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ABSTRACT 

The intelligent computing infrastructures based on artificial intelligence (AI) have substantially increased the 

energy usage, lag times in computation, and costs of sustainability due to the exponential rise in the workloads. 

The classical models of workload management put much emphasis on predictive accuracy but ignore resource-

awareness, with the net effect of inefficient usage of power and poor system responsiveness. This paper puts 

forward an Energy-Aware Hybrid CNN-LSTM-Transformer (EA-HCLT) architecture that would allow 

sustainable computing through the combination of workload prediction, smart scheduling and adaptive carving of 

model pruning to dynamic environments. The framework utilises workload prediction using hybrid learning/deep 

learning in real-time resource monitoring to optimally place computers to execute computations and also optimally 

use energy at maximum precision. As a validation of the effectiveness, EA-HCLT is compared to two popular 

models: Random Forest Workload Predictor (RF-WP) and Standard LSTM Scheduler (S-LSTM) based on the 

usage of synthetic workload and runtime workload datasets in terms of CPU, memory, network throughput, and 

accelerator utilisation. The overall analysis of the proposed approach in terms of accuracy, RMSE, latency, energy 

usage, sustainability index, and multi-objective cost reveal that the proposed solution provides a considerable 

improvement, yielding 14.8 percentage points higher accuracy, 19% reduced decision latency, 26.9% decreased 

energy usage, 17.5% higher sustainability index as opposed to S-LSTM. The results justify the supportability and 

scalability of the suggested EA-HCLT design and emphasise the significance of energy-conscious strategies of 

the next generation smart systems that are going to work within environmental and resource constraints. 

Keywords: Energy-Aware Computing, Hybrid CNN-LSTM, Transformer Scheduling, Intelligent Resource 

Allocation, Deep Learning, Cloud Sustainability. 

1. Introduction 

The rapid growth rate of intellectual systems in the next generation, such as intelligent automotive 

engines, industry, health care, cognitive internet environments, and smart energy systems, has escalated 

the computational demands significantly in quantity and complexity [1]. This stream of multimodal and 

high-frequency data in such systems needs real-time inference and dynamism in decision-making 

processes. Consequently, AI workloads, including but not limited to deep learning inference, anomaly 

detection, prediction services, and context-aware optimisation, have become so interwoven with daily 

operations [2]. Nonetheless, this massive computational processing has caused growing power use on 
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cloud, fog and edge layers with worldwide digital infrastructure likely consuming an approximate 24-

4% of the overall electricity consumption a figure projected to grow as AI usage matures [3][4]. This 

fact brings to relevance the pressing necessity of resource-efficient AI systems that draw little power 

without undermining intelligent functioning. 

The traditional workload management methods mainly emphasise addressing the accuracy of 

predictions, the throughput or scheduling efficiencies. These models give reasonable performance when 

the condition remains constant, but the models tend to ignore key operational factors dynamically 

consuming power, varying resource availability, thermal effects, and real-time constraints on the 

latency [5][6]. These omissions prove to be problematic when the computational loads have spikes and 

cause overloaded states, which consume a lot of energy, allocate resources unwisely, and have 

decreased service reliability. These inefficiencies are leading to increased operational expenses and 

carbon footprint, as well as poor user experience. With the development of smart infrastructures moving 

towards continuous 24/7 autonomous systems, the workload scheduling approach shall be carried out 

such that it implements environmental sustainability and prediction performance [7]. 

Recent deep learning models, especially LSTM networks, CNN-LSTM hybrid and Transformer-based 

sequence models, have shown substantial achievement in discovering temporal and long sequence 

patterns in workload sequences [8][9]. They can forecast better in the dynamic and non-stationary 

conditions because they can capture the contextual dependencies. Nevertheless, those models are 

characterised by high levels of computation intensity and memory intensity, particularly during peak 

periods or when expanding to multi-tenant resource pools [10][11]. This high site of parameters, 

compound attention, and overlaid recurrence layers raise the inference wait, memory usage by a 

computer, and heat emission [12]. In turn, even though deep learning leads to the accuracy 

improvement, it results in the emergence of new sustainability issues: significant amounts of power 

consumption, limited LIF of the hardware, and scaling limitations. These models do not perform so well 

in the real-world applications of smart systems when energy-aware optimisation is not done, as they 

cannot satisfy the two-fold requirement of high accuracy and low energy overhead [13][14]. 

