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ABSTRACT

The intelligent computing infrastructures based on artificial intelligence (AI) have substantially increased the
energy usage, lag times in computation, and costs of sustainability due to the exponential rise in the workloads.
The classical models of workload management put much emphasis on predictive accuracy but ignore resource-
awareness, with the net effect of inefficient usage of power and poor system responsiveness. This paper puts
forward an Energy-Aware Hybrid CNN-LSTM-Transformer (EA-HCLT) architecture that would allow
sustainable computing through the combination of workload prediction, smart scheduling and adaptive carving of
model pruning to dynamic environments. The framework utilises workload prediction using hybrid learning/deep
learning in real-time resource monitoring to optimally place computers to execute computations and also optimally
use energy at maximum precision. As a validation of the effectiveness, EA-HCLT is compared to two popular
models: Random Forest Workload Predictor (RF-WP) and Standard LSTM Scheduler (S-LSTM) based on the
usage of synthetic workload and runtime workload datasets in terms of CPU, memory, network throughput, and
accelerator utilisation. The overall analysis of the proposed approach in terms of accuracy, RMSE, latency, energy
usage, sustainability index, and multi-objective cost reveal that the proposed solution provides a considerable
improvement, yielding 14.8 percentage points higher accuracy, 19% reduced decision latency, 26.9% decreased
energy usage, 17.5% higher sustainability index as opposed to S-LSTM. The results justify the supportability and
scalability of the suggested EA-HCLT design and emphasise the significance of energy-conscious strategies of
the next generation smart systems that are going to work within environmental and resource constraints.

Keywords: Energy-Aware Computing, Hybrid CNN-LSTM, Transformer Scheduling, Intelligent Resource
Allocation, Deep Learning, Cloud Sustainability.

1. Introduction

The rapid growth rate of intellectual systems in the next generation, such as intelligent automotive
engines, industry, health care, cognitive internet environments, and smart energy systems, has escalated
the computational demands significantly in quantity and complexity [1]. This stream of multimodal and
high-frequency data in such systems needs real-time inference and dynamism in decision-making
processes. Consequently, Al workloads, including but not limited to deep learning inference, anomaly
detection, prediction services, and context-aware optimisation, have become so interwoven with daily
operations [2]. Nonetheless, this massive computational processing has caused growing power use on
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cloud, fog and edge layers with worldwide digital infrastructure likely consuming an approximate 24-
4% of the overall electricity consumption a figure projected to grow as Al usage matures [3][4]. This
fact brings to relevance the pressing necessity of resource-efficient Al systems that draw little power
without undermining intelligent functioning.

The traditional workload management methods mainly emphasise addressing the accuracy of
predictions, the throughput or scheduling efficiencies. These models give reasonable performance when
the condition remains constant, but the models tend to ignore key operational factors dynamically
consuming power, varying resource availability, thermal effects, and real-time constraints on the
latency [5][6]. These omissions prove to be problematic when the computational loads have spikes and
cause overloaded states, which consume a lot of energy, allocate resources unwisely, and have
decreased service reliability. These inefficiencies are leading to increased operational expenses and
carbon footprint, as well as poor user experience. With the development of smart infrastructures moving
towards continuous 24/7 autonomous systems, the workload scheduling approach shall be carried out
such that it implements environmental sustainability and prediction performance [7].

Recent deep learning models, especially LSTM networks, CNN-LSTM hybrid and Transformer-based
sequence models, have shown substantial achievement in discovering temporal and long sequence
patterns in workload sequences [8][9]. They can forecast better in the dynamic and non-stationary
conditions because they can capture the contextual dependencies. Nevertheless, those models are
characterised by high levels of computation intensity and memory intensity, particularly during peak
periods or when expanding to multi-tenant resource pools [10][11]. This high site of parameters,
compound attention, and overlaid recurrence layers raise the inference wait, memory usage by a
computer, and heat emission [12]. In turn, even though deep learning leads to the accuracy
improvement, it results in the emergence of new sustainability issues: significant amounts of power
consumption, limited LIF of the hardware, and scaling limitations. These models do not perform so well
in the real-world applications of smart systems when energy-aware optimisation is not done, as they
cannot satisfy the two-fold requirement of high accuracy and low energy overhead [13][14].
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Fig.1: Hybrid EA-HCLT Framework for Efficient Smart-System Workload Management

