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ABSTRACT

This research presents AIMOS (AI-Powered Intelligent Math Operations System) — a multi-LLM orchestration
framework to improve the correctness and reliability of mathematical problem-solving tasks. The framework
annotates input questions to a category of mathematical discourse — Algebra, Calculus, Geometry, Trigonometry,
or Probability & Statistics, then routes the questions to multiple large language model (LLM) APIs (including
GPT-4, Claude, Gemini and Mistral) and levers their responses. The consensus algorithm and the trust-based
algorithm follow to select the final response output with further symbolic verification of mathematical correctness.
This experimental framework demonstrates that AIMOS outperforms use of single LLMs, with respect to
correctness, reliability, and interpretability, and can be used for educational, research, and analytical purposes.

Keywords: Large Language Models, Ensemble A, Mathematical Reasoning, Consensus Mechanism, Symbolic
Verification, Trust Evaluation, Multi-Model Orchestration.

1. Introduction

The appropriate progression of mathematical problem solving continues to be a chief area of challenge
for artificial intelligence (Al) systems due to the various interdependent facets of symbolic reasoning,
numerical precision and logic within multiple domains [1], [6], [18]. While impressive strides have
been made on natural language understanding and contextual reasoning in large language models
(LLMs), e.g., GPT-4 and Claude, there is still variability and inconsistency to expect in mathematics
problem solving, especially with multi-step reasoning, symbolic manipulation and constructive logic in
particular domains [2], [3], [17]. These challenges derive from a gap intrinsic to mathematics between
its deterministic structure, and the probabilistic nature of statistical language modeling, where even
seemingly unimportant details of symbolic inaccuracies can lead to incorrect conclusions [7], [8].

Efforts are underway to address this recently with hybrid combinations of neural models and symbolic
reasoning systems. Symbolic engines like SymPy and Wolfram Alpha are strong performers when
computation is exact, but they generally lack flexibility for interpreting ambiguous or natural language
problems [7], [9]. LLMs offer much more flexibility and context understanding, but they deal with
hallucination and inconsistency when it is clear that an exact computation is needed [15]. An
investigative road that holds promise for overcoming the limitations of each method leads to
frameworks of multi-barrel cooperation and ensemble learning which can take advantage of each
reasoning systems' unique strengths to achieve commonly agreed to accuracy. [1], [10], [11].

The AIMOS (Al-Powered Intelligent Math Operations System) framework addresses these challenges
through a multi-LLM orchestration method to ensure accurate, trustworthy interpretations, and
confidence in the mathematical reasoning process. In creating a principled framework, each query is
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associated with a mathematical domain through a domain-adaptive classifier architecture, e.g., Algebra,
Calculus, Geometry, Probability, etc. The query then proceeds through multiple LLMs (e.g., GPT-4,
Gemini, Claude, Mistral, etc.) that each generate and provide a response and solution contextualized in
their internal model and reasoning. All responses from the models are combined and evaluated in a
single process with a consensus algorithm utilizing string-based similarity and symbolic equivalence
checking to evaluate neighborhood agreement [8], [14]. The consensus process assesses discrepancies
among the models through a trust-weighted selection mechanism that evaluates the historical accuracy
of each individual agent within the specific domain (or domains) of the problem to identify the most
trustworthy model [11].

To ensure mathematical correctness, AIMOS employs symbolic verification by means of libraries such
as SymPy for algebraic equivalence trials and formula verification [4], [5], [14]. This neural-symbolic
verification guarantees not only that the final response is linguistically, but also mathematically correct.
AIMOS offers explainable confidence metrics, so that users know how the consensus score and trust
scores contributed to the answer selection [12], [13].

AIMOS provides a highest level of collaborative intelligence that cannot be achieved within a single
model by integrating domain classification, multi-LLM reasoning, trust-based evaluation, and symbolic
computation. This mathematical reasoning engine is transparent and flexible, and endeavors to be both
accurate and interpretable in a wide range of domains and use cases. Specifically, AIMOS is well-suited
for educational tools, automated grading, research assistance, and analytical computing [13], [16], [17].

