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ABSTRACT 

Spectrum use and energy efficiency are also paramount issues in next generation wireless networks as the amount 

of user demand and dynamic conditions in the channel goes up. The paper proposes a hybrid cognitive radio 

system combined with a sophisticated signal processing method in a way that optimizes energy usage, spectral 

efficiency and latency. The proposed model dynamically detects available spectrum, anticipates channel states, 

and allocates resources dynamically and attempts to reduce error rates. Experiments with simulation prove that 

the system is 92 % energy efficient, surpassing traditional wireless (68 %), OFDM (75 %), and non-optimized 

cognitive radio (81 %). The system provides throughput of 82 Mbps with lower latency of 12 ms and bit error rate 

of 2.5×10 3 and is robust to communication both at peak and system loads. Spectral efficiency increased to 5.6 

bps/Hz with a fairness in resource allocation of 0.91 allowing it to operate at low-, medium-, and high-load 

conditions in a scalable manner. Despite a rise in computation time to 2.5 s, the efficiency and flexibility benefits 

justify the trade-off. Generally, cognitive radio and optimized signal processing are one avenue that offers 

potential solution to the two goals of energy efficiency and high-performance wireless communication in future 

wireless networks. 

Keywords: Spectrum, OFDM, cognitive radio, Wireless communication. 

 

1. Introduction 

Energy efficiency and spectrum use have become essential in next-generation wireless networks due to 

the faster growth of mobile communications, IoT, and data-intensive services in 5G and beyond [1][2]. 

Traditional architectures exploiting fixed spectrum assignment and inflexible transmission plans can 

hardly achieve mass connectivity along with low-cost and low-carbon operations [3]. The growth in 

user density and variability of traffic increase inefficiencies in energy and spectrum use, which pose a 

threat to scalability and maintainability [4]. 

Cognitive Radio (CR) technology can provide a dynamic solution, sensing, predicting and exploiting 

unused frequency bands [5][6]. CR adjusts to real-time, learns optimal spectrum utilization, but typical 

implementations have constraints on sensing accuracy, latency, and energy consumption, and energy 

savings alone cannot yield ultra-dense/ultra-reliable networks [7]. Signal processing can be considered 

to be complementary to CR in the sense of adaptive modulation, interference cancelling anomie, and 

resource wary modulation [8][9]. Hybridization of CR in combination with state-of-the-art signal 
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processing establishes an economical solution that ensures precision in sensing, minimal error, and 

dynamic performance in a changing traffic situation [10][11]. 

This study introduces a CR+signal processing framework for energy-efficient next-generation 

networks, addressing the limitations of conventional and non-optimized CR systems. The 

contributions of this work include: 

• Review of energy and spectrum utilization challenges in next-generation networks, highlighting 

gaps in conventional and non-optimized CR approaches [12]. 

• Design of a hybrid framework combining CR with advanced signal processing for adaptive sensing, 

channel prediction, and resource allocation [13]. 

• Mathematical formulation of key metrics, including energy efficiency, throughput, latency, and 

fairness, supported by an algorithmic workflow. 

• Simulation-based validation showing substantial gains: 92% energy efficiency, 82 Mbps 

throughput, 5.6 bps/Hz spectral efficiency, 12 ms latency, 0.91 fairness index, and 2.5 ×10^-3 BER 

[14]. 

 

 

Fig.1: Cognitive Radio with Signal Processing for Energy-Efficient Wireless Networks 

Figure 1 outlines the hybrid workflow, which involves, forecasting, channel prediction, and adaptive 

resource allocation. The developed framework is a reliable, energy-efficient, next-generation wireless 

networks solution, with high performance on various metrics and a closure of spectral and energy 

inefficiencies. 

 To structure the rest of this paper, Section 2 reviews related works about CR and signal processing 

methods. This section 3 gives the problem statement and objectives of the research. Section 4 presents 

the planned methodology, mathematical models, pseudocoding and workflow. Section 5 provides the 

experimental configuration and data sets. Section 6 contains results and discussion with figures of 

comparison and tables. Section 7 concludes the paper and sets directions about future research. 

