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ABSTRACT 

The manuscript should contain a self-contained abstract of up to 300 words without citations. It must succinctly 

present the research's purpose, methodology, With the dawn of smart healthcare, the volume of biomedical data 

available through wearable sensors, imaging techniques, and electronic health records has been growing 

exponentially, causing growing computational and energy pressures that jeopardize the sustainability and 

scalability of medical systems. To deal with this issue, this paper presents a deep learning-based biomedical 

informatics system that seeks to maximize diagnostic performance and reduce the computational and energy costs 

in clinical settings. The framework combines both hybrid CNN-LSTM models of temporal biomedical signal 

analysis models and Transformer-based models of multimodal representation learning models, complemented 

with adaptive pruning and energy-sensitive scheduling on heterogenous datasets of ECG, EEG, and imaging 

streams. Also, contrary to the traditional healthcare-based AI methods that prioritize precision without considering 

sustainability, the given system takes adaptative controls into consideration and continuously adjusts computation 

and resource distribution under different workload and patient-monitoring conditions, which enhances efficiency 

and resilience. The mathematical modeling and optimization of the framework is the system performance, 

measured by classification accuracy, diagnostic latency, energy efficiency, and a sustainability index. 

Comparative experiments indicate that the suggested method obtains the 5.3 percent enhancement in diagnostic 

accuracy, the 29.7 percent energy usage decrease, and the 21.3 percent latency reduction relative to the baselines, 

including Random Forest and regular LSTM models. Moreover, stress tests with peak workloads of patient 

monitoring verify that the framework maintains high levels of adaptability, whereas traditional models deteriorate 

considerably. The proposed system is the first to note the transformative nature of sustainable AI in healthcare 

because it facilitates precise, energy-efficient, and scalable biomedical decision support. The current study makes 

energy-conscious biomedical informatics one of the pillars of the future smart healthcare ecosystems that strike a 

balance between the clinical performance and environmental sustainability. 

Keywords: Biomedical Informatics, Deep Learning, Sustainable Healthcare, Energy Efficiency, CNN-LSTM, 

Transformers, Smart Health Systems. 

1. Introduction 

The rise of biomedical informatics as a pillar of contemporary smart healthcare has revolutionised 

diagnosis, monitoring and service provision in the realms of telemedicine, the Internet of Medical 

Things (IoMT), and massive hospital information systems. Conventional healthcare infrastructures, 

where diagnostic accuracy is only considered without any computational and energy overhead, are 

becoming less viable in resource intensive and environmentally limited environments [1]. As 

biomedical data is growing exponentially with escalating computational costs, and sustainability issues 

increase, energy conscious biomedical intelligence is essential to ensure there is a trade off between 
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clinical quality and environmental accountability [2]. A potential solution to the problem is given by 

deep learning (DL)-enabled biomedical informatics, which uses both past and current biomedical 

signals to detect disease, monitor patients, and workload-sensitive optimization [3]. In contrast to fixed 

analytics pipelines, energy-aware DL systems are built with predictive modeling and active control, 

which generate proactive energy savings without degrading diagnostic performance [4]. State-of-the-

art DL networks learn multi-modal dependencies, temporal dynamics, and context differences in diverse 

data in the form of ECG, EEG, and medical imaging [5]. 

 

CNNs, Long Short-Term Memory (LSTM) networks and Transformer-based models have shown to be 

better in analyzing biomedical dynamics and provide credible diagnostic support [6]. These models are 

more effective than the traditional regression- or rule-based models due to their ability to adjust to 

changes in the condition of patients and their improved predictive quality. In addition, active re-

allocation of computational loads in dynamically changing conditions through adaptive pruning and 

energy-conscious scheduling schemes contribute to sustainable deployment [7]. Although there are 

these advances, there are challenges. Current biomedical informatics systems have problems with high-

dimensional medical signals, sudden changes in patient condition, and associated trade-offs between 

accuracy, latency, and energy efficiency [8]. Transformer-based models can be seen as very high 