2. Literature Review

The area of mathematical reasoning with Al has shifted tremendously as transformer-based architecture
and symbolic reasoning engines improve. Recent work on ensemble transformer architectures has
highlighted that large models can handle structured reasoning and multi-step inference in quantitative
situations [1]. Similarly, reasoning-based orchestration methods have improved performance with
arithmetic question answering by using interleaving sub-models focused on numerical inference [2].
Collectively, this improves performance and echoes the larger trend where collaborative Al agents are
being developed to engage in reasoning consensus collectively via inter-model collaboration [3].
However, performance improvements also raise the issue of accuracy, verifiability, and consistency in
mathematical reasoning, providing a strong impetus for experimenting with combining symbolic
verification with neural reasoning and hybrid approaches [4], [5].

2.1 Solvers Based on a Single Model

Initial work in this area utilized single large language models (LLMs) (e.g., GPT-3 and GPT-4) to
perform mathematical and logical reasoning [4], [5], [15]. These models showed relatively good ability
to understand natural language and to produce what seemed to be plausible sequence of solutions, but
they also suffered from hallucination, insufficient domain specificity, and inconsistent symbolic
accuracy. Studies examining the use of GPT models in mathematics as education and reasoning found
that despite being fluent or presenting reasonable steps, these models frequently had inconsistent
symbolic accuracy, either across steps or must validate numerical output for each step [17]. Surveys of
quantitative reasoning found that when addressing complex mathematical reasoning tasks, LLMs have
difficulty providing valid answers in relation to other LLMs [18]. Collectively, these limitations
highlight a tension between general linguistic proficiency and a constraint to domain specific accuracy
in each of the independent transformer models.

2.2 Symbolic Computation Systems
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Just like with the advances in LLMs, symbolic computing engines such as SymPy and Wolfram Alpha
have historically provided deterministic and explainable solutions to mathematical problems
(differentiation, integration, algebraic expressions, etc.) [6]. These engines compute outcomes using
formal, rule-based reasoning; hence, there is certainty and traceback during the process of computation
[7]. However, symbolic computing's rigidity makes it difficult to interpret vague descriptions or natural
language tasks. Recent papers have tried to capitalize on both symbolic reasoning and neural networks
to develop hybrid models that use natural queries, and reasoning, but formal reasoning [8], [14]. For
example, there are both frameworks of symbolic computation using neural learning that engage logical
reasoning and deep learning to produce larger efficiencies in mathematics situations [7], [14]. Although
this performance in the integration is still quite far from desired outcomes, it still is an exciting endeavor
in research. 2.3 Consensus-Based Multi-Agent Al

To address the constraints of reasoning within a single model, researchers have investigated multi-
agent, collaborative frameworks, and ensemble models by leveraging reasoning across many models to
generate and evaluate solutions [1], [2], [3], [8]. In these models, the different models independently
evaluated the same mathematical query, and their responses are simply compared through a variety of
methods including similarity scoring and voting or debating reasoning. Studies comparing symbolic
and neural solvers for educational mathematics further indicate that ensemble approaches can yield
higher accuracy than single models when combining different reasoning strategies [9]. Hybrid Al
models developed for understanding mathematical expressions have shown that collaborative reasoning
can improve notions of reliability and even interpretability for end users [8].
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Figure 1: System Architecture Diagram of AIMOS showing the pipeline from user input through
domain classification, multi-LLM invocation, consensus checking, trust-based selection, symbolic
verification, to final output and feedback loop.

3. Methodology

This section outlines the operating principles of the Al Multi-Model Orchestrated System (AIMOS),
which is a hybrid reasoning framework related to mathematical and logical problem solving. The focus
of the process is on how a user query is processed in multiple large language models (LLMs); how
consensus is reached; how trustworthiness in a model is established; and how trust is supplemented and
upheld with fallback processes. Again, the aim of the research is to produce a transparent, verifiable,
and appropriately evolving model that can combine neural reasoning with symbolic reasoning [1], [3],

[4], [5], [10].

