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ABSTRACT 

This research presents AIMOS (AI-Powered Intelligent Math Operations System) — a multi-LLM orchestration 

framework to improve the correctness and reliability of mathematical problem-solving tasks. The framework 

annotates input questions to a category of mathematical discourse — Algebra, Calculus, Geometry, Trigonometry, 

or Probability & Statistics, then routes the questions to multiple large language model (LLM) APIs (including 

GPT-4, Claude, Gemini and Mistral) and levers their responses. The consensus algorithm and the trust-based 

algorithm follow to select the final response output with further symbolic verification of mathematical correctness. 

This experimental framework demonstrates that AIMOS outperforms use of single LLMs, with respect to 

correctness, reliability, and interpretability, and can be used for educational, research, and analytical purposes.  

Keywords: Large Language Models, Ensemble AI, Mathematical Reasoning, Consensus Mechanism, Symbolic 

Verification, Trust Evaluation, Multi-Model Orchestration. 

1. Introduction 

The appropriate progression of mathematical problem solving continues to be a chief area of challenge 

for artificial intelligence (AI) systems due to the various interdependent facets of symbolic reasoning, 

numerical precision and logic within multiple domains [1], [6], [18]. While impressive strides have 

been made on natural language understanding and contextual reasoning in large language models 

(LLMs), e.g., GPT-4 and Claude, there is still variability and inconsistency to expect in mathematics 

problem solving, especially with multi-step reasoning, symbolic manipulation and constructive logic in 

particular domains [2], [3], [17]. These challenges derive from a gap intrinsic to mathematics between 

its deterministic structure, and the probabilistic nature of statistical language modeling, where even 

seemingly unimportant details of symbolic inaccuracies can lead to incorrect conclusions [7], [8]. 

Efforts are underway to address this recently with hybrid combinations of neural models and symbolic 

reasoning systems. Symbolic engines like SymPy and Wolfram Alpha are strong performers when 

computation is exact, but they generally lack flexibility for interpreting ambiguous or natural language 

problems [7], [9]. LLMs offer much more flexibility and context understanding, but they deal with 

hallucination and inconsistency when it is clear that an exact computation is needed [15]. An 

investigative road that holds promise for overcoming the limitations of each method leads to 

frameworks of multi-barrel cooperation and ensemble learning which can take advantage of each 

reasoning systems' unique strengths to achieve commonly agreed to accuracy. [1], [10], [11]. 

The AIMOS (AI-Powered Intelligent Math Operations System) framework addresses these challenges 

through a multi-LLM orchestration method to ensure accurate, trustworthy interpretations, and 

confidence in the mathematical reasoning process. In creating a principled framework, each query is 
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associated with a mathematical domain through a domain-adaptive classifier architecture, e.g., Algebra, 

Calculus, Geometry, Probability, etc. The query then proceeds through multiple LLMs (e.g., GPT-4, 

Gemini, Claude, Mistral, etc.) that each generate and provide a response and solution contextualized in 

their internal model and reasoning. All responses from the models are combined and evaluated in a 

single process with a consensus algorithm utilizing string-based similarity and symbolic equivalence 

checking to evaluate neighborhood agreement [8], [14]. The consensus process assesses discrepancies 

among the models through a trust-weighted selection mechanism that evaluates the historical accuracy 

of each individual agent within the specific domain (or domains) of the problem to identify the most 

trustworthy model [11]. 

To ensure mathematical correctness, AIMOS employs symbolic verification by means of libraries such 

as SymPy for algebraic equivalence trials and formula verification [4], [5], [14]. This neural-symbolic 

verification guarantees not only that the final response is linguistically, but also mathematically correct. 

AIMOS offers explainable confidence metrics, so that users know how the consensus score and trust 

scores contributed to the answer selection [12], [13]. 

AIMOS provides a highest level of collaborative intelligence that cannot be achieved within a single 

model by integrating domain classification, multi-LLM reasoning, trust-based evaluation, and symbolic 

computation. This mathematical reasoning engine is transparent and flexible, and endeavors to be both 

accurate and interpretable in a wide range of domains and use cases. Specifically, AIMOS is well-suited 

for educational tools, automated grading, research assistance, and analytical computing [13], [16], [17]. 

