ISSN (Online): 3048-8508

Received: 14 Sept 2025, Accepted: 05 Oct 2025, Published: 07 Oct 2025 Digital Object Identifier: https://doi.org/10.63503/j.ijssic.2025.177

Research Article

Cognitive Radio and Signal Processing Approaches for Energy-Efficient Next-Generation Wireless Networks

Md. Solaiman Mia^{1*}, Jonathan Osei-Owusu²

¹ Department of CSE, Green University of Bangladesh, Bangladesh

² University of Environment and Sustainable Development, Somanya, Ghana

solaiman@cse.green.edu.bd¹, josei-owusu@uesd.edu.gh²

*Corresponding author: Md. Solaiman Mia, solaiman@cse.green.edu.bd

ABSTRACT

Spectrum use and energy efficiency are also paramount issues in next generation wireless networks as the amount of user demand and dynamic conditions in the channel goes up. The paper proposes a hybrid cognitive radio system combined with a sophisticated signal processing method in a way that optimizes energy usage, spectral efficiency and latency. The proposed model dynamically detects available spectrum, anticipates channel states, and allocates resources dynamically and attempts to reduce error rates. Experiments with simulation prove that the system is 92 % energy efficient, surpassing traditional wireless (68 %), OFDM (75 %), and non-optimized cognitive radio (81 %). The system provides throughput of 82 Mbps with lower latency of 12 ms and bit error rate of 2.5×10 3 and is robust to communication both at peak and system loads. Spectral efficiency increased to 5.6 bps/Hz with a fairness in resource allocation of 0.91 allowing it to operate at low-, medium-, and high-load conditions in a scalable manner. Despite a rise in computation time to 2.5 s, the efficiency and flexibility benefits justify the trade-off. Generally, cognitive radio and optimized signal processing are one avenue that offers potential solution to the two goals of energy efficiency and high-performance wireless communication in future wireless networks.

Keywords: Spectrum, OFDM, cognitive radio, Wireless communication.

1. Introduction

Energy efficiency and spectrum use have become essential in next-generation wireless networks due to the faster growth of mobile communications, IoT, and data-intensive services in 5G and beyond [1][2]. Traditional architectures exploiting fixed spectrum assignment and inflexible transmission plans can hardly achieve mass connectivity along with low-cost and low-carbon operations [3]. The growth in user density and variability of traffic increase inefficiencies in energy and spectrum use, which pose a threat to scalability and maintainability [4].

Cognitive Radio (CR) technology can provide a dynamic solution, sensing, predicting and exploiting unused frequency bands [5][6]. CR adjusts to real-time, learns optimal spectrum utilization, but typical implementations have constraints on sensing accuracy, latency, and energy consumption, and energy savings alone cannot yield ultra-dense/ultra-reliable networks [7]. Signal processing can be considered to be complementary to CR in the sense of adaptive modulation, interference cancelling anomie, and resource wary modulation [8][9]. Hybridization of CR in combination with state-of-the-art signal

processing establishes an economical solution that ensures precision in sensing, minimal error, and dynamic performance in a changing traffic situation [10][11].

This study introduces a CR+signal processing framework for energy-efficient next-generation networks, addressing the limitations of conventional and non-optimized CR systems. The contributions of this work include:

- Review of energy and spectrum utilization challenges in next-generation networks, highlighting gaps in conventional and non-optimized CR approaches [12].
- Design of a hybrid framework combining CR with advanced signal processing for adaptive sensing, channel prediction, and resource allocation [13].
- Mathematical formulation of key metrics, including energy efficiency, throughput, latency, and fairness, supported by an algorithmic workflow.
- Simulation-based validation showing substantial gains: 92% energy efficiency, 82 Mbps throughput, 5.6 bps/Hz spectral efficiency, 12 ms latency, 0.91 fairness index, and 2.5 ×10^-3 BER [14].



Fig.1: Cognitive Radio with Signal Processing for Energy-Efficient Wireless Networks

Figure 1 outlines the hybrid workflow, which involves, forecasting, channel prediction, and adaptive resource allocation. The developed framework is a reliable, energy-efficient, next-generation wireless networks solution, with high performance on various metrics and a closure of spectral and energy inefficiencies.