diagnostic but with high computational energy requirements [9], and lightweight models decrease 

energy consumption but cannot achieve the multi-level biomedical dependences. The hybrid framework 

of CNN-LSTM models, Transformer architectures, and adaptive pruning is proposed in this paper to 

overcome these limitations. The framework has a balance between diagnostic accuracy, computational 

sustainability, and scalability [10]. It allows a rigorous, quantifiable evaluation with metrics such as 

classification accuracy, diagnostic latency, energy efficiency, and a sustainability index to facilitate 

correct, efficient and sustainable healthcare decision-making when large data loads are considered and 

when patient conditions may vary [11]. The contributions of this paper are as follows: 

1. A comprehensive framework for deep learning-enabled biomedical informatics in smart 

healthcare systems. 

2. Mathematical modeling of classification accuracy, diagnostic latency, energy efficiency, and 

sustainability index. 

3. An adaptive algorithm for energy-aware model selection and pruning in multimodal 

biomedical analytics. 

4. Empirical validation through simulation and case studies using synthetic and benchmark 

biomedical datasets. 

The rest of this paper will be outlined as follows: Section II will review related research, Section III 

will define the problem and objectives, Section IV will discuss the methodology, Section V will discuss 

experimental set-up, Section VI will discuss results and finally the paper will conclude with future 

directions in Section VII. 

 
Fig. 1. Conceptual flow of the proposed biomedical informatics framework 

The proposed framework is depicted by the flow shown in Figure 1. The data is pre-processed and 

analysed with CNN-LSTM and Transformer models on multimodal biomedical data (ECG, EEG, 
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imaging). Scalable, eco-efficient healthcare intelligence is made possible by adaptive pruning and 

energy-aware scheduling to optimize computation and energy, as well as the evaluation of predictions 

by accuracy, latency, efficiency, and sustainability. 

2. Literature Review and Related Research 

The history of the development of the deep learning-based biomedical informatics has been researched 

in numerous disease diagnostics, medical imaging, wearable health monitoring, and smart hospital 

systems. Initial research has used the traditional statistical methods, including logistic regression and 

ARIMA, to predict biomedical signals and diseases, but such methods could not represent non-linear 

physiological interactions and were unable to adjust to changing patient phenotypes [12], [13]. Random 

Forest and Gradient Boosting methods were used as ensemble techniques and enhanced the accuracy 

of classification, but they were not adaptable and interpretable in clinical decision-making [14]. The 

introduction of deep learning (DL) had a tremendous impact on the field of biomedical informatics as 

it allowed for the effective extraction of features and sequential modeling. LSTM and GRU networks 

effectively analyzed temporal dependencies in physiological signals such as ECG and EEG [15]. A 

logical step in performance improvement was hybrid CNN-LSTM structures that learn local 

morphology features and long-term biomedical trends at the same time [16]. In more recent work, 

Transformer-based architectures have become the new state of the art, using self-attention schedules to 

enhance multimodal fusion, scalability, and prediction accuracy in healthcare analytics [17]. 

 

Efforts have been made in line with Explicable AI (XAI) to address issues of interpretability, which 

adds more transparency and trust in automated diagnosis [18]. Adaptive biomedical analytics aim at 

reduced recalibration of models in real-time, matching clinical accuracy with resource utilisation in the 

context of dynamically monitored patients [19]. It can be used in disease classification, wearable IoMT 

signal analysis, telemedicine, and imaging-based diagnostics [20]. Comparative analysis confirms that 

Transformer and CNN-LSTM models have a high diagnostic accuracy, which is often expensive in 

terms of computational and energy costs [21]. New hybrid frameworks that combine accuracy, 

interpretability and efficiency have recently become available [22]. However, there is the lack of a 

unifying biomedical informatics systems that combine diagnostic accuracy, latency, energy-efficiency, 

and sustainability in actual conditions of uncertainty. This gap is filled by the proposed architecture, 

which allows making strong biomedical decisions based on the clinical and sustainability goals [23], 

[24]. 