2. Literature Review 

The area of mathematical reasoning with AI has shifted tremendously as transformer-based architecture 

and symbolic reasoning engines improve. Recent work on ensemble transformer architectures has 

highlighted that large models can handle structured reasoning and multi-step inference in quantitative 

situations [1]. Similarly, reasoning-based orchestration methods have improved performance with 

arithmetic question answering by using interleaving sub-models focused on numerical inference [2]. 

Collectively, this improves performance and echoes the larger trend where collaborative AI agents are 

being developed to engage in reasoning consensus collectively via inter-model collaboration [3]. 

However, performance improvements also raise the issue of accuracy, verifiability, and consistency in 

mathematical reasoning, providing a strong impetus for experimenting with combining symbolic 

verification with neural reasoning and hybrid approaches [4], [5].  

 

2.1 Solvers Based on a Single Model  

Initial work in this area utilized single large language models (LLMs) (e.g., GPT-3 and GPT-4) to 

perform mathematical and logical reasoning [4], [5], [15]. These models showed relatively good ability 

to understand natural language and to produce what seemed to be plausible sequence of solutions, but 

they also suffered from hallucination, insufficient domain specificity, and inconsistent symbolic 

accuracy. Studies examining the use of GPT models in mathematics as education and reasoning found 

that despite being fluent or presenting reasonable steps, these models frequently had inconsistent 

symbolic accuracy, either across steps or must validate numerical output for each step [17]. Surveys of 

quantitative reasoning found that when addressing complex mathematical reasoning tasks, LLMs have 

difficulty providing valid answers in relation to other LLMs [18]. Collectively, these limitations 

highlight a tension between general linguistic proficiency and a constraint to domain specific accuracy 

in each of the independent transformer models.  

 

2.2 Symbolic Computation Systems  
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Just like with the advances in LLMs, symbolic computing engines such as SymPy and Wolfram Alpha 

have historically provided deterministic and explainable solutions to mathematical problems 

(differentiation, integration, algebraic expressions, etc.) [6]. These engines compute outcomes using 

formal, rule-based reasoning; hence, there is certainty and traceback during the process of computation 

[7]. However, symbolic computing's rigidity makes it difficult to interpret vague descriptions or natural 

language tasks. Recent papers have tried to capitalize on both symbolic reasoning and neural networks 

to develop hybrid models that use natural queries, and reasoning, but formal reasoning [8], [14]. For 

example, there are both frameworks of symbolic computation using neural learning that engage logical 

reasoning and deep learning to produce larger efficiencies in mathematics situations [7], [14]. Although 

this performance in the integration is still quite far from desired outcomes, it still is an exciting endeavor 

in research. 2.3 Consensus-Based Multi-Agent AI.  

To address the constraints of reasoning within a single model, researchers have investigated multi-

agent, collaborative frameworks, and ensemble models by leveraging reasoning across many models to 

generate and evaluate solutions [1], [2], [3], [8]. In these models, the different models independently 

evaluated the same mathematical query, and their responses are simply compared through a variety of 

methods including similarity scoring and voting or debating reasoning. Studies comparing symbolic 

and neural solvers for educational mathematics further indicate that ensemble approaches can yield 

higher accuracy than single models when combining different reasoning strategies [9]. Hybrid AI 

models developed for understanding mathematical expressions have shown that collaborative reasoning 

can improve notions of reliability and even interpretability for end users [8].  

 

 

Figure 1: System Architecture Diagram of AIMOS showing the pipeline from user input through 

domain classification, multi-LLM invocation, consensus checking, trust-based selection, symbolic 

verification, to final output and feedback loop. 

3. Methodology 

This section outlines the operating principles of the AI Multi-Model Orchestrated System (AIMOS), 

which is a hybrid reasoning framework related to mathematical and logical problem solving. The focus 

of the process is on how a user query is processed in multiple large language models (LLMs); how 

consensus is reached; how trustworthiness in a model is established; and how trust is supplemented and 

upheld with fallback processes. Again, the aim of the research is to produce a transparent, verifiable, 

and appropriately evolving model that can combine neural reasoning with symbolic reasoning [1], [3], 

[4], [5], [10].  