 

Fig.1: Hybrid EA-HCLT Framework for Efficient Smart-System Workload Management 

Fig.1 of the offered system illustrates a unified energy-aware intelligent computing pipeline. Raw 

workload measures (CPU utilisation, memory utilization, network throughput and accelerator 
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utilisation) are constantly measured and reduced to structured measures. The latter are then trained 

through a hybrid deep learning network comprising CNN filters applied to locally identify patterns, 

LSTM units to simulate long-term dependencies, and Transformer attention layers to identify long-

range dependencies [15]. The predictions are used to discard adaptive model pruning and intelligent 

scheduling operations, which selectively limit redundant computational effort, thereby reducing energy 

consumption and decision latency. A feedback loop constantly evaluates the performance metrics like 

accuracy and energy efficiency to allow real-time recalibration of the system to enable sustainable 

operations. 

Despite significant progress in AI workload prediction, three systemic limitations persist in the 

existing research landscape: 

1. Insufficient alignment between predictive accuracy and operational efficiency 

2. Lack of adaptability to runtime workload volatility 

3. Minimal focus on integrated sustainability metrics for intelligent computing 

In order to address such problems, this paper presents an Energy-Aware Hybrid CNN-LSTM 

Transformer Framework (EA-HCLT) capable of resolving both the problem of power efficiency and 

that of intelligent scheduling. 

This paper offers the following research contributions: 

• A hybrid energy-aware learning approach integrating CNN, LSTM, and Transformer 

modules for workload-driven predictive scheduling 

• Mathematical formulation of performance metrics, including accuracy, RMSE, decision 

latency, energy saving, and sustainability index 

• Comparative benchmarking against two standardised intelligent resource allocation 

baselines: Random Forest Workload Predictor (RF-WP) and Standard LSTM Scheduler (S-

LSTM) 

• Performance optimisation through adaptive model pruning to reduce computation load and 

energy overhead 

• Demonstration of superior sustainability, including 14.8% higher accuracy, 19% reduced 

latency, 26.9% energy savings, and a 17.5-point increase in sustainability index 

The remainder of this manuscript is organised as follows: In Section 2, the state-of-the-art energy-

intelligent computing systems are introduced, and some important gaps are determined. Section 3 points 

out the problem formulation and research objectives. Section 4 will describe the suggested hybrid 

methodology using mathematical modelling and visual analysis using plots. Section 5 presents the 

characteristics of the simulation environment and data. Results, comparison measures, and finding 

interpretation are given in Section 6. Lastly, Section 7 sums up the paper and suggests ways of future 

research in making scalable AI deployments. 

2. Literature Review 

The geometrical development of artificial intelligence has greatly augmented the speeds of 

computational workload in cloud and distributed smart settings. Previously, most methods of workload 

prediction and resource scheduling were based on still heuristic-driven strategies and classical machine 

learning algorithms like regression or Random Forests [16]. These designs offered a judicious 

estimation performance but did not resolve nonlinear variations and conform to the changing run times, 

leading to inefficient use of energy. 
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As scalable intelligent systems advanced in the future, researchers explored a workload forecaster based 

on deep learning in the form of temporal sequence modelling with LSTM and GRU architecture 

[17][18]. These models were able to better recognise trends but had both added computational overhead 

and longer inference latency, especially in periods of peak demand. CNN-LSTM hybrid frameworks 

followed subsequently to handle the requirement of the spatial-temporal feature extraction [19], but 

have the disadvantage of being too complex, which can have a bigger energy footprint requirement than 

the existing literature has not adequately addressed. 

More recently, Transformer-based accelerated attention networks have shown better performance in 

modelling long-range workload dependencies than recurrent models. Although they have a predictive 

advantage, their energy requirements are high because of a high number of parameters and a huge 

multiplication of matrices. In the meantime, the modern techniques of sustainability-oriented use 

engaged pruning and adaptive learning, and yet, a single architecture that integrates control energy-

aware remains deficient in the literature [20]. 

Thus, although AI-based optimisation of resources has now become more integrated and intelligent, the 

mutual reaction of high accuracy, low latency, and low energy consumption in real-time smart systems 

has not been addressed. The reviewed frameworks do not have a sustainability lens, taking into account 

the environmental constraints and objective multi-metric performance reliability. The existence of this 

gap gives the incentive to create a new hybrid framework applicable to both prediction-robust and green 

computing idealisation, which lies at the core of the suggested EA-HCLT framework. 