The AIMOS architecture, as a collective whole, reflects a linear workflow that includes user-input
preprocessing, domain classification, response generation from multiple-LLM, consensus, trust-
weighted evaluation, and ultimately improvement based on feedback. This synchronization enables
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AIMOS to utilize the strengths of multiple paradigms of reasoning while mitigating the weaknesses of
a specific model. [4], [10], [11].

3.1 Mathematical Preprocessing

At the beginning, each user query goes through mathematical preprocessing to ensure mathematical
consistency, interpretation of output, and sequential transfer of knowledge across all models'
participants. When effectively done, mathematical preprocessing guarantees that mathematically
equivalent statements expressed in different language or symbolic forms are all processed in a
mathematically consistent manner. [6], [7], [8].

Tokenization and Normalization:

The query expressed in the normalized form is now represented as its primary components:
constants/variables, and operators. The normalization step assures that in any expression, formatting is
consistent. For example, that “x*” may be used instead of “x”2;” while a great deal of useless/irregular
symbol representations are simply removed. This is primarily for eliminating potential ambiguity, or
for ensuring a consistent syntactic representation across models. [6], [14].

Vectorization:

AIMOS then embeds the normalized text into a semantic vector space using transformer-based encoders
like Sentence-BERT. This semantic representation allows AIMOS to capture conceptual relationships
and find similar meanings in a representation space despite very different textual forms. For example,
“find the derivative of x*” and “differentiate x squared” have similar embeddings which establishes
coherence across models [1], [8], [9].

Symbolic Verification:

AIMOS confirms the algebraic equivalence of expressions using the SymPy symbolic mathematics
library. For instance, "2x + 3" is the same expression as "3 + 2x" after the expression is simplified. This
reassortment mechanism is in addition to neural similarity scoring, which provides deterministic
confidence in the mathematical equivalence to reduce the use of probabilistic interpretation [6], [7],
[14].

3.2 Consensus Algorithm

At the heart of AIMOS reasoning is the Consensus Algorithm whose purpose is to arrive at the most
accurate and trustworthy mathematical answer from the outputs of the multiple LLMs (GPT-4, Claude,
Gemini, Mistral [2], [4], [5], [10]). Since there could be discrepancies due to differences in reasoning
style, syntax, or mathematical representation, the operation of the Consensus Algorithm guarantees that
the answer chosen by AIMOS appears mathematically correct and semantically valid.

Step 1 — Input Normalization:
Every response generated by the model is transformed into a uniform symbolic structure. This includes
reformatting expressions, aligning variable naming conventions, and eliminating redundant symbols.
Standardizing outputs is necessary to obviate minimal superficial textual differences that could impact
similarity comparisons [1], [8].

Step 2 — Similarity Evaluation:
AIMOS executes two complementary styles of evaluations between each pair of model outputs:
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String-Based Similarity (StringSim):

Quantifies the similarity in the text using measures such as cosine similarity or edit distance. This
evaluates structural proximity between answers that have differences only in terms of formatting. For
example "2x + 4" and "2 * x + 4" would be very similar to each other using StringSim.

Symbolic Equivalence (SymbEq):
My evaluating the symbolic simplification of the expressions via SymPy, it determines if the two
models produce algebraically equivalent outputs.
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Figure 2: Workflow Diagram of AIMOS showing the end-to-end process from user query input to
verified mathematical output.

