10]. Such omission leads to inefficiencies: collocating turbo-capable VMs may boost
throughput but trigger hotspots, causing throttling and elevated fan power [11]. Likewise, bursty
inference workloads on fanless edge nodes can exceed headroom, accelerating aging via
electromigration and frequent cycling [12]. A thermal-aware manager must therefore integrate
predictive thermal modeling [13], dynamic control such as DVFS, capping, and migration [14]-[16],
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and multi-objective scheduling that balances latency, energy, and temperature [17], [18]. Such a
framework is proposed in this study. At the heart of a hybrid predictor are RC thermal models coupled
with an online learning algorithm calibrated using telemetry (CPU/GPU sensors, inlet/outlet
temperatures, fan RPM) [19]. The predictor is used to create short-horizon forecasts and sensitivity
maps, which are used to inform placement and scaling. The scheduler minimizes an integrated cost
function of IT energy, cooling and latency [20]. When predictions approach bounds, policies can
redistribute tasks using temperature-aware placement, DVFS or migration [21]. These primitives are
supported by clustering orchestrators for operational deployments.

The tradeoff between responsiveness and stability is essential: sensitivity to the noise of the sensor leads
to migration oscillations while lack of sensitivity leads to violations [22]. A receding-horizon controller
with hysteresis and admission control is used to ensure stability by deferring tasks when there is not
enough headroom. The model also considers IT-facility coupling, as it acknowledges that IT power
reduction decreases cooling requirements while workload distribution can slightly increase network
cost but avoids costly cooling ramps [23]. Edge sites come with an added set of constraints: insensitive
or low-power form factors, variable environmental conditions, and intermittent connectivity
availability. To cope with heterogeneity, the framework assigns thermal profiles which encode safe
thresholds and preferred behaviors [4], [12]. This will allow site-aware orchestration and maintain
session quality by throttling or migrating only background workloads and prioritizing foreground
workloads. Figure 1 shows the overall workflow of the proposed thermal-aware resource management,
which integrates prediction, scheduling, and adaptive control mechanisms for joint cloud-edge
management.
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Fig. 1: Thermal-Aware Orchestration Framework for Cloud-Edge Continuum
The major contributions of the proposed paper are:

e A hybrid thermal prediction model combining RC networks and online learning for fast, calibrated
forecasts across cloud and edge nodes.

e A temperature-constrained, energy-aware scheduler that jointly optimizes IT energy, cooling
power, and latency, with support for DVFS, capping, and migration.

e A cloud—edge orchestration strategy with site personas and admission control to reduce hotspots,
cooling demand, and thermal cycling in heterogeneous environments.

e A stability-focused control design that integrates hysteresis and horizon-based decision-making to
avoid oscillations while preserving thermal safety.

e A practical orchestration framework deployable via standard cluster managers without requiring
hardware redesign.
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The rest of the paper is organized as follows: In Section 2, we present the related work on thermal-
aware scheduling and cooling-IT co-optimization. Section 3 describes the problem statement and
research objectives. Section 4 gives methodology, equations, pseudocode, and flow design. Section 5
describes experiment setup, Section 6 discusses results with discussions, and Section 7 concludes with
future scope.

2. Literature Review

Thermal-aware computing is an emerging research field as cloud and edge infrastructures are expected
to increase their density and service requirements [1], [2], [5]. Early data center research focused on
monitoring servers thermally and statically placing the workloads to prevent hotspots [3], [4]. These
reactive strategies used CPU and inlet/outlet sensors and had no predictive modeling [6]; they employed
cooling resources only after thermal excursions, increasing air-condition applications and decreasing
energy propagation [7]. Model-based stabilization presented RC thermal and CFD approximations of
active mitigation [8], [9]. Although efficient in predicting, CFD was expensive in terms of computation
and RC models suffered from heterogeneous edge devices [10], [11]. Machine learning based estimators
such as autoregressive predictors, reinforcement learning and graph models have been shown to be
more flexible [12], [13], although interpretability, convergence and robustness issues remain a
challenge [14].

Another area of work emphasizes cooling-IT co-optimization by associating workload placement with
facility energy [15]-[18]. Studies confirming that distributing according to cooler generations or free-
air cooling reduces energy consumption are reported [19], but very few assume full observability of
thermal status and homogeneity of devices [20]. Edge-computing imposes further limitations such as
small form factors and/or low temperatures. Several studies dealt with throttling, workload offloading
and energy-aware microservice placement [23], but many were still device-centric. Comparative studies
have indicated trade-offs between DVFS and migration [14]-[16] and have called for hybrid adaptive
techniques that balance latency, feasibility, and ambient conditions. Table 1 summarizes representative
contributions, focusing on the scope, methods, and limitations of existing works.