2. Literature Review  

The uses of cognitive radio (CR) to enhance the efficiency of spectrum management have extensively 

been examined to facilitate opportunistic access to unused frequency bands, demonstrating better results 

over fixed allocation schemes [15][16]. First CR designs mainly concentrated on dynamic spectrum 

allocation and sensing but did not focus on energy efficiency thus having gaps in sustainable network 

operation [17]. Signal processing methods, including matched filtering, cyclostationary feature 

detection and adaptive modulation, were subsequently introduced into CR systems to improve 
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performance. These techniques enhanced spectrum hole detection and allocation of resources with a 

cost of additional latency or increased computational difficulty. There were also lightweight algorithm 

proposals in order to minimize overhead, but the scalability at different traffic load is under-researched 

[18][19]. 

In recent hybrid approaches, a combination of CR and optimization and machine learning enhanced 

prediction accuracy, adaptability, and energy-conscious communication [20][21]. Reinforcement 

learning, clustering and filtering have been utilized to optimize throughput and efficiency although most 

works will only assess a small number of its metrics usually throughput or BER without addressing 

energy efficiency, fairness and adaptability under realistic network conditions [22]. To summarize 

related studies, Table 1 highlights representative approaches and their limitations. 

Table 1: Summary of Selected Works in CR and Energy-Efficient Wireless Networks 

Author(s) Focus Area Approach Limitation 

[1] Spectrum sensing Energy detection in CR Low accuracy under noise 

[2] Energy efficiency Adaptive OFDM modulation High computational cost 

[3] Throughput Reinforcement learning for CR Limited scalability 

[4] Fairness Game-theoretic allocation Not validated under load 

[5] Hybrid CR frameworks ML-based prediction Complexity in execution 

Generally, the available literature makes significant contributions to spectrum sensing, enhancement of 

throughput and energy saving in CR systems. However, most of the studies fail to provide a holistic, 

high-performance paradigm that can be proven across several performance metrics. In particular, 

combination of CR and signal processing methods in the presence of different load conditions has not 

been studied before. This paper fills that gap by providing a framework that optimally combines energy 

efficiency, throughput, latency and fairness and is also computationally feasible [23]. 

3. Problem Statement & Research Objectives 

The challenge facing next-generation wireless networks is to achieve energy efficiency, spectrum usage, 

and service delivery under changing conditions. The traditional and the OFDM systems are rigid, and 

the current cognitive radio models do not consider energy, latency, or fairness. Hybridizing CR with 

optimized signal processing is crucial to setting the right balance between throughput, BER, and 

scalability, and allows sustainable and efficient performance. 

Research Objectives 

   The proposed work is aimed to: 

• Design a CR framework integrated with advanced signal processing for adaptive sensing and 

allocation. 

• Mathematically model energy efficiency, throughput, latency, BER, and fairness. 

• Develop algorithmic pseudocode and workflow of the framework. 

• Evaluate performance against baseline, OFDM, and non-optimized CR models. 

• Validate adaptability under varying network load scenarios with computational feasibility. 

4. Methodology  

In the proposed framework, cognitive radio is combined with state-of-the-shelf signal processing 

methods to endowed energy-efficient communication within next-generation wireless systems. 

Mathematical models form platform the methodology that articulates the key performance metrics and 

the allotment of spectrum and energy assets. Each equation below highlights a specific aspect of the 

framework, with concise descriptions of its parameters and practical role in the system. 
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4.1 Mathematical Formulation 

The following equations help to formulate and achieve the base objectives of the proposed work. 

                                                          𝑃(𝑡) = ℎ(𝑡) ⋅ 𝑠(𝑡) + 𝑛(𝑡)                                                           (1) 

Eq.1 represents the Predicted Signal Strength where 𝑃(𝑡) is received power, ℎ(𝑡) is the channel gain, 

𝑠(𝑡) is the transmitted signal, and 𝑛(𝑡) is noise. This forms the basis of spectrum sensing under CR. 

                                                                            𝜂 =
𝑇

𝐸
                                                            (2) 

For Eq.2, 𝜂 denotes energy efficiency, 𝑇 is throughput in Mbps, and 𝐸 is consumed energy in joules. It 

measures data delivered per unit energy. 

                                                        𝑇 = 𝐵 ⋅ log⁡2(1 + SNR)                                                  (3) 

For Throughput in Eq.3, 𝐵  is bandwidth and SNR is signal-to-noise ratio. This Shannon-based 

expression estimates achievable transmission rate. 