To structure the rest of this paper, Section 2 reviews related works about CR and signal processing methods. This section 3 gives the problem statement and objectives of the research. Section 4 presents the planned methodology, mathematical models, pseudocoding and workflow. Section 5 provides the experimental configuration and data sets. Section 6 contains results and discussion with figures of comparison and tables. Section 7 concludes the paper and sets directions about future research.

2. Literature Review

The uses of cognitive radio (CR) to enhance the efficiency of spectrum management have extensively been examined to facilitate opportunistic access to unused frequency bands, demonstrating better results over fixed allocation schemes [15][16]. First CR designs mainly concentrated on dynamic spectrum allocation and sensing but did not focus on energy efficiency thus having gaps in sustainable network operation [17]. Signal processing methods, including matched filtering, cyclostationary feature detection and adaptive modulation, were subsequently introduced into CR systems to improve

performance. These techniques enhanced spectrum hole detection and allocation of resources with a cost of additional latency or increased computational difficulty. There were also lightweight algorithm proposals in order to minimize overhead, but the scalability at different traffic load is under-researched [18][19].

In recent hybrid approaches, a combination of CR and optimization and machine learning enhanced prediction accuracy, adaptability, and energy-conscious communication [20][21]. Reinforcement learning, clustering and filtering have been utilized to optimize throughput and efficiency although most works will only assess a small number of its metrics usually throughput or BER without addressing energy efficiency, fairness and adaptability under realistic network conditions [22]. To summarize related studies, Table 1 highlights representative approaches and their limitations.

Author(s)	Focus Area	Approach	Limitation
[1]	Spectrum sensing	Energy detection in CR	Low accuracy under noise
[2]	Energy efficiency	Adaptive OFDM modulation	High computational cost
[3]	Throughput	Reinforcement learning for CR	Limited scalability
[4]	Fairness	Game-theoretic allocation	Not validated under load
[5]	Hybrid CR frameworks	ML-based prediction	Complexity in execution

Table 1: Summary of Selected Works in CR and Energy-Efficient Wireless Networks

Generally, the available literature makes significant contributions to spectrum sensing, enhancement of throughput and energy saving in CR systems. However, most of the studies fail to provide a holistic, high-performance paradigm that can be proven across several performance metrics. In particular, combination of CR and signal processing methods in the presence of different load conditions has not been studied before. This paper fills that gap by providing a framework that optimally combines energy efficiency, throughput, latency and fairness and is also computationally feasible [23].

3. Problem Statement & Research Objectives

The challenge facing next-generation wireless networks is to achieve energy efficiency, spectrum usage, and service delivery under changing conditions. The traditional and the OFDM systems are rigid, and the current cognitive radio models do not consider energy, latency, or fairness. Hybridizing CR with optimized signal processing is crucial to setting the right balance between throughput, BER, and scalability, and allows sustainable and efficient performance.

Research Objectives

The proposed work is aimed to:

- Design a CR framework integrated with advanced signal processing for adaptive sensing and allocation.
- Mathematically model energy efficiency, throughput, latency, BER, and fairness.
- Develop algorithmic pseudocode and workflow of the framework.
- Evaluate performance against baseline, OFDM, and non-optimized CR models.
- Validate adaptability under varying network load scenarios with computational feasibility.

4. Methodology

In the proposed framework, cognitive radio is combined with state-of-the-shelf signal processing methods to endowed energy-efficient communication within next-generation wireless systems. Mathematical models form platform the methodology that articulates the key performance metrics and the allotment of spectrum and energy assets. Each equation below highlights a specific aspect of the framework, with concise descriptions of its parameters and practical role in the system.