4. Working

The operation of the Al Multi-Model Orchestrated System (AIMOS) is determined by a systematic orchestration
of a set of intelligent components which ensures the accuracy, reliability and explainability of a solution
to a mathematical problem. The progression of the workflow starts with a user request, continues with
domain classification, actions which take place in a multi-model reasoning stage, consensus validation,
symbolic proof step, then finishes with a cycle of continuous learning using feedback. This structured
pipeline empowers AIMOS as a hybrid cognative system where the inferential commitments of large
language models (LLMs) co-exist with the deterministic authenticity of symbolic computation [1], [3],

[4], [5], [6].
4.1 Input and Domain Classification

The user begins the procedure by entering a mathematics problem in natural language, symbolic
notation, or LaTeX. The input is then moved through Domain Classification Module in AIMOS which
categorizes the input into a subject area of math (e.g., algebra, calculus, geometry, trigonometry,
arithmetic or probability). The initial stage of identification engine based on a Distil-BERT model is
fine-tuned with keyword heuristics to capture domain specific semantic features [2], [8], [9].

In grouping each inquiry to its most relevant domain, AIMOS is able to direct the question into
individual sub-models that are most relevant to that domain, thus reducing computational loads of
queries as well as improving model relevance and accuracy in formulating an answer to the user [6],
[14]. Previous studies of orchestrating multiple models to perform reasoning tasks have shown that
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designating subjects of domains for a given query at early stages significantly improves downstream
performance and accuracy from ensembles of Al models [3], [5], [16].

4.2 Multi-LLM Response Generation

The classified query is then dispatched to a cohort of pre-registered large language models (e.g., GPT-
4, Claude, Gemini, Mixtral) that run simultaneously [1], [4], [5]. Each model interprets and solves
the problem based on its novel architecture and reasoning strategy. Carrying the thinking in
multiple reasoning styles assists in exploring alternative solution paths and mitigating the
effects of systematic bias or hallucination.

The returned independent responses are then intelligently redesigned into an organized and
standardized output format; this design enables AIMOS to organize comparison among
different solutions without bias. This architecture follows ensemble and multi-agent learning
paradigms in which different models improve the confidence of the collective reasoning
generated via the engagement of the model diversity [3], [8], [9]. The parallel generation
ensures that AIMOS considers the unique reasoning characteristics of each LLM, effectively
producing '[V] [A] range of potential solutions equipped for [I], [P].[10], [15].

4.3 Consensus Checking and Validation

After collecting all responses from the Large Language Models (LLMs), AIMOS will proceed
with the Consensus Algorithm, as described in Section 3.2. In this process, the system
determines the similarity and correctness of the output. Using both textual and symbolic
measures, the system calculates the similarity scores across the individual model responses to
each question [6], [7].

The AIMOS system to adopt the shared response when at least two or more responses are above
the consensus threshold (e.g., 8 > 0.9) described in Equation 2 [5], [10], When models produce
are algebraically equivalent expressions in different format or structure (e.g., "2x +4" vs. "4 +
2x"), AIMOS will pass along to the Symbolic Verification Module powered by SymPy in order
to confirm equivalence [7], [14]. At this point, it assists in determining whether the differences
in text give the appearance of an invalid disagreement. This is essentially a hybrid model of
validation to ensure that their final answer is both semantically valid and mathematically valid

[4], [8], [9].
4.4 Trust-Based Selection

When agreement is not achieved, AIMOS applies the Trust Evaluation Module (see section
3.3), and finds the response that has the highest trust or credibility. Each model in the ensemble
has a trust score (T1) that is dynamic and informs the trust model based on prior performance
correctness in previous domains of mathematics [10], [11]. All those dynamic trust scores are
updated iteratively using Equation (3) and enable the system to learn from both prior
performances and from user evaluations. If for example GPT-4 has been correct with calculus
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problems and Claude has been correct with geometry problems, AIMOS will trust GPT-4's
response first in calculus problems and will trust Claude's response in geometry problems [10],
[16]. This method of dynamic trust-weighted orchestration provides the opportunity to
optimize a specific domain and reduce error propagation. Research on federated Al and multi-
agent learning systems have tested trust-weighted orchestration to enhance decision stability
and performance when circumstances change [11], [16].