Fig.1 of the offered system illustrates a unified energy-aware intelligent computing pipeline. Raw
workload measures (CPU utilisation, memory utilization, network throughput and accelerator
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utilisation) are constantly measured and reduced to structured measures. The latter are then trained
through a hybrid deep learning network comprising CNN filters applied to locally identify patterns,
LSTM units to simulate long-term dependencies, and Transformer attention layers to identify long-
range dependencies [15]. The predictions are used to discard adaptive model pruning and intelligent
scheduling operations, which selectively limit redundant computational effort, thereby reducing energy
consumption and decision latency. A feedback loop constantly evaluates the performance metrics like
accuracy and energy efficiency to allow real-time recalibration of the system to enable sustainable
operations.

Despite significant progress in Al workload prediction, three systemic limitations persist in the
existing research landscape:

1. Insufficient alignment between predictive accuracy and operational efficiency
2. Lack of adaptability to runtime workload volatility
3. Minimal focus on integrated sustainability metrics for intelligent computing

In order to address such problems, this paper presents an Energy-Aware Hybrid CNN-LSTM
Transformer Framework (EA-HCLT) capable of resolving both the problem of power efficiency and
that of intelligent scheduling.

This paper offers the following research contributions:

e A hybrid energy-aware learning approach integrating CNN, LSTM, and Transformer
modules for workload-driven predictive scheduling

e Mathematical formulation of performance metrics, including accuracy, RMSE, decision
latency, energy saving, and sustainability index

e Comparative benchmarking against two standardised intelligent resource allocation
baselines: Random Forest Workload Predictor (RF-WP) and Standard LSTM Scheduler (S-
LSTM)

e Performance optimisation through adaptive model pruning to reduce computation load and
energy overhead

e Demonstration of superior sustainability, including 14.8% higher accuracy, 19% reduced
latency, 26.9% energy savings, and a 17.5-point increase in sustainability index

The remainder of this manuscript is organised as follows: In Section 2, the state-of-the-art energy-
intelligent computing systems are introduced, and some important gaps are determined. Section 3 points
out the problem formulation and research objectives. Section 4 will describe the suggested hybrid
methodology using mathematical modelling and visual analysis using plots. Section 5 presents the
characteristics of the simulation environment and data. Results, comparison measures, and finding
interpretation are given in Section 6. Lastly, Section 7 sums up the paper and suggests ways of future
research in making scalable Al deployments.

2. Literature Review

The geometrical development of artificial intelligence has greatly augmented the speeds of
computational workload in cloud and distributed smart settings. Previously, most methods of workload
prediction and resource scheduling were based on still heuristic-driven strategies and classical machine
learning algorithms like regression or Random Forests [16]. These designs offered a judicious
estimation performance but did not resolve nonlinear variations and conform to the changing run times,
leading to inefficient use of energy.
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As scalable intelligent systems advanced in the future, researchers explored a workload forecaster based
on deep learning in the form of temporal sequence modelling with LSTM and GRU architecture
[17][18]. These models were able to better recognise trends but had both added computational overhead
and longer inference latency, especially in periods of peak demand. CNN-LSTM hybrid frameworks
followed subsequently to handle the requirement of the spatial-temporal feature extraction [19], but
have the disadvantage of being too complex, which can have a bigger energy footprint requirement than
the existing literature has not adequately addressed.