 

The AIMOS architecture, as a collective whole, reflects a linear workflow that includes user-input 

preprocessing, domain classification, response generation from multiple-LLM, consensus, trust-

weighted evaluation, and ultimately improvement based on feedback. This synchronization enables 
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AIMOS to utilize the strengths of multiple paradigms of reasoning while mitigating the weaknesses of 

a specific model. [4], [10], [11].  

 

3.1 Mathematical Preprocessing 

 

At the beginning, each user query goes through mathematical preprocessing to ensure mathematical 

consistency, interpretation of output, and sequential transfer of knowledge across all models' 

participants. When effectively done, mathematical preprocessing guarantees that mathematically 

equivalent statements expressed in different language or symbolic forms are all processed in a 

mathematically consistent manner. [6], [7], [8].  

 

Tokenization and Normalization:  

The query expressed in the normalized form is now represented as its primary components: 

constants/variables, and operators. The normalization step assures that in any expression, formatting is 

consistent. For example, that “x²” may be used instead of “x^2;” while a great deal of useless/irregular 

symbol representations are simply removed. This is primarily for eliminating potential ambiguity, or 

for ensuring a consistent syntactic representation across models. [6], [14]. 

 

Vectorization:  

AIMOS then embeds the normalized text into a semantic vector space using transformer-based encoders 

like Sentence-BERT. This semantic representation allows AIMOS to capture conceptual relationships 

and find similar meanings in a representation space despite very different textual forms. For example, 

“find the derivative of x²” and “differentiate x squared” have similar embeddings which establishes 

coherence across models [1], [8], [9].  

 

Symbolic Verification:  

AIMOS confirms the algebraic equivalence of expressions using the SymPy symbolic mathematics 

library. For instance, "2x + 3" is the same expression as "3 + 2x" after the expression is simplified. This 

reassortment mechanism is in addition to neural similarity scoring, which provides deterministic 

confidence in the mathematical equivalence to reduce the use of probabilistic interpretation [6], [7], 

[14].  

 

3.2 Consensus Algorithm 

 

At the heart of AIMOS reasoning is the Consensus Algorithm whose purpose is to arrive at the most 

accurate and trustworthy mathematical answer from the outputs of the multiple LLMs (GPT-4, Claude, 

Gemini, Mistral [2], [4], [5], [10]). Since there could be discrepancies due to differences in reasoning 

style, syntax, or mathematical representation, the operation of the Consensus Algorithm guarantees that 

the answer chosen by AIMOS appears mathematically correct and semantically valid.  

 

Step 1 – Input Normalization:  

Every response generated by the model is transformed into a uniform symbolic structure. This includes 

reformatting expressions, aligning variable naming conventions, and eliminating redundant symbols. 

Standardizing outputs is necessary to obviate minimal superficial textual differences that could impact 

similarity comparisons [1], [8].  

 

Step 2 – Similarity Evaluation:  

AIMOS executes two complementary styles of evaluations between each pair of model outputs:  
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String-Based Similarity (StringSim):  

Quantifies the similarity in the text using measures such as cosine similarity or edit distance. This 

evaluates structural proximity between answers that have differences only in terms of formatting. For 

example "2x + 4" and "2 * x + 4" would be very similar to each other using StringSim.  

 

Symbolic Equivalence (SymbEq):  

My evaluating the symbolic simplification of the expressions via SymPy, it determines if the two 

models produce algebraically equivalent outputs. 

 

 
 

Figure 2: Workflow Diagram of AIMOS showing the end-to-end process from user query input to 

verified mathematical output. 

4. Working 

The operation of the AI Multi-Model Orchestrated System (AIMOS) is determined by a systematic orchestration 

of a set of intelligent components which ensures the accuracy, reliability and explainability of a solution 

to a mathematical problem. The progression of the workflow starts with a user request, continues with 

domain classification, actions which take place in a multi-model reasoning stage, consensus validation, 

symbolic proof step, then finishes with a cycle of continuous learning using feedback. This structured 

pipeline empowers AIMOS as a hybrid cognative system where the inferential commitments of large 

language models (LLMs) co-exist with the deterministic authenticity of symbolic computation [1], [3], 

[4], [5], [6].  