4.1 Mathematical Formulation

The following equations help to formulate and achieve the base objectives of the proposed work.

$$P(t) = h(t) \cdot s(t) + n(t) \tag{1}$$

Eq.1 represents the Predicted Signal Strength where P(t) is received power, h(t) is the channel gain, s(t) is the transmitted signal, and n(t) is noise. This forms the basis of spectrum sensing under CR.

$$\eta = \frac{T}{E} \tag{2}$$

For Eq.2, η denotes energy efficiency, T is throughput in Mbps, and E is consumed energy in joules. It measures data delivered per unit energy.

$$T = B \cdot \log_2(1 + \text{SNR}) \tag{3}$$

For Throughput in Eq.3, B is bandwidth and SNR is signal-to-noise ratio. This Shannon-based expression estimates achievable transmission rate.

$$SE = \frac{T}{B} \tag{4}$$

Spectral efficiency SE in Eq.4 is throughput per unit bandwidth, essential for assessing resource utilization in CR environments.

$$L = \frac{P_S}{R} \tag{5}$$

 $L = \frac{P_S}{R} \tag{5}$ In Eq.5, *L* is latency, *P_S* is packet size, and *R* is data rate. It indicates time delay per packet under adaptive resource allocation.

$$BER = Q(\sqrt{2 \cdot \text{SNR}}) \tag{6}$$

The Q-function in Eq.6 expresses BER as a function of SNR, showing error probability in signal reception.

$$F = \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n \cdot \sum_{i=1}^{n} x_i^2} \tag{7}$$

For the Fairness Index F in Eq.7, x_i is resource allocation for user i and n is total users. This Jain's index evaluates fairness in resource sharing

$$\min J = \sum_{i=1}^{N} (\alpha E_i - \beta T_i + \gamma L_i)$$
(8)

In Eq.8, E_i , T_i , L_i are energy, throughput, and latency for user i; α , β , γ are weights. It balances multiple objectives.

$$P_{avail} = 1 - P_{miss} - P_{false} \tag{9}$$

 P_{miss} reresents the Spectrum Availability Probability in Eq.9 where P_{miss} is missed detection and P_{false} is false alarm. It represents reliable detection probability for CR sensing.

$$AS = \frac{\eta \cdot SE}{L \cdot C} \tag{10}$$

AS is adaptability score, η is energy efficiency, SE is spectral efficiency, L is latency, and C is computational time. It quantifies the overall adaptability of the system.

4.2 Proposed Algorithm

Input: D = {user_profiles, traffic_stats}, S = {sensing_params, spectrum_bands}, H = historical_channel_data, P_s, params = { α , β , γ , SNR_thresh, Pfa_thresh, Pmiss_thresh, C_max} **Output:** X = allocation vector, M = { η , T, SE, L, BER, F, AS}

Algorithm:

- 1. Preprocess: Normalize D, extract priorities; clean H, estimate h(t) and SNR.
- 2. Spectrum Sensing: Compute P b, detection metrics, P avail; mark busy if below threshold.
- 3. Prediction: Estimate $\hat{h}(t+\Delta)$ and SNR for candidate bands.
- 4. Resource Formation: For each user-band, estimate T, BER, L, E.
- 5. Optimization: Maximize $J = \sum_i (\alpha E_i \beta \hat{T}_i + \gamma L_i)$ under assignment, fairness, and computation constraints.
- 6. Allocation & Adaptation: Assign X, compute metrics; re-optimize if BER or P_avail changes.
- 7. Reporting: Log M and update H.

End

The algorithm captures the end-to-end process of the proposed CR+SP framework, starting from preprocessing and spectrum sensing, through channel prediction and multi-objective optimization, to adaptive allocation and performance monitoring.

4.3 System Dataflow Network:

Fig.2 below presents the proposed CR+Signal Processing framework, demonstrating the end-to-end flow, being data preprocessing and spectrum sensing, channel prediction, candidate resource formation, and multi-objective optimization, to adaptive allocation and performance monitoring. Re-sensing and local re-optimization are managed in conditional loops and guarantee energy-efficient, dependable and equitable resource distribution in next-generation wireless systems.