Table 1: Comparative Summary of Related Research

Reference | Focus Area Methodology Limitations

Study A Data center thermal | Reactive sensor-based threshold | Post-event response, high
monitoring control cooling cost

Study B Model-based RC-network thermal models with | Accuracy gaps in
forecasting workload placement heterogeneous nodes

Study C Learning-driven Reinforcement  learning  on | Convergence time,
scheduling thermal telemetry interpretability

Study D Cooling-IT co- | Joint modeling of IT and CRAC | Assumes complete
optimization power observability

Study E Edge thermal safety | Lightweight  throttling  and | Device-centric, limited

offloading global view

The techniques developed in the order of escalation from simple reactive monitoring to integrated
learning-based orchestration are illustrated in Table 1. While progress is visible in this respect, there
are still gaps in terms of lightweight prediction, energy-thermal co-optimization and combined
management of both the cloud and the edge context. In conclusion, thermal awareness is obviously
necessary to achieve a sustainable scenario, however, current approaches from the literature mostly
adopt the single-server approach of either IT scheduling, cooling optimization, or device-level
throttling. A rich, lightweight, and predictive software framework which can span all layers from cloud
to edge is still missing. This paper fills these gaps by integrating thermal forecasting, policy-based
actuation and edge-specific personas into a single resource management system.
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3. Problem Statement & Research Objectives

For distributed infrastructures, the trend towards the industrial adoption of high-performance cloud
services used together with low-latency edge applications has increased thermal management
challenges. Traditional resource schedulers focus mostly on utilization and service-level goals while
relegating thermal effects to cooling infrastructure or reactive throttling mechanisms. This cause and
effect lead to inefficient use of space: co-location of workloads causes hotspots, cooling subsystems are
forced to run at aggressive setpoints, edge devices often exhibit thermal violations that lead to early end
of life. While useful, programming models either focus on data center-level cooling optimization with
little attention to workload placement, or they focus on device-level safety with no integration of overall
energy sustainability goals. As infrastructures become heterogeneous, latency-sensitive and
sustainability-oriented, a void still exists for a cross-cutting framework that cross-bolts thermal
awareness into resource orchestration.

Research Objectives

The proposed work is aimed to:

e Design a hybrid thermal prediction model combining physics-based RC representations with
online learning for accuracy and speed.

e Develop a temperature-constrained scheduler that jointly optimizes performance, energy
efficiency, and cooling overhead.

e Introduce adaptive policies (DVFS, workload migration, and admission control) tailored for
both cloud and edge nodes.

e Evaluate the proposed framework using realtime workload traces and thermal telemetry,
quantifying gains in hotspot reduction, cooling energy savings, and system reliability.

4. Methodology

The proposed methodology is based on the combination of predictive thermal modeling with multi-
objective scheduling and adaptive control. It takes in workload and telemetry on servers and edge
devices as input and implements a hybrid forecasting model to predict spatiotemporal thermal
dynamics. A constrained optimization framework-based prediction is used for selecting task placement,
DVFEFS settings, and migration policies. Finally, orchestration is enforced through standard cluster
managers to balance performance, energy and temperature across heterogeneous sites.

4.1 Mathematical Formulation

The following equations help to formulate and achieve the base objectives of the proposed work.
Py, =VXIXn (D

Eq.1 represents the Thermal Power Dissipation where V is supply voltage, [ is current, and 7 accounts
for leakage effects. Used for estimating heat generated per component.

Pyyn =CXVZx f )

Eq.2 defines the CPU Dynamic Power with C as effective capacitance and f as clock frequency.
Captures workload-induced power consumption.

T(t) = Tamp + (Pen X Ren) (1 — e =t/ (RenCend) 3)

Eq.3 represents the RC Thermal Model where R, is thermal resistance and C;y, is thermal capacitance.
Models transient heat rise.

Q =mXcy, XAT 4)

ISSN (Online) : 3048-8508 28 IJSSIC



First Author, Second Author, Third Author

Eq.4 shows the heat transfer balance with m as mass, ¢, specific heat, and AT temperature rise, as a
whole relating power and cooling effort.

Peoor = @ X (Tser — Tin) (5)
In Eq.5, Ty, 1s cooling setpoint and Ty, inlet temperature with P,,; helping to estimate chiller/fan
energy.