 

4.1 Input and Domain Classification  

 

The user begins the procedure by entering a mathematics problem in natural language, symbolic 

notation, or LaTeX. The input is then moved through Domain Classification Module in AIMOS which 

categorizes the input into a subject area of math (e.g., algebra, calculus, geometry, trigonometry, 

arithmetic or probability). The initial stage of identification engine based on a Distil-BERT model is 

fine-tuned with keyword heuristics to capture domain specific semantic features [2], [8], [9].  

In grouping each inquiry to its most relevant domain, AIMOS is able to direct the question into 

individual sub-models that are most relevant to that domain, thus reducing computational loads of 

queries as well as improving model relevance and accuracy in formulating an answer to the user [6], 

[14]. Previous studies of orchestrating multiple models to perform reasoning tasks have shown that 
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designating subjects of domains for a given query at early stages significantly improves downstream 

performance and accuracy from ensembles of AI models [3], [5], [16].  

 

4.2 Multi-LLM Response Generation  

 

The classified query is then dispatched to a cohort of pre-registered large language models (e.g., GPT-

4, Claude, Gemini, Mixtral) that run simultaneously [1], [4], [5]. Each model interprets and solves 

the problem based on its novel architecture and reasoning strategy. Carrying the thinking in 

multiple reasoning styles assists in exploring alternative solution paths and mitigating the 

effects of systematic bias or hallucination.  

 

The returned independent responses are then intelligently redesigned into an organized and 

standardized output format; this design enables AIMOS to organize comparison among 

different solutions without bias. This architecture follows ensemble and multi-agent learning 

paradigms in which different models improve the confidence of the collective reasoning 

generated via the engagement of the model diversity [3], [8], [9]. The parallel generation 

ensures that AIMOS considers the unique reasoning characteristics of each LLM, effectively 

producing '[V] [A] range of potential solutions equipped for [I], [P].[10], [15].  

 

4.3 Consensus Checking and Validation  

 

After collecting all responses from the Large Language Models (LLMs), AIMOS will proceed 

with the Consensus Algorithm, as described in Section 3.2. In this process, the system 

determines the similarity and correctness of the output. Using both textual and symbolic 

measures, the system calculates the similarity scores across the individual model responses to 

each question [6], [7].  

 

The AIMOS system to adopt the shared response when at least two or more responses are above 

the consensus threshold (e.g., θ ≥ 0.9) described in Equation 2 [5], [10], When models produce 

are algebraically equivalent expressions in different format or structure (e.g., "2x + 4" vs. "4 + 

2x"), AIMOS will pass along to the Symbolic Verification Module powered by SymPy in order 

to confirm equivalence [7], [14].  At this point, it assists in determining whether the differences 

in text give the appearance of an invalid disagreement. This is essentially a hybrid model of 

validation to ensure that their final answer is both semantically valid and mathematically valid 

[4], [8], [9].  

 

4.4 Trust-Based Selection  

 

When agreement is not achieved, AIMOS applies the Trust Evaluation Module (see section 

3.3), and finds the response that has the highest trust or credibility. Each model in the ensemble 

has a trust score (Ti) that is dynamic and informs the trust model based on prior performance 

correctness in previous domains of mathematics [10], [11]. All those dynamic trust scores are 

updated iteratively using Equation (3) and enable the system to learn from both prior 

performances and from user evaluations. If for example GPT-4 has been correct with calculus 
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problems and Claude has been correct with geometry problems, AIMOS will trust GPT-4's 

response first in calculus problems and will trust Claude's response in geometry problems [10], 

[16]. This method of dynamic trust-weighted orchestration provides the opportunity to 

optimize a specific domain and reduce error propagation. Research on federated AI and multi-

agent learning systems have tested trust-weighted orchestration to enhance decision stability 

and performance when circumstances change [11], [16].  