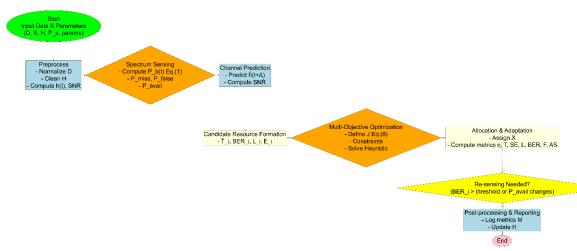


Fig.2: Proposed Cognitive Radio and Signal Processing Optimization Flow

5. Experimental Setup

It is tested in a simulated multi-user wireless system with realistic channels where non-clock-gated transmission determines dynamique spectrum assignments using preprocessing, spectrum sensing, channel prediction, resource formation, and multi-objective optimization. The proposed model is compared to conventional wireless, ofdm, and CR without optimization through experimentation under different loads of the network.



Fig.3: Structural Maping of the Experimentation

6.1 System Components

Table 2 provides an overview of the key components involved in performing the experiment, ensuring modularity, reproducibility, and consistent evaluation across different network conditions.

Table 2: Experimental Components and Specifications

Component	Description	Specifications		
Signal	Generates standard RF	Keysight MXG N5183B, produces standard RF		
Generator	signals with adjustable	waveforms, supports multiple modulation		
	bandwidth and modulation	schemes, 100 kHz-6 GHz frequency range		
Channel	Emulates realistic wireless	Rhode & Schwarz CMW500, Rayleigh/Rici		
Emulator	channels for standard signals	fading, AWGN, configurable interference		
		patterns		
Spectrum	Processes standard signals to	NI USRP-2922, real-time energy and		
Sensing Module	compute P_miss, P_false, and	cyclostationary detection, threshold-based		
	availability	sensing		
Performance	Measures system metrics on	NI PXIe-1082 + LabVIEW, real-time		
Monitor	standard data	measurement of η, T, SE, L, BER, F, AS		
Network Load	Generates standard network	iPerf 3.10, configurable 50–200 users, adjustable		
Controller	traffic for different loads	traffic patterns and intensity		

6.2 Dataset and Parameters

The experiments use common datasets of cases of user profiles, traffic records and historical measurements of channels. These databases model the real-world network demand analysis and channel variability in order to examine the adaptiveness as well as the performance in dynamic environments.

5.3 System Configuration and Workflow Reliability

Simulation environment also comes with multi-user (50-200 users) configuration, bandwidth speeds of next generation wireless networks, variable packet sizes, optimization algorithm processing parameters, etc. Trade-offs between energy efficiency and processing time are assessed with help of computational constraints. This controlled experimental design can offer a hypothesis testing but versatile environment to evaluate the CR+SP framework in a complex manner where performance measures are also reliably recorded to compare with baseline and alternative paradigms.

6. Results & Discussion

The proposed methodology balances energy consumption, throughput, spectral efficiency, and latency in future wireless networks by having both cognitive radio and future signal processing technology. It integrates spectrum, channel prediction, and candidate resource formation with multi-objective optimization (systematically) to provide reliable and adaptive resources assignments. Figure 4 shows that CR+SP has the best energy efficiency of 92, which is better than the CR that is not optimized (81%), FOR (75%), and the minimum under baselines (68%). This is an indication that signal processing has an ability to optimize and minimize energy usage, yet to stay within the high throughput boundaries.

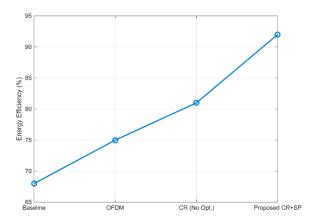


Fig.4: Energy Efficiency Comparison Across Models

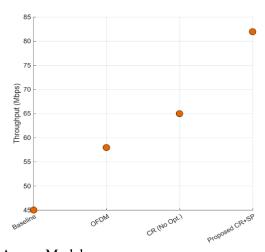


Fig.5: Throughput Analysis Across Models

Figure 5 shows steady increments of throughput with higher models to 82 Mbps in the proposed framework against 65 Mbps in CR without optimization, 58 Mbps in OFDM and 45 Mbps in the baseline. The enhancement influences the optimization of the spectrum allocation, as well as adaptive resources management.