More recently, Transformer-based accelerated attention networks have shown better performance in
modelling long-range workload dependencies than recurrent models. Although they have a predictive
advantage, their energy requirements are high because of a high number of parameters and a huge
multiplication of matrices. In the meantime, the modern techniques of sustainability-oriented use
engaged pruning and adaptive learning, and yet, a single architecture that integrates control energy-
aware remains deficient in the literature [20].

Thus, although Al-based optimisation of resources has now become more integrated and intelligent, the
mutual reaction of high accuracy, low latency, and low energy consumption in real-time smart systems
has not been addressed. The reviewed frameworks do not have a sustainability lens, taking into account
the environmental constraints and objective multi-metric performance reliability. The existence of this
gap gives the incentive to create a new hybrid framework applicable to both prediction-robust and green
computing idealisation, which lies at the core of the suggested EA-HCLT framework.

Table 1: Comparative Review of Key Literature in Energy-Aware Intelligent Computing

Approach / Study | Strengths Limitations Applicability

Type

Classical ML-based | Low computational | Poor handling of nonlinear | Basic cloud

forecasting (e.g., | overhead, easy to | dynamic workloads, low | workload and

Regression, RF) deploy adaptability to sudden spikes | resource

management

LSTM /  GRU | Captures sequential | High training + inference | [oT and distributed

workload prediction | features and load | cost, sensitive to volatility computing

models trends environments

CNN-LSTM  hybrid | Spatial + temporal | More energy consumption | High-performance

forecasting feature  learning, | due to the complex structure | cloud resource
improved accuracy scheduling

Transformer-based Strong  long-term | Extremely high | Dynamic and large-

load forecasting dependency computational cost — more | scale HPC
modelling, high | power usage applications
accuracy

Energy-aware Reduced energy and | Accuracy trade-offs, partial | Embedded and

pruning + lightweight | execution overhead | optimisation energy-constrained

optimisation systems

While CNN-LSTM and Transformer solutions show the most promise in prediction quality, they are
limited by intensive energy consumption. Lightweight optimisation methods, on the other hand, drive
up the power metrics at the cost of predictive metrics. The proposed EA-HCLT addresses the gap by
being no review study that that offers a single hybrid framework that improves accuracy, decreases
latency, and also increases energy efficiency.

3. Problem Statement & Research Objectives
The intelligent systems of the next generation require intelligent computing with high performance to

counter the fluctuations in the workload that cannot be predicted. Nevertheless, the current workload
prediction and scheduling methods have one of the following limitations:
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e High computational overhead, leading to increased energy consumption
¢ Slowness in quick response in service, which is sensitive to the dynamic loads.
e Trade-off between accuracy and sustainability, quality of one tends to worsen the other.

Research Objectives

To address the above challenges, the present work proposes the Energy-Aware Hybrid CNN-LSTM—
Transformer Framework (EA-HCLT) with the following targeted objectives:

1. Develop a hybrid deep learning system combining CNN, LSTMs and Transformer submodules
to achieve workload forecasting capability in a dynamic workload.

2. Calculate and measure the major key performance indicators (KPIs) such as Values in
Accuracy, RMSE, Latency, and Energy Consumption, Sustainability Index and Multi-objective
Cost in mathematical equations.

3. Develop energy energy-aware system. Design an adaptively pruned intelligent time-based
learning framework to decrease computation load and power usage.

4. Validate system performance through simulation-driven comparative evaluation using
standardised baselines:

o Random Forest Workload Predictor (RF-WP)
o Standard LSTM Scheduler (S-LSTM)

5. Demonstrate sustainable system behaviour by ensuring energy-efficient operation under varied

workload intensities without negatively affecting prediction performance.

All these goals will facilitate the creation of an intelligent, scalable, and sustainably smart Al workload
execution platform that can be integrated with intelligent infrastructures in the present day.