 

4.5 Symbolic Verification and Output Generation 

  

The chosen final output, either through consensus or as chosen via selected trust, is then 

symbolically verified against the mathematics of the problem it is attempting to solve. Tools 

like the SymPy library are applied in AIMOS to convert the determined solution to a symbolic 

representation, simplifying the expression and performing a verification against the original 

problem statement [6], [7], [14]. This symbolically-verified representation acts as a layer of 

mathematical truth, providing assurance that the final determined solution with respect to the 

algebra and/or analysis is sound. Once the answer is verified, it presented to the user in a 

human-digestible representation, with underlining the final typography. This extraction of 

insights would include several performance and reasoning metrics:  

 

Confidence Score: a general indication of trustworthiness based on determined similarity 

against other LLMs, and the degree of consensus reached from other LLMs.Participating 

Models: each LLM that contributed to the generation and checking of the final output is 

provided.Trust Weights Applied: indicate the relative level of trust to each LLM at the 

time.Trust Metrics: total lag time from input to generation of the final output.These multiple 

metrics present to the user enhance the transparency of the AI, and user trust, which is an 

important factor of the explainable AI paradigms [12], [13], [15].  

 

4.6 Feedback and Continuous Learning 

  

Once the step of presenting the final verified solution is finished, AIMOS will then incorporate user 

feedback iteratively into the adaptive learning loop. Users will provide correctness judgment or 

suggestions for improved responses to be incorporated in the trust scores of the model. As time 

progresses, using user feedback as reinforcement in this way will improve AIMOS' weighting of each 

model resulting in improved accuracies for solving problems in the future [10], [11], [16]. The self-

leaning characteristics of the system will align with the overall thematic goal of continuous 

orchestration, with APR in this context referring to continuous use to inform trust updates and consensus 

decisions [3], [4], [10]. This implies that AIMOS will become more trustworthy, more appropriate to 

the domain, more tolerant of errors, or just more adaptable to the idiosyncrasies of the user [12], [13], 

[18]. 

 

5. Evaluation and Results 

5.1 Experimental Setup  

The evaluation was completed using a dataset of 2,000 math problems within six significant areas of 

math (Algebra, Geometry, Trigonometry, Calculus, Arithmetic, and Probability & Statistics). The 
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dataset included questions that were either symbolic reasoning questions or text-based questions to 

comprehensively evaluate the system's reasoning and interpretative capabilities [6]. Each of the models 

(GPT-4, Claude, Gemini, and Mixtral) was initially evaluated separately to establish the baseline 

accuracy. The AIMOS system was then utilized to process the same dataset using the multi-LLM 

orchestration, consensus, and symbolic verification modules for comparison [4].  

Four performance measures were then defined to assess accuracy (1) Accuracy (%) = how correct was 

the answer ultimately; (2) Consensus Rate (%) = was the response across multiple models consistent; 

(3) Confidence Score (0 to 1) = how reliable was the output; and (4) Latency (s) = was the average 

response time in seconds [7], [8]. These measures were aligned to standards established for assessing 

ensemble and reasoning-based AI systems.  

5.2 Result 

Table 1: Results obtained. 

Domain Single 

Model 

Accuracy 

AIMOS 

Accuracy 

Consensus 

Rate  

 

Avg 

Confidence  

 

Algebra 

 

85% 93% 91% 0.92 

Calculus 

 

78% 90% 88% 0.90 

Probability 

 

80% 88% 86% 0.89 

Geometry 

 

82% 91% 89% 0.91 

5.3 Key Observations  

The assessment of AIMOS resulted in a few notable findings. First, it showed a marked improvement 

in accuracy over LLMs working in isolation; this was confirmed that multiple models working in 

concert might improve the validity of their solutions in quantitative problems [9]. The inclusion of 

symbolic verification and trust-based consensus significantly enhanced the improvement in accuracy; 

these measures mitigated against inconsistent or semantically dissimilar responses from the models [3]. 