Table 1. Comparative Review of Biomedical Informatics Approaches 

Approach Strengths Limitations 
Application 

Domain 
Ref. 

Logistic 

Regression / 

ARIMA 

Interpretable, simple, 

low cost 

Fails with complex 

biomedical patterns 

Basic disease risk 

prediction 

[12], 

[13] 

Random Forest / 

GBM 

Handles non-

linearity, robust 

High computation, 

low interpretability 

Clinical decision 

support 
[14] 

LSTM / GRU 
Captures sequential 

biomedical signals 

Requires large 

annotated datasets 

ECG/EEG signal 

analysis 
[15] 

CNN-LSTM 

Hybrid 

Combines spatial + 

temporal features 

Complex, energy-

intensive 

Multimodal 

biomedical 

diagnostics 

[16] 

Transformer 

Models 

Scalable, high 

accuracy 

Resource- and 

energy-demanding 

Imaging & 

multimodal fusion 
[17] 

Explainable AI 

(XAI) 

Improves trust, 

interpretability 

Sometimes trades off 

accuracy 

Transparent 

healthcare decision-

making 

[18] 
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Table 1 is a summary of the benefits and shortcomings of popular biomedical informatics methods. As 

much as the ensemble and deep learning techniques have a drastic enhancement of diagnostic precision, 

they have weaknesses, such as high computation expenses, low flexibility, and ad hoc in the ability to 

be sustainable in clinical applications. 

Table 2. Related Research in Biomedical Informatics 

Study Focus 
Methodology 

Applied 
Key Findings 

Relevance to This 

Work 
Ref. 

Disease Risk 

Prediction 

Random Forest, 

Gradient Boosting 

Improved accuracy, 

poor scalability 

Highlights accuracy-

efficiency trade-off 
[19] 

Biomedical 

Signal Analysis 
LSTM, GRU 

Captures temporal 

variations, expensive 

training 

Emphasizes 

scalability challenges 
[20] 

Wearable IoMT 

Monitoring 

CNN-LSTM, Energy 

Profiling 

High accuracy, limited 

energy efficiency 

Inspires hybrid 

optimization 

approach 

[21] 

Imaging-Based 

Diagnosis 

Transformer-based 

architectures 

Superior multimodal 

integration, energy-

intensive 

Justifies attention-

based adoption 
[22] 

Interpretable AI 

in Healthcare 

XAI frameworks 

integrated with DL 

Improves clinician 

trust, moderate 

performance 

Supports inclusion of 

interpretability 
[23] 

Adaptive 

Analytics 

Reinforcement 

Learning, Online 

Learning 

Enables real-time 

adaptation 

Motivates adaptive 

pruning & scheduling 
[24] 

Table 2 presents key related research in biomedical informatics. The papers show that the current state 

of the art DL models excel at the diagnostic accuracy, but frequently, they cannot balance energy 

consumption, scalability, and adaptability, which the proposed framework fills in this paper. 

3. Problem Statement & Research Objectives: 

Smart healthcare systems should be able to strike the balance between diagnostic accuracy, efficiency, 

and low-latency decisions. Traditional models are interpretable and with limited performance whereas 

deep learning is accurate at high costs in terms of computation and energy. The presented CNN-LSTM-

Transformer architecture using adaptable pruning improves accuracy, responsiveness, and 

sustainability to analyse multimodal biomedical data in real-time. 

3.1 Research Objectives 

• Objective 1: Build a hybrid CNN-LSTM framework with Transformer architectures and adaptive 

pruning to build integrated biomedical informatics, diagnosing and patient monitoring with 

energy-awareness. 

• Objective 2: Develop mathematical models of classification accuracy, diagnostic latency, energy 

efficiency, and sustainability index as the fundamental measures of evaluation. 

• Objective 3: Model the proposed architecture with synthetic biomedical data (e.g., ECG, EEG) 

and compare healthcare data in different clinical settings. 