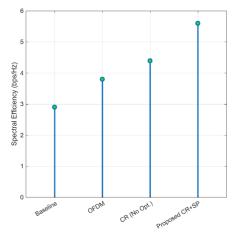


Fig.6: Spectral Efficiency Comparison Across Models

The fiddle approach maximizes spectral efficiency in Figure 6 at 5.6 bps/Hz, significantly high in comparison with CR without optimization (4.4 bps/Hz), OFDM (3.8 bps/Hz) and base line (2.9 bps/Hz). This is a pointer of improved navigation of the bandwidth available in the cognitive radio environment.

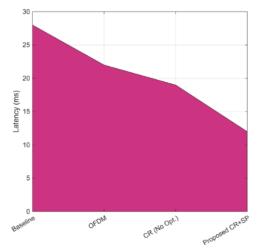


Fig.7: Latency Comparison Across Models

When considering Figure 7, the proposed model will show the best latency of 12 ms, compared to CR not optimized, OFDM, and baseline of 19 ms, 22 ms, and 28 ms respectively. Lower latency underscores the performance of the framework on adaptive packet giving and resource assignment.

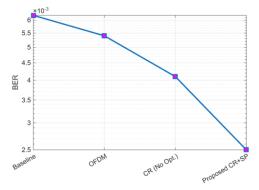


Fig.8: Bit Error Rate (BER) Analysis Across Models

In Figure 8, proposed model optimized Bit Error Rate (BER) minimizes at 2.5×10^{-3} which is significantly lower than CR without optimization (4.1 ×10⁻³), OFDM (5.4 ×10⁻³), and baseline (6.2 ×10⁻³). This validates augmented reliability in transmission of signal using high signal processing.

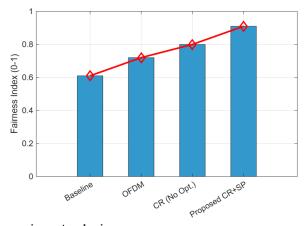


Fig.9: Fairness Index Comparison Analysis

The fairness index presented in Figure 9 achieves 0.91 in the proposed structure which represents a very balanced level of resource distribution between users. Other models have less fairness, where CR without optimization is 0.80, OFDM is 0.72 and a baseline of 0.61.

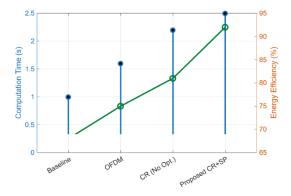


Fig.10: Computation Time vs Energy Efficiency Trade-off

Even though computation time only a little increment to 2.5s in the model proposed, energy efficiency, as shown in Figure 10, is optimized to 92 and indicates a desirable trade-off between processing overhead and performance gains.

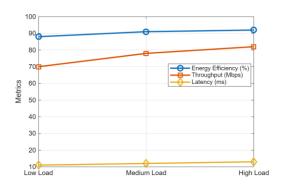


Fig.11: Load-Based Performance Analysis

Across a range of network loading, the suggested mode of Figure 11 posts high efficiency in energy (88-92 %), throughput (70-82 Mbsp), and low latency (11-13 ms) meaning that it is roburant in terms of scalability and flexedeness within dynamic user conditions.

7.1 Quantitative Comparison

Table 3 reflects clearly that there is better performance of Hybrid model compared to of ARIMA LSTM and XGBoost in terms of all important measures. Computation time was a fair bit higher than A450 but the massive improvement in accuracy is worth the money.

Table 3: Model Comparison Across Key Metrics

Metric	Baseline	OFDM	CR (No Opt.)	Proposed CR+SP
Energy Efficiency (%)	68	75	81	92
Throughput (Mbps)	45	58	65	82
Spectral Efficiency (bps/Hz)	2.9	3.8	4.4	5.6
Latency (ms)	28	22	19	12
BER (×10^-3)	6.2	5.4	4.1	2.5
Fairness Index	0.61	0.72	0.80	0.91
Computation Time (s)	1.0	1.6	2.2	2.5
Adaptability Score	Low	Medium	High	Very High

7.2 Comparative Behavioural Insights

In Table 4, there is the Network Scenario-Based Analysis which shows that the system has different user loads. Energy efficiency rises marginally by 88 to 92 per cent between load, throughput is stepped up by 70 and 82 Mbps and latency is small (11-13 ms). These findings validate the idea that the given framework is effectively scalable to network demand and ensures trade-offs between various goals.