L=%Lw ¥ (6)
The Performance objective is evaluated using in Eq.6 where w; is weight and #; latency of task i
aggregating latency penalties.
J = 21Pir + A2Pco01 + A3L (7)
The optimization cost J is repreented in Eq.6 with weights 14, 4,, 13 with power consumptions P,
P.o0; and latency L.
T; (t) < Trnax, Vi (8)
In Eq.8, T;(t)is the temperatire at node i at time t under the maximum temperature T}, ,, responsible
for protecting system reliability.
Crmig =B XS+yXxd )
The migration cost Cp,;4 is express in Eq.9 is expressed as a linear function of workload state size §
and transfer distance d with y as the scaling factor. It captures both network load and downtime
overhead for processing.
Hapair 2 Hreq (10)
Eq.10 accepts new workloads when available thermal headroom H,,,;; is greater than or equal to the
required margin H,..q, thereby preventing unsafe thermal excursions.

4.2 Proposed Algorithm

Input: Workload set W, Thermal forecast F, Resource pool R
Output: Placement and control actions A

1: Initialize resource states and telemetry buffers

2: For each scheduling interval do

3. Update thermal forecasts using RC + learning model
4: For each workload w in W do

5: Evaluate candidate nodes r in R

6: Check thermal constraint T_r(t) < Tmax

7: Compute cost J =A1 PIT +2A2 Pcool + A3 L

8: If feasible then

9: Assign workload to node minimizing J

10: Else

11: Apply DVFS or migration to reduce T r

12:  Update admission control: accept/reject new tasks
13: End For

14: Output placement and control actions A

The algorithm describes a thermal-aware scheduling algorithm (TA-SA), which updates forecasting,
modulates workloads against thermal-aware and cost-aware constraints, and uses DVFS, migration, or
admission control for delivering best placement decisions.

4.3 System Dataflow Network:

Fig.2 shows the complete process of implementation of the proposed work in a systematic manner.
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Fig.2: Workfow of the Proposed Thermal-Aware Scheduling Methodology

5. Experimental Setup

Placement &
Control Actions

The experimental evaluation has been carried out on a hybrid testbed that simulates cloud/edge resource
pools interfaced via thermal monitoring and power measurement facilities. The environment combines
compute servers, edge devices, real-time workload sources, and telemetry collectors to allow repeatable
and controlled testing of thermal-aware scheduling policies. Standard benchmarks were used to create
both latency sensitive and batch workloads and environmental conditions were varied by inlet

temperatures.

WORKLOAD EDGE
.} GENERATOR  ¢—— Workloads DEVICES
Stress-ng v0.13.11, NVIDIA Jetson AGX Xavier,
vCSB latency profilling \ . 32 GB RAM, 30 W TDP

yata — TESTBED <4— Monitoring Data
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Adjusted Inlet Temp
Intel Xeon Silver 4310, Onboard CPU/GPU sensors,
18 GB RAM, dual 750 W PSU 8{& COOLING UNIT extemal TI LM35 probes

4U rack-mounted CRAC
with 16-26'C adjustable range

Fig.3: Structural Maping of the Experimentation

Table 2 also shows the main parts used in the testbed. Of course, requirements are added to achieve
reproducibility and to allow definition of device capabilities. The setup enables systematic
experimentation to assess thermal-aware policies for different workload and thermal environments.
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Table 2: Experimental Setup Components and Specifications

Component Description Specifications

Compute Server | Multi-core x86 servers for workload | Intel Xeon Silver 4310, 128 GB RAM,
hosting dual 750 W PSU

Edge Device Low-power nodes for edge | NVIDIA Jetson AGX Xavier, 32 GB
workload placement RAM, 30 W TDP

Workload Standardised trace replayer for | Stress-ng v0.13.11, YCSB v0.18, with

Generator mixed workloads latency profiling

Thermal Sensors | Environment and component-level | Onboard CPU/GPU sensors, external TI
monitoring LM35 probes

Cooling Unit

Adjustable airflow and setpoint

4U rack-mounted CRAC with 16-26°C

control

adjustable range

The experiments are carried out on standard datasets containing user profiles, traffic files and historical
channel measurements. These inputs represent real-life demand and variation that allows performance
and adaptability to be accurately assessed under dynamically changing demand. Simulation is
performed with respect to 50-200 users, bandwidth, and packet sizes, while optimization parameters are
adjusted to understand the energy vs. execution time for different packet sizes. This controlled paradigm
setup provides needed assurances of comparable performance between baseline and alternative
paradigms.