          𝑆𝐸 =
𝑇

𝐵
                                                               (4) 

Spectral efficiency 𝑆𝐸  in Eq.4 is throughput per unit bandwidth, essential for assessing resource 

utilization in CR environments. 

                                                                       𝐿 =
𝑃𝑠

𝑅
                                                                (5)                     

In Eq.5, 𝐿 is latency, 𝑃𝑠 is packet size, and 𝑅 is data rate. It indicates time delay per packet under 

adaptive resource allocation. 

                                                           𝐵𝐸𝑅 = 𝑄(√2 ⋅ SNR)                                                   (6) 

The Q-function in Eq.6 expresses BER as a function of SNR, showing error probability in signal 

reception. 

                                                               𝐹 =
(∑ 𝑥𝑖

𝑛
𝑖=1 )

2

𝑛⋅∑ 𝑥𝑖
2𝑛

𝑖=1

                                                              (7) 

For the Fairness Index F in Eq.7, 𝑥𝑖 is resource allocation for user 𝑖 and 𝑛 is total users. This Jain’s 

index evaluates fairness in resource sharing. 

                                                       min⁡ 𝐽 = ∑ (𝛼 𝐸𝑖  − 𝛽 𝑇𝑖  + 𝛾 𝐿𝑖)
𝑁
𝑖=1                                                   (8) 

In Eq.8, 𝐸𝑖, 𝑇𝑖, 𝐿𝑖 are energy, throughput, and latency for user 𝑖; 𝛼, 𝛽, 𝛾 are weights. It balances multiple 

objectives. 

                                                        𝑃𝑎𝑣𝑎𝑖𝑙 = 1 − 𝑃𝑚𝑖𝑠𝑠 − 𝑃𝑓𝑎𝑙𝑠𝑒                                             (9) 

 

𝑃𝑚𝑖𝑠𝑠  reresents the Spectrum Availability Probability in Eq.9 where 𝑃𝑚𝑖𝑠𝑠 is missed detection and 

𝑃𝑓𝑎𝑙𝑠𝑒 is false alarm. It represents reliable detection probability for CR sensing.  

                                                                        𝐴𝑆 =
𝜂⋅𝑆𝐸

𝐿⋅𝐶
                                                         (10) 

 

𝐴𝑆  is adaptability score, 𝜂  is energy efficiency, 𝑆𝐸  is spectral efficiency, 𝐿  is latency, and 𝐶  is 

computational time. It quantifies the overall adaptability of the system. 

 

 

 



Md. Solaiman Mia, Jonathan Osei-Owusu 

 

 

ISSN (Online) : 3048-8508 53 IJSSIC  

 

4.2 Proposed Algorithm 

  

Input: D = {user_profiles, traffic_stats}, S = {sensing_params, spectrum_bands}, H = 

historical_channel_data, P_s, params = {α, β, γ, SNR_thresh, Pfa_thresh, Pmiss_thresh, C_max} 

Output: X = allocation vector, M = {η, T, SE, L, BER, F, AS} 

Algorithm: 

1. Preprocess: Normalize D, extract priorities; clean H, estimate h(t) and SNR. 

2. Spectrum Sensing: Compute P_b, detection metrics, P_avail; mark busy if below threshold. 

3. Prediction: Estimate ĥ(t+Δ) and SNR̂ for candidate bands. 

4. Resource Formation: For each user-band, estimate T̂, BER, L, E. 

5. Optimization: Maximize J = Σ_i(αE_i − βT̂_i + γL_i) under assignment, fairness, and 

computation constraints. 

6. Allocation & Adaptation: Assign X, compute metrics; re-optimize if BER or P_avail 

changes. 

7. Reporting: Log M and update H. 

End 

The algorithm captures the end-to-end process of the proposed CR+SP framework, starting from 

preprocessing and spectrum sensing, through channel prediction and multi-objective optimization, to 

adaptive allocation and performance monitoring. 

4.3 System Dataflow Network: 

Fig.2 below presents the proposed CR+Signal Processing framework, demonstrating the end-to-end 

flow, being data preprocessing and spectrum sensing, channel prediction, candidate resource formation, 

and multi-objective optimization, to adaptive allocation and performance monitoring. Re-sensing and 

local re-optimization are managed in conditional loops and guarantee energy-efficient, dependable and 

equitable resource distribution in next-generation wireless systems. 