4. Methodology

The proposed methodology will provide a system of energy-conscious intelligent workload
management that is based on the EA-HCLT system. It records the patterns of resource consumption on
the spot, anticipates the upcoming workload, and provides real-time solutions to reduce energy use to
preserve intelligent performance. The modelling based on the workload and power is represented by
Equations (1)-(4), prediction accuracy and decision efficiency are estimated by Equations (5)-(9), and
the advantages of sustainability over the baseline differences are determined by Equations (10)-(12).
This mathematical design will offer a balance in terms of performance enrichment and energy efficiency
in intelligent computing surroundings.

A(t) = chuucpu(t) + Wmemumem(t) + Wnetunet(t) + Waiuai(t) (1)
This weighted summation formulates a unified workload intensity index by capturing CPU, memory,
network, and accelerator utilisation at a time t. The weights w;represent the relative importance of each
resource such that Y w; = 1. This index provides a single scalar measure of load for real-time decision
control.

u(t) = rCPU(t) ) rmem(t) ’ rnet(t) ’ rai(t) (2)

cpu Cmem Chet Cai
Here, r;(t) and c¢; denote the requested and available capacities of each resource. This vector enables
fine-grained monitoring of resource pressure and volatility, serving as input features to the hybrid
forecasting model.

P(t) = P + aA(t) 3)
The node’s power is modelled as idle power P'4! plus workload-dependent power proportional to A(t).
The factor a quantifies how aggressively workload intensity impacts energy draw, enabling accurate
runtime power estimation.
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T
E= ) P(t)At (4)

Cumulative energy usage is computed over Ttime intervals of duration At. This directly supports
sustainability assessment across RF-WP, S-LSTM, and EA-HCLT under identical execution time
horizons.

FLOPs,,

Cn == 5

™ FLOPSax )
The architecture complexity is normalised by comparing per-model FLOPs with the maximum FLOPs
among the considered models. Lower C,,indicates computational efficiency achieved via pruning and
hybridisation.

em(t) = y(t) = Im(0) (6)
The point-wise discrepancy between the actual workload y(t)and predicted workload ¥, (t)measures
the forecasting accuracy of each model m.

T
1
RMSEy, = |2 en(0)? @
t=1
This is the standard error metric that penalises large deviations more heavily. Lower RMSE signifies
more reliable workload prediction and helps reduce energy waste due to mis-scheduling.

N,
Acc,, = — o+ 100% (8)
Ntotal

Accuracy quantifies the percentage of correctly predicted workload conditions, directly reflecting the
reliability of intelligent scheduling.

Ltot,m = Ldata,m + Lqueue,m + Linfer,m (9)
This measures the combined delay due to data acquisition, queue waiting, and inference computation.
Lower latency indicates fast reaction to workload dynamics, essential for smart systems.

Es. —E
Gpm = —M ™ 5 100% (10)
Es1stm
The percentage reduction in total energy usage of each model m relative to the S-LSTM baseline shows

the sustainability advantage of EA-HCLT.

_ Lsistm = Liotm

Grm = x 100% (11)

Lsyistm
Latency gain expresses improvement in inference responsiveness compared to the baseline. Positive

values indicate faster decisions and better QoS.

Slin = B1Acen + B2Gem + B3Grm (12)
This composite metric integrates normalised accuracy, energy saving, and latency improvement.
Weights 81, 2, B3 define the relative sustainability priorities. Higher SI signifies balanced and
environmentally responsible performance.
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Fig. 2: Multi-Level Operational Workflow of the EA-HCLT Framework

The flowchart in Fig. 2 explains the EA-HCLT working process that involves real-time workload
acquisition and preprocessing to produce organised feature inputs. These are converted to utilisation,
intensity and energy models which describe how the load of the system changes with time. These
representations are then sent through the hybrid CNNLSTMTransformer predictor, which then predicts
the future workloads. The predictions are evaluated based on complexity and error, accuracy and latency
metrics, which allow a quantitative model-to-model comparison.

The resulting gains and sustainability index, respectively, influence flexive pruning and energy-
conscious scheduling, whereas a feedback loop is used to continually improve the predictor. This
stratified stream sums up the vast information entailed in the modelling, forecasting and sustainability-
based control being integrated in a smooth intelligent computing pipeline by the framework.