Second, trust-based consensus had a high reliability; frequently, two or more models provided the same 

answer for the majority of the problems, which helped to mitigate the potential for random or 

hallucinatory outputs for an uncertain response, both challenges with single-model reasoning [6]. The 

confidence score, determined from consensus weighting and symbolic agreement, correlated highly 

with actual accuracy, further increasing AIMOS's potential for users to take seriously and trust [12]. 

Additionally, incorporating a general underlying verification of SymPy to ensure equivalent algebraic 

expressions were evaluated (e.g., "2x +4" and "4 + 2x") added a level of precision and reliability to 

AIMOS's symbolic reasoning [7]. The combination of multiple models did add some latency, as the 

verification process experienced additional latency (e.g., ≈1.8x > latency); the accuracy and robustness 

of AIMOS justified this burden [11].  

5.4 Application Potential  

The experimental findings indicate the broad applicability and capability of AIMOS for practical 

implementation across different computing and educational contexts. AIMOS can function as an 

intelligent tutoring system in educational contexts that provides validated stepwise mathematical 

arguments and verified symbolic answers to a problem. Both can support students in building their 

conceptual understanding of the process of mathematics while also enhancing their engagement [13] 
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when working with AIMOS's functionalities. In an automated grading context, the models' symbolic 

reasoning permits valid evaluations on students' solutions even though students may use different 

notations or representations that yield mathematically the same value as a solution; this detail is 

important because the simplification of the representations should not influence the grading or grading 

process or the validity of the grading itself. This level of reasoning allows students to be evaluated fairly 

and consistently in a digital learning situation [12]. In the case of research and analytical calculations, 

AIMOS can assist in providing validated derivations of and symbolic calculations in an uncertain degree 

of validity for producing results in quantitative research, including mathematical modeling workflows 

[4], [10]. Moreover, AIMOS's modular architecture allows the system to be integrated with existing 

analytic calculation platforms to enhance domain aware reasoning, modeling, and computation 

validation in scientific computing applications [18].  

5.5 Summary  

Ultimately, the findings validate that multi-LLM orchestration facilitated by symbolic verification and 

trust-weighted reasoning results in demonstrable enhancements in accuracy and reliability of 

mathematical reasoning. Processing time is experienced only a marginal increase, but the increase in 

explainability, transparency, and adaptability makes AIMOS. 

6. Conclusion 

AIMOS is a good example of a transition away from single intelligence systems to collaborative 

intelligence systems. AIMOS is a multi-layer framework that includes domain classification, multi-

LLM orchestration, consensus evaluation, trust scoring, symbolic verification, and feedback refinement 

producing reliable and explainable solutions in mathematics. AIMOS also employs a generative 

reasoning framework, which includes deterministic symbolic computation, creating a dualism between 

understanding natural language and providing mathematically sound solutions. This work demonstrates 

the advantages of working in cooperative intelligence, where a collective intelligence of several 

specialist models contributes output to achieve a common output. The model selection and outputs 

which comprise cooperative intelligences demonstrate the performance improvements in accuracy, 

robustness, and interpretability which indicate next generation AI needs to move from monolithic 

systems to multi-agent-based consensus problem solving systems. 

7. Future Work 

Future work for AIMOS centers on improving its accuracy, efficiency, and interpretability. First, the 

adaptive trust update mechanism may be further optimized using reinforcement-based learning, 

allowing the system to improve its long-term reliability by updating model trust scores dynamically, 

according to historical performance metrics and user feedback [14]. Second, rapid response is still a 

goal. While using consensus-based validation methods, asynchronous and parallel processing 

approaches can greatly reduce response time without undermining successful multi-model orchestration 

[15]. Third, the process of normalizing symbolic and textual inputs can be made more effective at 

processing higher levels of variation and complexity of mathematical representations. Improvements of 

both symbolic simplification and textual standardization will promote AIMOS's ability to better 

interpret atypical or complex problem specifications [16]. Lastly, AIMOS can be supplemented with 

more machined explainability modules, such as visual interpretability modules that show how models 

are agreeing, how much confidence it has, and how trust scores are changing. The ability for users to 

see visualizations of the model reasoning behind final outputs provides an opportunity for greater 

transparency and trust from users [17]. 
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