4.5 Symbolic Verification and Output Generation

The chosen final output, either through consensus or as chosen via selected trust, is then
symbolically verified against the mathematics of the problem it is attempting to solve. Tools
like the SymPy library are applied in AIMOS to convert the determined solution to a symbolic
representation, simplifying the expression and performing a verification against the original
problem statement [6], [7], [14]. This symbolically-verified representation acts as a layer of
mathematical truth, providing assurance that the final determined solution with respect to the
algebra and/or analysis is sound. Once the answer is verified, it presented to the user in a
human-digestible representation, with underlining the final typography. This extraction of
insights would include several performance and reasoning metrics:

Confidence Score: a general indication of trustworthiness based on determined similarity
against other LLMs, and the degree of consensus reached from other LLMs.Participating
Models: each LLM that contributed to the generation and checking of the final output is
provided.Trust Weights Applied: indicate the relative level of trust to each LLM at the
time.Trust Metrics: total lag time from input to generation of the final output.These multiple
metrics present to the user enhance the transparency of the Al, and user trust, which is an
important factor of the explainable Al paradigms [12], [13], [15].

4.6 Feedback and Continuous Learning

Once the step of presenting the final verified solution is finished, AIMOS will then incorporate user
feedback iteratively into the adaptive learning loop. Users will provide correctness judgment or
suggestions for improved responses to be incorporated in the trust scores of the model. As time
progresses, using user feedback as reinforcement in this way will improve AIMOS' weighting of each
model resulting in improved accuracies for solving problems in the future [10], [11], [16]. The self-
leaning characteristics of the system will align with the overall thematic goal of continuous
orchestration, with APR in this context referring to continuous use to inform trust updates and consensus
decisions [3], [4], [10]. This implies that AIMOS will become more trustworthy, more appropriate to
the domain, more tolerant of errors, or just more adaptable to the idiosyncrasies of the user [12], [13],
[18].

5. Evaluation and Results

5.1 Experimental Setup
The evaluation was completed using a dataset of 2,000 math problems within six significant areas of
math (Algebra, Geometry, Trigonometry, Calculus, Arithmetic, and Probability & Statistics). The
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dataset included questions that were either symbolic reasoning questions or text-based questions to
comprehensively evaluate the system's reasoning and interpretative capabilities [6]. Each of the models
(GPT-4, Claude, Gemini, and Mixtral) was initially evaluated separately to establish the baseline
accuracy. The AIMOS system was then utilized to process the same dataset using the multi-LLM
orchestration, consensus, and symbolic verification modules for comparison [4].

Four performance measures were then defined to assess accuracy (1) Accuracy (%) = how correct was
the answer ultimately; (2) Consensus Rate (%) = was the response across multiple models consistent;
(3) Confidence Score (0 to 1) = how reliable was the output; and (4) Latency (s) = was the average
response time in seconds [7], [8]. These measures were aligned to standards established for assessing
ensemble and reasoning-based Al systems.

5.2 Result
Table 1: Results obtained.
Domain Single AIMOS Consensus Avg
Model Accuracy Rate Confidence
Accuracy
Algebra 85% 93% 91% 0.92
Calculus 78% 90% 88% 0.90
Probability 80% 88% 86% 0.89
Geometry 82% 91% 89% 0.91
5.3 Key Observations

