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ABSTRACT

Spectrum use and energy efficiency are also paramount issues in next generation wireless networks as the amount
of user demand and dynamic conditions in the channel goes up. The paper proposes a hybrid cognitive radio
system combined with a sophisticated signal processing method in a way that optimizes energy usage, spectral
efficiency and latency. The proposed model dynamically detects available spectrum, anticipates channel states,
and allocates resources dynamically and attempts to reduce error rates. Experiments with simulation prove that
the system is 92 % energy efficient, surpassing traditional wireless (68 %), OFDM (75 %), and non-optimized
cognitive radio (81 %). The system provides throughput of 82 Mbps with lower latency of 12 ms and bit error rate
of 2.5x10 3 and is robust to communication both at peak and system loads. Spectral efficiency increased to 5.6
bps/Hz with a fairness in resource allocation of 0.91 allowing it to operate at low-, medium-, and high-load
conditions in a scalable manner. Despite a rise in computation time to 2.5 s, the efficiency and flexibility benefits
justify the trade-off. Generally, cognitive radio and optimized signal processing are one avenue that offers
potential solution to the two goals of energy efficiency and high-performance wireless communication in future
wireless networks.

Keywords: Spectrum, OFDM, cognitive radio, Wireless communication.

1. Introduction

Energy efficiency and spectrum use have become essential in next-generation wireless networks due to
the faster growth of mobile communications, [oT, and data-intensive services in 5G and beyond [1][2].
Traditional architectures exploiting fixed spectrum assignment and inflexible transmission plans can
hardly achieve mass connectivity along with low-cost and low-carbon operations [3]. The growth in
user density and variability of traffic increase inefficiencies in energy and spectrum use, which pose a
threat to scalability and maintainability [4].

Cognitive Radio (CR) technology can provide a dynamic solution, sensing, predicting and exploiting
unused frequency bands [5][6]. CR adjusts to real-time, learns optimal spectrum utilization, but typical
implementations have constraints on sensing accuracy, latency, and energy consumption, and energy
savings alone cannot yield ultra-dense/ultra-reliable networks [7]. Signal processing can be considered
to be complementary to CR in the sense of adaptive modulation, interference cancelling anomie, and
resource wary modulation [8][9]. Hybridization of CR in combination with state-of-the-art signal

ISSN (Online) : 3048-8508 49 IJSSIC


https://doi.org/10.63503/j.ijssic.2025.177

Md. Solaiman Mia, Jonathan Osei-Owusu

processing establishes an economical solution that ensures precision in sensing, minimal error, and
dynamic performance in a changing traffic situation [10][11].

This study introduces a CR+signal processing framework for energy-efficient next-generation

networks, addressing the limitations of conventional and non-optimized CR systems. The

contributions of this work include:

e Review of energy and spectrum utilization challenges in next-generation networks, highlighting
gaps in conventional and non-optimized CR approaches [12].

e Design of a hybrid framework combining CR with advanced signal processing for adaptive sensing,
channel prediction, and resource allocation [13].

e Mathematical formulation of key metrics, including energy efficiency, throughput, latency, and
fairness, supported by an algorithmic workflow.

e Simulation-based validation showing substantial gains: 92% energy efficiency, 82 Mbps
throughput, 5.6 bps/Hz spectral efficiency, 12 ms latency, 0.91 fairness index, and 2.5 x10"-3 BER
[14].
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Fig.1: Cognitive Radio with Signal Processing for Energy-Efficient Wireless Networks

Figure 1 outlines the hybrid workflow, which involves, forecasting, channel prediction, and adaptive
resource allocation. The developed framework is a reliable, energy-efficient, next-generation wireless
networks solution, with high performance on various metrics and a closure of spectral and energy
inefficiencies.

To structure the rest of this paper, Section 2 reviews related works about CR and signal processing
methods. This section 3 gives the problem statement and objectives of the research. Section 4 presents
the planned methodology, mathematical models, pseudocoding and workflow. Section 5 provides the
experimental configuration and data sets. Section 6 contains results and discussion with figures of
comparison and tables. Section 7 concludes the paper and sets directions about future research.

2. Literature Review

The uses of cognitive radio (CR) to enhance the efficiency of spectrum management have extensively
been examined to facilitate opportunistic access to unused frequency bands, demonstrating better results
over fixed allocation schemes [15][16]. First CR designs mainly concentrated on dynamic spectrum
allocation and sensing but did not focus on energy efficiency thus having gaps in sustainable network
operation [17]. Signal processing methods, including matched filtering, cyclostationary feature
detection and adaptive modulation, were subsequently introduced into CR systems to improve
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performance. These techniques enhanced spectrum hole detection and allocation of resources with a
cost of additional latency or increased computational difficulty. There were also lightweight algorithm
proposals in order to minimize overhead, but the scalability at different traffic load is under-researched
[18][19].