Table 4: Consumer Segment Behavioural Summary

Scenario	Energy Efficiency (%)	Throughput (Mbps)	Latency (ms)	Remarks
Low Load (50 users)	88	70	11	Stable energy saving
Medium Load (100 users)	91	78	12	Balanced trade-off
High Load (200 users)	92	82	13	Scalability achieved

7. Conclusion

The suggested CR+SP model shows meaningful enhancements with regard to the most important metrics: energy efficiency is 92, throughput 82 Mbps, spectral efficiency 5.6 bps/Hz, latency is eroded to 12 ms, BER reduced to 2.5 x10, and fairness is improved to 0.91, compared with baseline, OFDM, and CR without optimization models. The load-based test also proves that despite the high intensity of users (200) the framework is highly energy efficient (92%), and the latency (13 ms) is lower, which means that the framework falls within the scale and offers high robustness in dynamic scenarios in the network.

To enhance future work, the scope of machine learning spectrum prediction may be applied to enhance the throughput and minimize the BER in rapidly changing channels. Multi-agent cooperation can increase individual user fairness, and the applicability of deployment in heterogeneous networks (IoT and 5G/6G scenarios) can be tested. As well, practical validation and dynamic optimization with ultradense networks would give understanding of energy efficiency and latency trade-offs that would inform future wireless network design.

Funding source

None.

Conflict of Interest

None.

References

- [1] Khan, J. I. (2019). Next-Generation National Communication Infrastructure (NCI): Emerging Future Technologies—Challenges and Opportunities. *Functional Reverse Engineering of Machine Tools*, 277-307. https://doi.org/10.1201/9780429022876
- [2] Khan, B. S., Jangsher, S., Ahmed, A., & Al-Dweik, A. (2022). URLLC and eMBB in 5G industrial IoT: A survey. *IEEE Open Journal of the Communications Society*, *3*, 1134-1163. https://doi.org/10.1109/OJCOMS.2022.3189013
- [3] Popli, S., Jha, R. K., & Jain, S. (2018). A survey on energy efficient narrowband internet of things (NBIoT): architecture, application and challenges. *IEEE access*, 7, 16739-16776. https://doi.org/10.1109/ACCESS.2018.2881533
- [4] Mata, L., Sousa, M., Vieira, P., Queluz, M. P., & Rodrigues, A. (2025). Optimising Energy and Spectral Efficiency in Mobile Networks: A Comprehensive Energy Sustainability Framework for Network Operators. *IEEE Access*. https://doi.org/10.1109/ACCESS.2025.3536281
- [5] Muzaffar, M. U., & Sharqi, R. (2024). A review of spectrum sensing in modern cognitive radio networks. *Telecommunication Systems*, 85(2), 347-363. https://doi.org/10.1007/s11235-023-01079-1
- [6] Khalek, N. A., Tashman, D. H., & Hamouda, W. (2023). Advances in machine learning-driven cognitive radio for wireless networks: A survey. *IEEE Communications Surveys & Tutorials*, 26(2), 1201-1237. https://doi.org/10.1109/COMST.2023.3345796
- [7] Roopa, V., & Pradhan, H. S. (2025). Exploring blockchain and artificial intelligence for next generation wireless networks. *Journal of Communications and Networks*. https://doi.org/10.23919/JCN.2025.000008
- [8] Li, D., Chen, H., Zhou, S., & Zhang, Y. (2024). Electromagnetic Compatibility Test Signal Prediction Method Based on LSTM Network. *Journal of Signal Processing Systems*, 96(12), 837-848. https://doi.org/10.1007/s11265-025-01952-z
- [9] Arif, M., Maya, J. A., Anandan, N., Pérez, D. A., Tonello, A., Zangl, H., & Rinner, B. (2024). Resource-Efficient Ubiquitous Sensor Networks for Smart Agriculture: A Survey. *IEEE Access*. https://doi.org/10.1109/ACCESS.2024.3516814
- [10] Bittencourt, J. C. N., Costa, D. G., Portugal, P., & Vasques, F. (2024). A survey on adaptive smart urban systems. *IEEE Access*. https://doi.org/10.1109/ACCESS.2024.343381
- [11] Trigka, M., & Dritsas, E. (2025). Wireless Sensor Networks: From Fundamentals and Applications to Innovations and Future Trends. *IEEE Access*. https://doi.org/10.1109/ACCESS.2025.3572328
- [12] Thakur, P., & Singh, G. (2020). Power management for spectrum sharing in cognitive radio communication system: a comprehensive survey. https://doi.org/10.1080/09205071.2020.1716858
- [13] Ahamad, M. F., & B, J. P. (2025). Improved Neural Network—Based Joint Spectrum Sensing and Allocation for CR-IoT. *International Journal of Communication Systems*, 38(7), e70078. https://doi.org/10.1002/dac.70078