 

 
Fig.2: Proposed Cognitive Radio and Signal Processing Optimization Flow 

 

5. Experimental Setup 

It is tested in a simulated multi-user wireless system with realistic channels where non-clock-gated 

transmission determines dynamique spectrum assignments using preprocessing, spectrum sensing, 

channel prediction, resource formation, and multi-objective optimization. The proposed model is 

compared to conventional wireless, ofdm, and CR without optimization through experimentation under 

different loads of the network.  
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Fig.3: Structural Maping of the Experimentation 

 

6.1 System Components 

Table 2 provides an overview of the key components involved in performing the experiment, ensuring 

modularity, reproducibility, and consistent evaluation across different network conditions. 

 

Table 2: Experimental Components and Specifications 

Component Description Specifications 

Signal 

Generator 

Generates standard RF 

signals with adjustable 

bandwidth and modulation 

Keysight MXG N5183B, produces standard RF 

waveforms, supports multiple modulation 

schemes, 100 kHz–6 GHz frequency range 

Channel 

Emulator 

Emulates realistic wireless 

channels for standard signals 

Rhode & Schwarz CMW500, Rayleigh/Rician 

fading, AWGN, configurable interference 

patterns 

Spectrum 

Sensing Module 

Processes standard signals to 

compute P_miss, P_false, and 

availability 

NI USRP-2922, real-time energy and 

cyclostationary detection, threshold-based 

sensing 

Performance 

Monitor 

Measures system metrics on 

standard data 

NI PXIe-1082 + LabVIEW, real-time 

measurement of η, T, SE, L, BER, F, AS 

Network Load 

Controller 

Generates standard network 

traffic for different loads 

iPerf 3.10, configurable 50–200 users, adjustable 

traffic patterns and intensity 

 

6.2 Dataset and Parameters 

The experiments use common datasets of cases of user profiles, traffic records and historical 

measurements of channels. These databases model the real-world network demand analysis and channel 

variability in order to examine the adaptiveness as well as the performance in dynamic environments. 

 

5.3 System Configuration and Workflow Reliability 

Simulation environment also comes with multi-user (50-200 users) configuration, bandwidth speeds of 

next generation wireless networks, variable packet sizes, optimization algorithm processing parameters, 

etc. Trade-offs between energy efficiency and processing time are assessed with help of computational 

constraints. This controlled experimental design can offer a hypothesis testing but versatile environment 

to evaluate the CR+SP framework in a complex manner where performance measures are also reliably 

recorded to compare with baseline and alternative paradigms. 
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6. Results & Discussion 

The proposed methodology balances energy consumption, throughput, spectral efficiency, and latency 

in future wireless networks by having both cognitive radio and future signal processing technology. It 

integrates spectrum, channel prediction, and candidate resource formation with multi-objective 

optimization (systematically) to provide reliable and adaptive resources assignments. Figure 4 shows 

that CR+SP has the best energy efficiency of 92, which is better than the CR that is not optimized 

(81%), FOR (75%), and the minimum under baselines (68%). This is an indication that signal 

processing has an ability to optimize and minimize energy usage, yet to stay within the high throughput 

boundaries. 

 

Fig.4: Energy Efficiency Comparison Across Models 

 

 
Fig.5: Throughput Analysis Across Models 

Figure 5 shows steady increments of throughput with higher models to 82 Mbps in the proposed 

framework against 65 Mbps in CR without optimization, 58 Mbps in OFDM and 45 Mbps in the 

baseline. The enhancement influences the optimization of the spectrum allocation, as well as adaptive 

resources management. 
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Fig.6: Spectral Efficiency Comparison Across Models 

The fiddle approach maximizes spectral efficiency in Figure 6 at 5.6 bps/Hz, significantly high in 

comparison with CR without optimization (4.4 bps/Hz), OFDM (3.8 bps/Hz) and base line (2.9 bps/Hz). 

This is a pointer of improved navigation of the bandwidth available in the cognitive radio environment. 