• Objective 4: Measure system performance quantitatively with regards to diagnostic accuracy, 

latency reduction, saving energy, and sustainability improvement. 

• Objective 5: Contrast the proposed framework with the standard LSTM networks, Logistic 

Regression, and Random Forest as well as baseline models. 
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4. Methodology 

The suggested approach incorporates the biomedical informatics approach with deep learning 

capabilities and energy-saving optimization to find the balance between accuracy, latency, and 

efficiency in smart healthcare. Hybrid CNN-LSTM and Transformer models that are adaptively pruned 

dynamically adapt to patient data and resources. The ECG, EEG, and imaging datasets in simulations 

check the performance of a simulation across different conditions, volatility, and sustainability levels. 

 

4.1 Mathematical Formulation  

Let the total diagnostic latency 𝐿𝑡𝑜𝑡𝑎𝑙 be defined [21] in Eq. (1): 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑝𝑟𝑒𝑝 + 𝐿𝑚𝑜𝑑𝑒𝑙 + 𝐿𝑞𝑢𝑒𝑢𝑒                                     (1)  

Where: 

• 𝐿𝑝𝑟𝑒𝑝 = Data preprocessing and feature extraction time. 

• 𝐿𝑚𝑜𝑑𝑒𝑙 = Model inference and diagnosis generation time. 

• 𝐿𝑞𝑢𝑒𝑢𝑒 = Scheduling or reporting delay in clinical systems. 

 

The model computation time can be approximated in Eq. (2): 

𝐿𝑚𝑜𝑑𝑒𝑙 =
𝑁𝑝𝑎𝑟𝑎𝑚𝑠

𝑅𝑐𝑜𝑚𝑝
                                                       (2)  

Where: 

• 𝑁𝑝𝑎𝑟𝑎𝑚𝑠 = Number of parameters processed. 

• 𝑅𝑐𝑜𝑚𝑝= Computation rate (parameters/sec). 

 

The diagnostic accuracy (𝐴𝑐𝑐) is expressed in Eq. (3): 

𝐴𝑐𝑐 =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑡𝑜𝑡𝑎𝑙
                                                    (3)  

Where: 

• 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = Correct diagnoses. 

• 𝑁𝑡𝑜𝑡𝑎𝑙 = Total diagnoses made. 

 

The energy efficiency improvement is defined in Eq. (4): 

𝐸𝐸𝑔𝑎𝑖𝑛 =
𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝐸𝐷𝐿

𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100                                    (4)  

Where: 

• 𝐸𝐷𝐿 = Energy consumed by the proposed DL framework. 

• 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = Energy consumed by conventional diagnostic methods. 

 

The Decision Efficiency (DE) metric, combining diagnostic accuracy and latency, is formulated in Eq. 

(5): 

𝐷𝐸 =
𝐴𝑐𝑐

𝐿𝑡𝑜𝑡𝑎𝑙
                                                    (5)  

The Sustainability Index (SI), capturing the framework’s ability to balance efficiency with adaptability, 

is expressed in Eq. (6): 

𝑆𝐼 =
𝑁𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒

𝑁𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠
                                                 (6)  

Where: 

• 𝑁𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 = Number of scenarios where sustainable operation was achieved. 

• 𝑁𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 = Total tested biomedical scenarios. 
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4.2 Proposed Algorithm 

 

Algorithm: Energy-Aware Biomedical Informatics Optimizer 

Input: Multimodal Biomedical Dataset (ECG, EEG, Imaging Records) 

Output: Optimized Predictions with Balanced Accuracy, Latency, and Energy Efficiency 

1. Collect and preprocess dataset (𝐷). 

2. Extract structured biomedical and energy features (𝐹). 

3. If patient data volatility == high then 

  a. Prioritize Transformer model (captures long-term and multimodal dependencies). 

  b. Apply adaptive pruning + energy-aware scheduling. 

Else 

  a. Use CNN-LSTM hybrid (efficient + accurate for stable signals). 

  b. Maintain balanced pruning strategy. 