The assessment of AIMOS resulted in a few notable findings. First, it showed a marked improvement
in accuracy over LLMs working in isolation; this was confirmed that multiple models working in
concert might improve the validity of their solutions in quantitative problems [9]. The inclusion of
symbolic verification and trust-based consensus significantly enhanced the improvement in accuracy;
these measures mitigated against inconsistent or semantically dissimilar responses from the models [3].
Second, trust-based consensus had a high reliability; frequently, two or more models provided the same
answer for the majority of the problems, which helped to mitigate the potential for random or
hallucinatory outputs for an uncertain response, both challenges with single-model reasoning [6]. The
confidence score, determined from consensus weighting and symbolic agreement, correlated highly
with actual accuracy, further increasing AIMOS's potential for users to take seriously and trust [12].
Additionally, incorporating a general underlying verification of SymPy to ensure equivalent algebraic
expressions were evaluated (e.g., "2x +4" and "4 + 2x") added a level of precision and reliability to
AIMOS's symbolic reasoning [7]. The combination of multiple models did add some latency, as the
verification process experienced additional latency (e.g., =1.8x > latency); the accuracy and robustness
of AIMOS justified this burden [11].

5.4 Application Potential

The experimental findings indicate the broad applicability and capability of AIMOS for practical
implementation across different computing and educational contexts. AIMOS can function as an
intelligent tutoring system in educational contexts that provides validated stepwise mathematical
arguments and verified symbolic answers to a problem. Both can support students in building their
conceptual understanding of the process of mathematics while also enhancing their engagement [13]
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when working with AIMOS's functionalities. In an automated grading context, the models' symbolic
reasoning permits valid evaluations on students' solutions even though students may use different
notations or representations that yield mathematically the same value as a solution; this detail is
important because the simplification of the representations should not influence the grading or grading
process or the validity of the grading itself. This level of reasoning allows students to be evaluated fairly
and consistently in a digital learning situation [12]. In the case of research and analytical calculations,
AIMOS can assist in providing validated derivations of and symbolic calculations in an uncertain degree
of validity for producing results in quantitative research, including mathematical modeling workflows
[4], [10]. Moreover, AIMOS's modular architecture allows the system to be integrated with existing
analytic calculation platforms to enhance domain aware reasoning, modeling, and computation
validation in scientific computing applications [18].

5.5 Summary

Ultimately, the findings validate that multi-LLM orchestration facilitated by symbolic verification and
trust-weighted reasoning results in demonstrable enhancements in accuracy and reliability of
mathematical reasoning. Processing time is experienced only a marginal increase, but the increase in
explainability, transparency, and adaptability makes AIMOS.

6. Conclusion

AIMOS is a good example of a transition away from single intelligence systems to collaborative
intelligence systems. AIMOS is a multi-layer framework that includes domain classification, multi-
LLM orchestration, consensus evaluation, trust scoring, symbolic verification, and feedback refinement
producing reliable and explainable solutions in mathematics. AIMOS also employs a generative
reasoning framework, which includes deterministic symbolic computation, creating a dualism between
understanding natural language and providing mathematically sound solutions. This work demonstrates
the advantages of working in cooperative intelligence, where a collective intelligence of several
specialist models contributes output to achieve a common output. The model selection and outputs
which comprise cooperative intelligences demonstrate the performance improvements in accuracy,
robustness, and interpretability which indicate next generation Al needs to move from monolithic
systems to multi-agent-based consensus problem solving systems.

7. Future Work

Future work for AIMOS centers on improving its accuracy, efficiency, and interpretability. First, the
adaptive trust update mechanism may be further optimized using reinforcement-based learning,
allowing the system to improve its long-term reliability by updating model trust scores dynamically,
according to historical performance metrics and user feedback [14]. Second, rapid response is still a
goal. While using consensus-based validation methods, asynchronous and parallel processing
approaches can greatly reduce response time without undermining successful multi-model orchestration
[15]. Third, the process of normalizing symbolic and textual inputs can be made more effective at
processing higher levels of variation and complexity of mathematical representations. Improvements of
both symbolic simplification and textual standardization will promote AIMOS's ability to better
interpret atypical or complex problem specifications [16]. Lastly, AIMOS can be supplemented with
more machined explainability modules, such as visual interpretability modules that show how models
are agreeing, how much confidence it has, and how trust scores are changing. The ability for users to
see visualizations of the model reasoning behind final outputs provides an opportunity for greater
transparency and trust from users [17].
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