5. Experimental Setup

The proposed EA-HCLT framework, as shown in Fig. 3, was tested on real-time workload traces that
simulate real-time processing environments in distributed smart environments. The data set will cover
CPU, memory, network and accelerator utilisation and will be sampled with 20,000-time instances and
normal scaling. These workload behaviours were different so as to mirror low, medium and high
intensity computational phases.

STANDARDIZZED BASELINES

ini Hybrid - :
(g Q0C | Fralaing CNN-LSTM- Random Forest
Transformerr Workload Predictor
CPU, memory, network, O(thiR miz$g_/§?g:1 | (RF-WP)
accelerator utilization = = Sendtar 5T
Low Testing »| Scheduler (S-LSTM)
(S-STM)

High o Implementation
Varying intensity

computational phases Intel Core i7 + —
optional GPU (RTX 360) 100-hour
operational horizon

=

Fig. 3: Structural Mapping of the Experimentation
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The training and testing procedure follows a 70%—15%—15% split, which guarantees equalised model
generalisation and accuracy of evaluation. The hybrid model uses CNN filters in extracting local
patterns, LSTM layers in deducing sequential learning, and Transformer blocks in determining the
ability to get long-term attention. To obtain efficient training convergence, the Adam optimiser was
used with a learning rate of 10 -3 and a batch size of 64. 10™2 and a batch size of 64 for efficient training
convergence.

It introduced two standardised baselines that were used to benchmark randomly selected workload
predictors, a forester (RF-WP) and an ordinary LSTM Scheduler (S-LSTM). They are classical machine
learning and deep-temporal learning strategies, respectively. The environment where the execution took
place was a simulation tool on an Intel Core i7 platform with optional GPU acceleration (RTX 3060).
The final energy consumption came out after the 100-hour working horizon to make sure that the
assessment is sustainability-oriented.

Table 2: Simulation Configuration and Comparative Baselines

Configuration Proposed EA-HCLT Baseline-A (RF-WP) | Baseline-B (S-

Aspect LSTM)

Learning Paradigm | Hybrid CNN-LSTM- | Ensemble ML | Temporal DL model
Transformer (Random Forest)

Sequence Handling | Strong temporal + long- | Limited contextual | Good short/medium-
range dependency modelling | understanding term memory

Workload High (adaptive pruning + | Low Medium

Adaptability scheduling)

Evaluation Dataset | 20,000-time steps (dynamic | Same Same
workload scenarios)

Optimization Adam (LR (=107?)) Grid-based ML fitting | Adam optimizer

Method

Energy Estimation | 100 hours 100 hours 100 hours

Period

Table 2 presents the settings of configuration and comparison of the baseline during the experimental
validation. The suggested EA-HCLT uses a hybrid CNN-LSTM-Transformer model with more
effective long-range dependency modelling and adaptive load management. Comparatively, the
Random Forest Workload Predictor does not have contextual temporal learning, whereas the Standard
LSTM Scheduler has moderate temporal abilities at the cost of flexibility. The models were all trained
and tested on the same dynamic model of 20,000 time steps, and all in the same conditions of 100-hour
energy estimation, in order to create a fair and consistent benchmark.

6. Results & Discussion

The results obtained demonstrate that the suggested EA-HCLT framework is always superior to the RF-
WP and S-LSTM baselines in all key performance measures. The model is as expected in terms of
offering a greater level of prediction accuracy; it also has shorter decision latency as well as a significant
decrease in energy usage during dynamic workloads. The net effect of these increases the sustainability
index, which proves the effectiveness of the framework toward realising energy-conscious intelligent
computing. All these performance improvements are summarised below with the help of the plots and
tables of comparison, indicating the benefits of the proposed approach.
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According to Figure 4, it is evident that EA-HCLT has the greatest prediction accuracy of 93.2,
significantly higher than RF-WP (78.4) and S-LSTM (81.2) do. The result in this performance
improvement demonstrates that hybrid feature extraction and long-range temporal modelling can be
strong. The sharp ascending trend to the third data item indicates a great deal of generalisation in the

variable workload trend. With this enhancement, more trustworthy allocation of resources decisions
will be made in smart systems.
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Fig.5: Energy Consumption Breakdown (Idle vs Active) Across Models