4. Compute diagnostic predictions (𝑌𝑝𝑟𝑒𝑑). 

5. Evaluate decision metrics (𝐴𝑐𝑐, 𝐸𝐸, 𝐷𝐸, 𝑆𝐼). 

6. Adapt model parameters and pruning levels based on feedback. 

7. Return optimized diagnostic results. 

End Algorithm 

 

4.3 System Flow 

 
Fig. 2: Sequential process for biomedical informatics in smart healthcare 

The flow of biomedical informatics framework can be shown in Figure 2. Pre-processing of multimodal 

data (ECG, EEG, and imaging) is done and then volatility detection occurs. CNN-LSTM works with 

stable signals whereas Transformers works with variable conditions. Energy-conscience pruning 

minimizes overhead and diagnostic prediction assesses accuracy, latency, efficiency, and sustainability 

with adaptive feedback to perform constant optimization. 

5. Experimental Setup: 

In order to test the suggested deep learning-enabled biomedical informatics framework, a synthetic 

biomedical time-series dataset of 30,000 records was created, with three modalities, namely ECG 

signals, EEG activity, and medical imaging features. Changes of regimes took place at t = 7,500, t = 15, 

000 and t = 22,500 simulated stable, moderate and critical patient conditions. The data was separated 

to be 70 training, 15 validation and 15 testing. They tested four models, namely: Baseline A (Logistic 

Regression), Baseline B (Random Forest, 100 trees, depth 10), Baseline C (Standard LSTM, 128 hidden 

units) and the Proposed Framework (Hybrid CNN-LSTM + Transformer with adaptive pruning and 

energy-aware scheduling). An automatic volatility detector of patient condition dynamically chose the 

models with the aim of maximizing the diagnostic accuracy and efficiency. 

Measures of Classification Accuracy, RMSE, Diagnostic Latency, Energy Efficiency, and 

Sustainability Index. Training was done with Adam optimizer (learning rate 1x10-3, batch size 64) and 

early stopping (patience = 5) on 40 epochs. The CNN blocks of [32, 64] filters were used to generate 

morphological features, whereas the Transformer used 4 attention heads and 2 encoders layers to 
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generate multimodal representation. Gain results of 10 seeds were averaged and highly improved. 

Python (PyTorch) simulations were used and MATLAB plots (Figs. 36) were created. Tests of an Intel 

i7 processor, 32GB memory and optional RTX 3060 card, verified the stability of accuracy, latency, 

energy and sustainability improvements. 

6. Results & Discussion: 

Simulation based experiments were performed to compare the proposed deep learning based biomedical 

informatics framework with baseline models (Random Forest, Logistic Regression). Applied on 

MATLAB synthetic and benchmark biomedical data, it was tested on 1,000 diagnostic situations with 

different conditions of the patients. The important measures that were evaluated were Classification 

Accuracy, Diagnostic Latency, Energy Efficiency Gain, Sustainability Index, and Decision Efficiency 

(DE). 

 

6.1 Classification Accuracy 

Classification accuracy measures the reliability of diagnostic predictions across multimodal biomedical 

datasets. 

 
Fig. 3: Classification Accuracy Plot 

 

As Figure 3 indicates, Model 2 has always better classification accuracy in all conditions of the patients 

than Model 1. This is given by adaptive model selection in hybrid CNN-LSTM and Transformer 

architecture. 

 

6.2 Diagnostic Latency 

Diagnostic latency quantifies the time required to generate accurate predictions for real-time healthcare 

monitoring. 

 
Fig. 4: Diagnostic Latency Comparison 

Figure 4 demonstrates that Model 2 will decrease the average diagnostic latency by about 21.3, and 

faster clinical reaction to dynamically varying patient conditions will be possible. 
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6.3 Energy Efficiency Gain 

Energy efficiency gain reflects the reduction in computational energy consumption during biomedical 

analytics. 

 
Fig. 5: Energy Efficiency Gain Analysis 

 

It can be seen that the adaptive pruning and energy-aware scheduling mechanisms have enabled Figure 

5 to show that Model 2 reduces energy consumption by 29.7% versus Model 1. 