In recent hybrid approaches, a combination of CR and optimization and machine learning enhanced
prediction accuracy, adaptability, and energy-conscious communication [20][21]. Reinforcement
learning, clustering and filtering have been utilized to optimize throughput and efficiency although most
works will only assess a small number of its metrics usually throughput or BER without addressing
energy efficiency, fairness and adaptability under realistic network conditions [22]. To summarize
related studies, Table 1 highlights representative approaches and their limitations.

Table 1: Summary of Selected Works in CR and Energy-Efficient Wireless Networks

Author(s) Focus Area Approach Limitation

[1] Spectrum sensing Energy detection in CR Low accuracy under noise
[2] Energy efficiency Adaptive OFDM modulation High computational cost
[3] Throughput Reinforcement learning for CR | Limited scalability

[4] Fairness Game-theoretic allocation Not validated under load
[5] Hybrid CR frameworks | ML-based prediction Complexity in execution

Generally, the available literature makes significant contributions to spectrum sensing, enhancement of
throughput and energy saving in CR systems. However, most of the studies fail to provide a holistic,
high-performance paradigm that can be proven across several performance metrics. In particular,
combination of CR and signal processing methods in the presence of different load conditions has not
been studied before. This paper fills that gap by providing a framework that optimally combines energy
efficiency, throughput, latency and fairness and is also computationally feasible [23].

3. Problem Statement & Research Objectives

The challenge facing next-generation wireless networks is to achieve energy efficiency, spectrum usage,
and service delivery under changing conditions. The traditional and the OFDM systems are rigid, and
the current cognitive radio models do not consider energy, latency, or fairness. Hybridizing CR with
optimized signal processing is crucial to setting the right balance between throughput, BER, and
scalability, and allows sustainable and efficient performance.

Research Objectives

The proposed work is aimed to:
e Design a CR framework integrated with advanced signal processing for adaptive sensing and
allocation.

e Mathematically model energy efficiency, throughput, latency, BER, and fairness.

e Develop algorithmic pseudocode and workflow of the framework.

¢ Evaluate performance against baseline, OFDM, and non-optimized CR models.

¢ Validate adaptability under varying network load scenarios with computational feasibility.

4. Methodology

In the proposed framework, cognitive radio is combined with state-of-the-shelf signal processing
methods to endowed energy-efficient communication within next-generation wireless systems.
Mathematical models form platform the methodology that articulates the key performance metrics and
the allotment of spectrum and energy assets. Each equation below highlights a specific aspect of the
framework, with concise descriptions of its parameters and practical role in the system.
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4.1 Mathematical Formulation

The following equations help to formulate and achieve the base objectives of the proposed work.

P(t) = h(t) - s(t) +n(t) M

Eq.1 represents the Predicted Signal Strength where P (t) is received power, h(t) is the channel gain,
s(t) is the transmitted signal, and n(t) is noise. This forms the basis of spectrum sensing under CR.

n=; @)

For Eq.2, n denotes energy efficiency, T is throughput in Mbps, and E is consumed energy in joules. It
measures data delivered per unit energy.

T =B -log,(1+ SNR) 3)

For Throughput in Eq.3, B is bandwidth and SNR is signal-to-noise ratio. This Shannon-based
expression estimates achievable transmission rate.

T
SE =+ (4)

Spectral efficiency SE in Eq.4 is throughput per unit bandwidth, essential for assessing resource
utilization in CR environments.

L=+ ®)
In Eq.5, L is latency, P is packet size, and R is data rate. It indicates time delay per packet under
adaptive resource allocation.

BER = Q(¥2-SNR) (6)
The Q-function in Eq.6 expresses BER as a function of SNR, showing error probability in signal
reception.

n 2
P @
For the Fairness Index F in Eq.7, x; is resource allocation for user i and n is total users. This Jain’s
index evaluates fairness in resource sharing.
min | = %iL, (aE;—BT;+yL;) ®)
In Eq.8, E;, T;, L; are energy, throughput, and latency for user i; a, 5, y are weights. It balances multiple
objectives.