 
Fig.7: Latency Comparison Across Models 

When considering Figure 7, the proposed model will show the best latency of 12 ms, compared to CR 

not optimized, OFDM, and baseline of 19 ms, 22 ms, and 28 ms respectively. Lower latency underscores 

the performance of the framework on adaptive packet giving and resource assignment. 

 

 
Fig.8: Bit Error Rate (BER) Analysis Across Models 
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In Figure 8, proposed model optimized Bit Error Rate (BER) minimizes at 2.5 ×10^-3 which is 

significantly lower than CR without optimization (4.1 ×10^-3), OFDM (5.4 ×10^-3), and baseline (6.2 

×10^-3). This validates augmented reliability in transmission of signal using high signal processing. 

 
Fig.9: Fairness Index Comparison Analysis 

The fairness index presented in Figure 9 achieves 0.91 in the proposed structure which represents a very 

balanced level of resource distribution between users. Other models have less fairness, where CR 

without optimization is 0.80, OFDM is 0.72 and a baseline of 0.61. 

 

Fig.10: Computation Time vs Energy Efficiency Trade-off 

Even though computation time only a little increment to 2.5s in the model proposed, energy efficiency, 

as shown in Figure 10, is optimized to 92 and indicates a desirable trade-off between processing 

overhead and performance gains. 

 

Fig.11: Load-Based Performance Analysis 
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Across a range of network loading, the suggested mode of Figure 11 posts high efficiency in energy 

(88- 92 %), throughput (70-82 Mbsp), and low latency (11-13 ms) meaning that it is roburant in terms 

of scalability and flexedeness within dynamic user conditions. 

7.1 Quantitative Comparison  

     Table 3 reflects clearly that there is better performance of Hybrid model compared to of ARIMA 

LSTM and XGBoost in terms of all important measures. Computation time was a fair bit higher than 

A450 but the massive improvement in accuracy is worth the money. 

Table 3: Model Comparison Across Key Metrics 

Metric Baseline OFDM CR (No Opt.) Proposed CR+SP 

Energy Efficiency (%) 68 75 81 92 

Throughput (Mbps) 45 58 65 82 

Spectral Efficiency (bps/Hz) 2.9 3.8 4.4 5.6 

Latency (ms) 28 22 19 12 

BER (×10^-3) 6.2 5.4 4.1 2.5 

Fairness Index 0.61 0.72 0.80 0.91 

Computation Time (s) 1.0 1.6 2.2 2.5 

Adaptability Score Low Medium High Very High 

7.2 Comparative Behavioural Insights 

    

 In Table 4, there is the Network Scenario-Based Analysis which shows that the system has different 

user loads. Energy efficiency rises marginally by 88 to 92 per cent between load, throughput is stepped 

up by 70 and 82 Mbps and latency is small (11-13 ms). These findings validate the idea that the given 

framework is effectively scalable to network demand and ensures trade-offs between various goals. 

Table 4: Consumer Segment Behavioural Summary 

Scenario Energy 

Efficiency 

(%) 

Throughput 

(Mbps) 

Latency 

(ms) 

Remarks 

Low Load (50 users) 88 70 11 Stable energy saving 

Medium Load (100 users) 91 78 12 Balanced trade-off 

High Load (200 users) 92 82 13 Scalability achieved 

 

7. Conclusion  

The suggested CR+SP model shows meaningful enhancements with regard to the most important 

metrics: energy efficiency is 92, throughput 82 Mbps, spectral efficiency 5.6 bps/Hz, latency is eroded 

to 12 ms, BER reduced to 2.5 x10, and fairness is improved to 0.91, compared with baseline, OFDM, 

and CR without optimization models. The load-based test also proves that despite the high intensity of 

users (200) the framework is highly energy efficient (92%), and the latency (13 ms) is lower, which 

means that the framework falls within the scale and offers high robustness in dynamic scenarios in the 

network. 
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To enhance future work, the scope of machine learning spectrum prediction may be applied to enhance 

the throughput and minimize the BER in rapidly changing channels. Multi-agent cooperation can 

increase individual user fairness, and the applicability of deployment in heterogeneous networks (IoT 

and 5G/6G scenarios) can be tested. As well, practical validation and dynamic optimization with ultra-

dense networks would give understanding of energy efficiency and latency trade-offs that would inform 

future wireless network design. 
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