 

6.4 Sustainability Index 

The sustainability index captures the framework’s ability to maintain resource-efficient operation under 

intensive biomedical scenarios. 

 

 
Fig. 6: Sustainability Index Comparison 

 

Model 2, as illustrated in Figure 6, has a much greater sustainability index (>90%) where diagnostic 

scenarios are concerned than Model 1, which is less than 70. 

 

6.5 Performance under Patient Condition Volatility 

Simulations under sudden condition changes (e.g., arrhythmia onset, seizure events, abnormal imaging 

signals) highlighted the resilience of Model 2. 
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Fig. 7: Performance under Patient Volatility 

As shown in Figure 7, Model 2 maintains diagnostic reliability and energy efficiency with a moderate 

increase in latency by comparison with Model 1 that has a drastic reduction. 

 

6.6 Impact of Adaptive Model Selection 

Dynamic switching between CNN-LSTM and Transformer models proved essential for balancing 

diagnostic accuracy and computational efficiency. 

 

 
Fig. 8: Adaptive Model Selection Impact 

 

Figure 8 shows that adaptive selection stabilized the prediction and limited the computation costs 

without being excessively costly because it was better than the static baseline models. 

 

6.7 Quantitative Comparison 

Table 4: Model Comparison 

Metric Model 1 (Baseline) Model 2 (Proposed) Improvement 

Classification Accuracy (%) 90.5 95.8 +5.3% 

Avg Diagnostic Latency (s) 1.88 1.48 -21.3% 

Energy Consumption (kWh) 375 263 -29.7% 

Sustainability Index (%) 70.5 91.4 +29.7% 

 

Table 4 compares the two models 1 and 2 based on the critical diagnostic measures. The suggested 

framework shows significant gains especially in energy efficiency and sustainability, which prove its 

efficiency in intelligent biomedical informatics. 

 

6.8 Comparative Performance over Clinical Conditions 

 

Table 5: Performance across Condition Intensity Levels 

Condition 

Level 

Model 1 Avg 

Accuracy (%) 

Model 2 Avg 

Accuracy (%) 

Model 1 Avg 

Latency (s) 

Model 2 Avg 

Latency (s) 

Stable 92.1 96.2 1.62 1.28 

Moderate 90.4 95.1 1.88 1.48 

Critical 88.3 94.5 1.97 1.46 

 

Table 5 shows that Model 2 maintains superior diagnostic accuracy and lower latency across stable, 

moderate, and critical conditions. In critical conditions, Model 2 was found to be more accurate than 

Model 1 (more than 94 per cent in comparison with 88.3 per cent) and latency was reduced by 

approximately 26 per cent. 
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6.9 Discussion 

 

The suggested biomedical informatics framework enhances accuracy of diagnostics by 5.3 percent, 

latency by 21.3 percent and energy use by 29.7 percent compared to traditional schemes. It has a 

sustainability index that portrays resilience to clinical variability. The small computational cost of 

adaptive pruning and Transformer integration is compensated by better viability to implement real-time, 

eco-friendly healthcare. 

7. Conclusion 

Smart healthcare needs predictive frameworks that are highly accurate and sustainable. Conventional 

models like Logistic Regression and Random Forest face accuracy and latency limitations. The 

suggested biomedical informatics architecture, which uses deep learning to utilize CNN-LSTM, 

Transformers, and energy-conscious pruning, has a higher accuracy by 5.3 percent, lower latency by 

21.3 percent, reduced energy use by 29.7 percent, and enhanced sustainability. The architecture is 

designed to facilitate future goals such as federated learning of privacy, reinforcement learning of 

adaptive recalibration and XAI of interpretability. Blockchain provides secure auditability and hybrid 

deployment on a cloud-edge allows scalability and low-latency bedside inference. They can be used in 

IoMT devices, telemedicine, and clinical decision support, which can increase adaptability, 

sustainability, and scalability of smart healthcare. 
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