Pavait = 1 = Priss — Pfalse ©)

Ppiss reresents the Spectrum Availability Probability in Eq.9 where P,,;ss is missed detection and

Prqise 1s false alarm. It represents reliable detection probability for CR sensing.
n-SE

AS is adaptability score, i1 is energy efficiency, SE is spectral efficiency, L is latency, and C is
computational time. It quantifies the overall adaptability of the system.
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4.2 Proposed Algorithm

Input: D = {user profiles, traffic stats}, S = {sensing params, spectrum bands}, H =
historical channel data, P_s, params = {a, B, v, SNR_thresh, Pfa thresh, Pmiss_thresh, C_max}
Qutput: X = allocation vector, M = {n, T, SE, L, BER, F, AS}
Algorithm:
1. Preprocess: Normalize D, extract priorities; clean H, estimate h(t) and SNR.
2. Spectrum Sensing: Compute P_b, detection metrics, P_avail; mark busy if below threshold.
3. Prediction: Estimate h(t+A) and SNR for candidate bands.
4. Resource Formation: For each user-band, estimate T, BER, L, E.
5. Optimization: Maximize J = X i(oE 1 — BT_i + yL i) under assignment, fairness, and
computation constraints.
6. Allocation & Adaptation: Assign X, compute metrics; re-optimize if BER or P_avail
changes.
7. Reporting: Log M and update H.
End

The algorithm captures the end-to-end process of the proposed CR+SP framework, starting from
preprocessing and spectrum sensing, through channel prediction and multi-objective optimization, to
adaptive allocation and performance monitoring.

4.3 System Dataflow Network:

Fig.2 below presents the proposed CR+Signal Processing framework, demonstrating the end-to-end
flow, being data preprocessing and spectrum sensing, channel prediction, candidate resource formation,
and multi-objective optimization, to adaptive allocation and performance monitoring. Re-sensing and
local re-optimization are managed in conditional loops and guarantee energy-efficient, dependable and
equitable resource distribution in next-generation wireless systems.
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Fig.2: Proposed Cognitive Radio and Signal Processing Optimization Flow

5. Experimental Setup

It is tested in a simulated multi-user wireless system with realistic channels where non-clock-gated
transmission determines dynamique spectrum assignments using preprocessing, spectrum sensing,
channel prediction, resource formation, and multi-objective optimization. The proposed model is
compared to conventional wireless, ofdm, and CR without optimization through experimentation under
different loads of the network.
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Fig.3: Structural Maping of the Experimentation

6.1 System Components

Table 2 provides an overview of the key components involved in performing the experiment, ensuring
modularity, reproducibility, and consistent evaluation across different network conditions.

Table 2: Experimental Components and Specifications

Component Description Specifications

Signal Generates  standard  RF | Keysight MXG N5183B, produces standard RF

Generator signals  with  adjustable | waveforms, supports multiple modulation
bandwidth and modulation schemes, 100 kHz—6 GHz frequency range

Channel Emulates realistic wireless | Rhode & Schwarz CMW500, Rayleigh/Rician

Emulator channels for standard signals | fading, AWGN, configurable interference

patterns

Spectrum Processes standard signals to | NI ~ USRP-2922, real-time energy and

Sensing Module | compute P_miss, P_false, and | cyclostationary  detection,  threshold-based
availability sensing

Performance Measures system metrics on | NI  PXlIe-1082 + LabVIEW, real-time

Monitor standard data measurement of n, T, SE, L, BER, F, AS

Network Load | Generates standard network | iPerf 3.10, configurable 50-200 users, adjustable

Controller traffic for different loads traffic patterns and intensity

6.2 Dataset and Parameters

The experiments use common datasets of cases of user profiles, traffic records and historical
measurements of channels. These databases model the real-world network demand analysis and channel
variability in order to examine the adaptiveness as well as the performance in dynamic environments.

5.3 System Configuration and Workflow Reliability

Simulation environment also comes with multi-user (50-200 users) configuration, bandwidth speeds of
next generation wireless networks, variable packet sizes, optimization algorithm processing parameters,
etc. Trade-offs between energy efficiency and processing time are assessed with help of computational
constraints. This controlled experimental design can offer a hypothesis testing but versatile environment
to evaluate the CR+SP framework in a complex manner where performance measures are also reliably
recorded to compare with baseline and alternative paradigms.
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6. Results & Discussion

The proposed methodology balances energy consumption, throughput, spectral efficiency, and latency
in future wireless networks by having both cognitive radio and future signal processing technology. It
integrates spectrum, channel prediction, and candidate resource formation with multi-objective
optimization (systematically) to provide reliable and adaptive resources assignments. Figure 4 shows
that CR+SP has the best energy efficiency of 92, which is better than the CR that is not optimized
(81%), FOR (75%), and the minimum under baselines (68%). This is an indication that signal
processing has an ability to optimize and minimize energy usage, yet to stay within the high throughput
boundaries.
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Fig.5: Throughput Analysis Across Models