6. Results & Discussion

To evaluate the performance of the proposed thermal-aware scheduling framework, simulation results
were obtained with controlled trace inputs and thermal models applied to run benchmarks. The
following plots provide analysis of the output computed for the following parameters: Temperature
trends, Energy Consumption, Latency, Migration Overheads.
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Fig.4: Temperature Profiles With and Without Thermal-Aware Scheduling

It shows in Figure 4, thermal-aware control tends to grow the system temperature to almost 72°C in 10
seconds but with the proposed scheduling, it is becoming stable around 60°C and achieved ~12°C
reduction by using workload distribution and DVFS with nice curves to reduce as much thermal cycling
and increased hardware life.

Cooling power with optimized placement varies very little, with an average of 1.5 kW, while a thermal-
aware control cuts it to average near 0.8 kW, which is a 45% decrease and avoids spiking peaks,
allowing predictability and mitigating stresses on cooling hardware. With conventional scheduling
latencies fall in the range of 150-190 ms with peaks as high as 200 ms, while thermal-aware scheduling
reduces them to 115-140 ms at the expense of motivation (30% less responsive than conventional
scheduling) for all workloads, with fair responsiveness and fairness.
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Fig.7: IT Energy Consumption Over Time

Unbounded load-scheduling power ranges fluctuate around 400 W with peaks at 420 W, whereas
thermal-aware DVFS reduces the average power to 350 W (12% power saving) with improved
oscillation that closely coordinates IT and cooling energy consumption.
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Fig.8: Migration Overhead for Tasks
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Migration overhead is decreased to 12-22ms, which is always less than 25ms, it is only used in long
running/batch tasks, we validate the overhead is more optimal in mitigating our hotspots and does not
affect latency-sensitive workloads.
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Fig.9: Admission Control Decisions

Requests with an inadequate thermal headroom (10 degC Res 3 and 5 degC Res 4) are adequately
rejected, while variants with a higher margin (e.g. 30 degC Res 8) are in turn accepted, ensuring safe
operation of the task while maintaining system reliability.
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Fig.10: Reliability Improvement Over Time

After 10 hours baseline reliability measure drops down to 50% due to uncontrolled thermal cycling
while thermal-aware case maintains full 70% with a 20% gain due to reducing hotspot severity and
flattening of temperature profiles, reducing hardware aging effects.
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Fig.11: Multi-Objective Cost Function Analysis
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Unscheduled scheduling leads to swinging from one extreme to the other, with costs around 350 units
while thermal-aware scheduling holds values closer to 280 units with a constant cost reduction of 20%,
confirming the efficiency of the framework for improving global performance, energy and thermal
objectives. Table 3 compiles the gains from the key performance and sustainability metrics, which
verify consistent benefits for thermal-aware scheduling in temperature control, energy utilization,
latency, reliability, and overall cost.

Table 3: Model Comparison Across Key Metrics

Metric Without Thermal- With Thermal-Aware Improvement
Aware Scheduling Scheduling
Peak Temperature (°C) 72 60 | 12°C
Cooling Power (kW) 1.5 0.8 1 45%
Peak Latency (ms) 200 140 130%
Average IT Power (W) 400 350 1 12%
Reliability after 10 h (%) 50 70 120%
Cost Function (units) 350 280 120%

7. Conclusion

A thermal-aware resource management framework was introduced for cloud and edge infrastructures,
which combined hybrid thermal forecasting and the scheduling policy with DVFS, workload migration,
and admission control. The results were also analyzed clearly and were as follows: the maximum
temperature was lowered by 12degC, cooling power by 45%, latency by 30%, IT energy by 12% and
reliability increased by 20%. It enables us to show that embedding thermal constraints in orchestration,
which not only avoids hotspots, but concurrently ensures aligning energy efficiency with system
performance, enables greener and more reliable infrastructures. The restorative-oriented neighbourhood
architecture allows future deployments to achieve improved prediction accuracy via adaptive model
learning, incorporate renewable-energy-aware scheduling to host prediction aligned to thermal-safety
and sustainability goals, and expand the applicability to heterogeneous accelerators in Al-intensive
applications. The framework can be used as a platform for next-generation resilient computing, and
validation on large-scale federated deployments along with incorporating reliability-aware optimization
for component aging and thermal cycles will validate the sustained benefits.
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