The inactive and active energy contributions can be seen in conjunction in Figure 5, disclosing that EA-
HCLT is the most efficient solution, necessitating minimal power. The overall energy consumption is
reduced to 307 kWh, with a 26.9% reduction over S-LSTM and even better than RF-WP. The large

drop in active computation energy is an indicator of the success of adaptive pruning and optimised
execution scheduling that is added into the framework.

30

—&— Energy Gain |4
25+ —+&— Latency Gain [ 4

20 -

Gain (%)
=

10 .
RF-WP S-LST™M EA-HCLT

Fig.6: Improvement Gains in Energy Efficiency and Latency over Baselines

Figure 6 indicates that EA-HCLT has better improvement across all performance dimensions compared
to the S-LSTM baseline. Power savings are 26.9, and latency gain is 19, so resource straining under
heavy loads is reduced. RF-WP is barely improved and even worse in certain cases. The findings
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confirm that EA-HCLT has dual benefits, such as power minimisation and enhancement of
responsiveness.

60
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Fig.7: Sustainability Index Trend across models

Figure 7 shows a strong growth of the sustainability trend in RF-WP to EA-HCLT, and the proposed
model is 58.1, which is a 17.5-point rise compared to S-LSTM. Such a trend indicates that to improve
accuracy, or decrease latency is not enough; sustainability comes with balanced optimisation. EA-
HCLT harmonises smart computing and the protection of the environment.
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Fig.8: Forecasting Error (RMSE) Comparison Across Predictive Models

The comparison in Figure 8 shows that EA-HCLT (0.0126) has a much lower forecasting error than S-
LSTM (0.0632) or RF-WP (0.0782). This implies enhanced capturing of temporal features and learning
in long sequences, which minimises misprediction. The correct forecasts of workload will eliminate
over-provisioning of resources in the system, hence reducing energy waste and improving the reliability
of the system performance.

RF-WP

EA-HCLT

S-LSTM

Fig.9: Sustainability Contribution Share of Each Model
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In Figure 9, it is apparent that the proportion of EA-HCLT to the sustainability as a whole is the highest.
RF-WP and S-LSTM are behind the pack because of their bad accuracy or high-power requirements.
This visual confirms the existing equal excellence at EA-HCLT that encourages the achievement of

greening intelligent cloud-edge operations.
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Fig.10: Multimetric Performance Profile of the Evaluated Models

Figure 10 validates that EA-HCLT is superior on all normalised KPIs such as accuracy, latency, energy,
sustainability and RMSE. The growth curve toward the performance frontier shows that the growth is
not isolated but homogeneous among the criteria of operations. The model can be deployed to large-
scale, mission-critical smart systems due to its good multi-metric profile.

Fig.11: Performance Under Variable Network Load
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The proposed mode of Figure 11 has good efficiency in energy (88- 92%), throughput (70-82 Mbps),
and low latency (11-13 ms) across a spectrum of network loading, hence it is robust in scalability and
flexibility in a dynamic user setup. Table 3 validates the idea that EA-HCLT is significantly better than
RF-WP and S-LSTM in all metrics of core computations. The prediction of the workload in question
becomes much more reliable due to the accuracy increment of almost 15%. Latency is lesser by 19% to
boost responsiveness to real-time smart systems. The benefit is energy efficiency, which is the most
serious, and it reduces the consumption by approximately 27% throughout the operational period, which
directly contributes to sustainability. The product of lower RMSE also indicates high forecasting
accuracy during workload volatility.