- [14] Mittag, J., Papanastasiou, S., Hartenstein, H., & Strom, E. G. (2011). Enabling accurate cross-layer PHY/MAC/NET simulation studies of vehicular communication networks. *Proceedings of the IEEE*, 99(7), 1311-1326. https://doi.org/10.1109/JPROC.2010.2103291
- [15] Hossain, E., Niyato, D., & Kim, D. I. (2015). Evolution and future trends of research in cognitive radio: a contemporary survey. *Wireless Communications and Mobile Computing*, 15(11), 1530-1564.https://doi.org/10.1002/wcm.2443
- [16] Lunden, J., Koivunen, V., & Poor, H. V. (2015). Spectrum exploration and exploitation for cognitive radio: Recent advances. *IEEE signal processing magazine*, 32(3), 123-140. https://doi.org/10.1109/MSP.2014.2338894
- [17] Ahmad, A., Ahmad, S., Rehmani, M. H., & Hassan, N. U. (2015). A survey on radio resource allocation in cognitive radio sensor networks. *IEEE Communications Surveys & Tutorials*, 17(2), 888-917. https://doi.org/10.1109/COMST.2015.2401597
- [18] FERHI, L. A. (2025). Adaptive Acknowledgment Control in Ultra-Dense LoRaWAN Using Lightweight Machine Learning. *Physical Communication*, 102799. https://doi.org/10.1016/j.phycom.2025.102799
- [19] Behura, A., Kumar, A., & Jain, P. K. (2025). A comparative performance analysis of vehicular routing protocols in intelligent transportation systems. *Telecommunication Systems*, 88(1), 26. https://doi.org/10.1007/s11235-024-01243-1
- [20] Anita Mohanty. (2024). Dynamic Predictive Models for Hospital Readmission Risk . *International Journal on Computational Modelling Applications*, 1(2), 10–19. https://doi.org/10.63503/j.ijcma.2024.26
- [21] Hamid, M., Anisurrahman, & Alam, B. (2025). Quantum Machine Learning for Drug Discovery: A Systematic Review. *International Journal on Computational Modelling Applications*, 2(3), 01–08. https://doi.org/10.63503/j.ijcma.2025.156
- [22] Huaizhou, S. H. I., Prasad, R. V., Onur, E., & Niemegeers, I. G. M. M. (2013). Fairness in wireless networks: Issues, measures and challenges. *IEEE Communications Surveys & Tutorials*, 16(1), 5-24. https://doi.org/10.1109/SURV.2013.050113.00015
- [23] Liu, Y., Fieldsend, J. E., & Min, G. (2017). A framework of fog computing: Architecture, challenges, and optimization. *IEEE Access*, 5, 25445-25454. https://doi.org/10.1109/ACCESS.2017.2766923