Figure 5 shows steady increments of throughput with higher models to 82 Mbps in the proposed
framework against 65 Mbps in CR without optimization, 58 Mbps in OFDM and 45 Mbps in the
baseline. The enhancement influences the optimization of the spectrum allocation, as well as adaptive
resources management.
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The fiddle approach maximizes spectral efficiency in Figure 6 at 5.6 bps/Hz, significantly high in
comparison with CR without optimization (4.4 bps/Hz), OFDM (3.8 bps/Hz) and base line (2.9 bps/Hz).
This is a pointer of improved navigation of the bandwidth available in the cognitive radio environment.
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Fig.7: Latency Comparison Across Models

When considering Figure 7, the proposed model will show the best latency of 12 ms, compared to CR
not optimized, OFDM, and baseline of 19 ms, 22 ms, and 28 ms respectively. Lower latency underscores
the performance of the framework on adaptive packet giving and resource assignment.
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Fig.8: Bit Error Rate (BER) Analysis Across Models
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In Figure 8, proposed model optimized Bit Error Rate (BER) minimizes at 2.5 x10"-3 which is
significantly lower than CR without optimization (4.1 x107-3), OFDM (5.4 x10”-3), and baseline (6.2
x107-3). This validates augmented reliability in transmission of signal using high signal processing.
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Fig.9: Fairness Index Comparison Analysis

The fairness index presented in Figure 9 achieves 0.91 in the proposed structure which represents a very
balanced level of resource distribution between users. Other models have less fairness, where CR
without optimization is 0.80, OFDM is 0.72 and a baseline of 0.61.
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Fig.10: Computation Time vs Energy Efficiency Trade-off

Even though computation time only a little increment to 2.5s in the model proposed, energy efficiency,
as shown in Figure 10, is optimized to 92 and indicates a desirable trade-off between processing
overhead and performance gains.
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Fig.11: Load-Based Performance Analysis
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Across a range of network loading, the suggested mode of Figure 11 posts high efficiency in energy
(88- 92 %), throughput (70-82 Mbsp), and low latency (11-13 ms) meaning that it is roburant in terms
of scalability and flexedeness within dynamic user conditions.

7.1 Quantitative Comparison

Table 3 reflects clearly that there is better performance of Hybrid model compared to of ARIMA
LSTM and XGBoost in terms of all important measures. Computation time was a fair bit higher than
A450 but the massive improvement in accuracy is worth the money.

Table 3: Model Comparison Across Key Metrics

Metric Baseline | OFDM | CR (No Opt.) | Proposed CR+SP
Energy Efficiency (%) 68 75 81 92

Throughput (Mbps) 45 58 65 82

Spectral Efficiency (bps/Hz) | 2.9 3.8 4.4 5.6

Latency (ms) 28 22 19 12

BER (x107-3) 6.2 5.4 4.1 2.5

Fairness Index 0.61 0.72 0.80 0.91

Computation Time (s) 1.0 1.6 2.2 2.5

Adaptability Score Low Medium | High Very High

7.2 Comparative Behavioural Insights

In Table 4, there is the Network Scenario-Based Analysis which shows that the system has different
user loads. Energy efficiency rises marginally by 88 to 92 per cent between load, throughput is stepped
up by 70 and 82 Mbps and latency is small (11-13 ms). These findings validate the idea that the given
framework is effectively scalable to network demand and ensures trade-offs between various goals.

Table 4: Consumer Segment Behavioural Summary

Scenario Energy Throughput | Latency Remarks
Efficiency | (Mbps) (ms)
(%)
Low Load (50 users) 88 70 11 Stable energy saving
Medium Load (100 users) 91 78 12 Balanced trade-off
High Load (200 users) 92 82 13 Scalability achieved

7. Conclusion

The suggested CR+SP model shows meaningful enhancements with regard to the most important
metrics: energy efficiency is 92, throughput 82 Mbps, spectral efficiency 5.6 bps/Hz, latency is eroded
to 12 ms, BER reduced to 2.5 x10, and fairness is improved to 0.91, compared with baseline, OFDM,
and CR without optimization models. The load-based test also proves that despite the high intensity of
users (200) the framework is highly energy efficient (92%), and the latency (13 ms) is lower, which
means that the framework falls within the scale and offers high robustness in dynamic scenarios in the
network.

ISSN (Online) : 3048-8508 58 IJSSIC



Md. Solaiman Mia, Jonathan Osei-Owusu

To enhance future work, the scope of machine learning spectrum prediction may be applied to enhance
the throughput and minimize the BER in rapidly changing channels. Multi-agent cooperation can
increase individual user fairness, and the applicability of deployment in heterogeneous networks (IoT
and 5G/6G scenarios) can be tested. As well, practical validation and dynamic optimization with ultra-
dense networks would give understanding of energy efficiency and latency trade-offs that would inform
future wireless network design.
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