Table 3: Model Comparison Across Key Metrics

Metric RF-WP S-LSTM Proposed EA-HCLT Best Improvement
Accuracy (%) | 78.4 81.2 93.2 +14.8% vs S-LSTM
Latency (s) 2.05 1.89 1.53 19.0% faster
Energy (kWh) | 455 420 307 26.9% saved
RMSE 0.0782 0.0632 0.0126 80.1% lower
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The EA-HCLT proposed in Table 4 has the largest sustainability index, and it is more than 17 points
ahead of S-LSTM. The lower (more negative) value of the composite cost shows an optimal trade-off
between use of energy, inference latency, and prediction performance. These advances confirm the
weakness of the model of scaling without limitation to the intelligence of the environment.

Table 4: Sustainability and Composite Cost Indicators

Model Sustainability Index Cost Function J | Overall Sustainability Rank
(S1% )

RF-WP 374 —0.178 3rd

S-LSTM 40.6 —0.212 2nd

EA-HCLT 58.1 —0.470 1st

The findings indicate that EA-HCLT can provide noticeable performance enhancement, as it attains
93.2% accuracy, which is 80.1% lower than the RMSE-based. Not only higher correctness but also a
tighter stability of performance is achieved. Such accuracy narrows down correction computing and
permits quicker reaction to systems, as seen in the 19% cut down in decision time. Differences between
the models become relatively larger with dynamic loads, which proves that EA-HCLT is predictively
consistent when RF-WP and S-LSTM are already becoming weak. It shows that the hybrid model is
more accurate in focusing both on short-term variations and long-range trends than either of the two
traditional ML or single-architecture deep learning strategies.

The results obtained in energy-related matters highlight the efficiency of EA-HCLT, where the
consumption remains at 307 kWh, a difference of 26.9% compared to S-LSTM, and an even higher
difference compared to RF-WP. This directly increases the Sustainability Index to 58.1, beating S-
LSTM by 17.5 and leading the models. Trade-offs between accuracy, latency and energy are then
affirmed using the corresponding cost function J = -0.470. It is worth mentioning that the model
maintains a power efficiency of 88-92% and a latency of 11-13 ms across different network loads, which
proves the robustness and the ability to operate on a large scale. The overall findings confirm the
applicability of the EA-HCLT as the most competent and at the same time the most sustainable of the
considered predictors.

7. Conclusion

The proposed EA-HCLT framework creates a strong and energy-aware solution to intelligent workload
management in the new smart systems. The framework efficiently provides multi-scale temporal
dependencies, thus giving very accurate forecasting of the workload with relatively easy operational
efficiency through its hybrid CNN-LSTM-Transformer architecture. Extensive experiments proved that
EA-HCLT outperforms the classical ML and deep temporal baselines in all key performance metrics,
which include: RF-WP and S-LSTM. These improvements were noticed: 14.8% more accurate, 19%
less latent, 26.9% less energy consumption, 80.1% less RMSE, and 17.5-point improvement in
sustainability index--all of which support the claim that the framework was able to harmonise the
computational intelligence with environmental responsibility. These findings provide the need to
combine predictive modelling with energy-conscious decision processes, primarily because Al-based
services are only going to grow larger in distributed cloud-edge ecosystems. The proven comprehensive
performance in the changes of the dynamic workload also enhances EA-HCLT as a viable and
deployable design to deploy in real intelligent infrastructures.

The present work can be further expanded in the future by integrating adaptive controllers implemented
via reinforcement learning in order to achieve real-time policy optimisation and support heterogeneous
accelerators, including NPUs and FPGAs, to achieve even greater increases in efficiency. Cross-edge
cluster edge-based multi-agent cooperative learning could be used to provide scalability to large IoT
and cyber-physical systems, and carbon-aware and thermal-conscious scheduling can be applied to
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reinforce the new green-Al standards. Moreover, testing EA-HCLT in the actual workload of industries,
5G/6G on a network, and various smart environments will expand the scope of its implementation and
promote intelligent computing sustainability.
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