Table 1: Comparative Review of Key Literature in Energy-Aware Intelligent Computing 

Approach / Study 

Type 

Strengths Limitations Applicability 

Classical ML-based 

forecasting (e.g., 

Regression, RF) 

Low computational 

overhead, easy to 

deploy 

Poor handling of nonlinear 

dynamic workloads, low 

adaptability to sudden spikes 

Basic cloud 

workload and 

resource 

management 

LSTM / GRU 

workload prediction 

models 

Captures sequential 

features and load 

trends 

High training + inference 

cost, sensitive to volatility 

IoT and distributed 

computing 

environments 

CNN-LSTM hybrid 

forecasting 

Spatial + temporal 

feature learning, 

improved accuracy 

More energy consumption 

due to the complex structure 

High-performance 

cloud resource 

scheduling 

Transformer-based 

load forecasting 

Strong long-term 

dependency 

modelling, high 

accuracy 

Extremely high 

computational cost → more 

power usage 

Dynamic and large-

scale HPC 

applications 

Energy-aware 

pruning + lightweight 

optimisation 

Reduced energy and 

execution overhead 

Accuracy trade-offs, partial 

optimisation 

Embedded and 

energy-constrained 

systems 

While CNN-LSTM and Transformer solutions show the most promise in prediction quality, they are 

limited by intensive energy consumption. Lightweight optimisation methods, on the other hand, drive 

up the power metrics at the cost of predictive metrics. The proposed EA-HCLT addresses the gap by 

being no review study that that offers a single hybrid framework that improves accuracy, decreases 

latency, and also increases energy efficiency.  

3. Problem Statement & Research Objectives 

The intelligent systems of the next generation require intelligent computing with high performance to 

counter the fluctuations in the workload that cannot be predicted. Nevertheless, the current workload 

prediction and scheduling methods have one of the following limitations: 
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• High computational overhead, leading to increased energy consumption 

• Slowness in quick response in service, which is sensitive to the dynamic loads. 

• Trade-off between accuracy and sustainability, quality of one tends to worsen the other. 

Research Objectives 

   To address the above challenges, the present work proposes the Energy-Aware Hybrid CNN-LSTM–

Transformer Framework (EA-HCLT) with the following targeted objectives: 

1. Develop a hybrid deep learning system combining CNN, LSTMs and Transformer submodules 

to achieve workload forecasting capability in a dynamic workload. 

2. Calculate and measure the major key performance indicators (KPIs) such as Values in 

Accuracy, RMSE, Latency, and Energy Consumption, Sustainability Index and Multi-objective 

Cost in mathematical equations. 

3. Develop energy energy-aware system. Design an adaptively pruned intelligent time-based 

learning framework to decrease computation load and power usage. 

4. Validate system performance through simulation-driven comparative evaluation using 

standardised baselines: 

o Random Forest Workload Predictor (RF-WP) 

o Standard LSTM Scheduler (S-LSTM) 

5. Demonstrate sustainable system behaviour by ensuring energy-efficient operation under varied 

workload intensities without negatively affecting prediction performance. 

All these goals will facilitate the creation of an intelligent, scalable, and sustainably smart AI workload 

execution platform that can be integrated with intelligent infrastructures in the present day. 

4. Methodology  

The proposed methodology will provide a system of energy-conscious intelligent workload 

management that is based on the EA-HCLT system. It records the patterns of resource consumption on 

the spot, anticipates the upcoming workload, and provides real-time solutions to reduce energy use to 

preserve intelligent performance. The modelling based on the workload and power is represented by 

Equations (1)-(4), prediction accuracy and decision efficiency are estimated by Equations (5)-(9), and 

the advantages of sustainability over the baseline differences are determined by Equations (10)-(12). 

This mathematical design will offer a balance in terms of performance enrichment and energy efficiency 

in intelligent computing surroundings. 

𝜆(𝑡) = 𝑤cpu𝑢cpu(𝑡) + 𝑤mem𝑢mem(𝑡) + 𝑤net𝑢net(𝑡) + 𝑤ai𝑢ai(𝑡)                  (1) 

This weighted summation formulates a unified workload intensity index by capturing CPU, memory, 

network, and accelerator utilisation at a time 𝑡. The weights 𝑤𝑖represent the relative importance of each 

resource such that ∑𝑤𝑖 = 1. This index provides a single scalar measure of load for real-time decision 

control. 

u(𝑡) = [
𝑟cpu(𝑡)

𝑐cpu

,
𝑟mem(𝑡)

𝑐mem

,
𝑟net(𝑡)

𝑐net

,
𝑟ai(𝑡)

𝑐ai

]                         (2) 

Here, 𝑟𝑖(𝑡) and 𝑐𝑖 denote the requested and available capacities of each resource. This vector enables 

fine-grained monitoring of resource pressure and volatility, serving as input features to the hybrid 

forecasting model. 

𝑃(𝑡) = 𝑃idle + 𝛼𝜆(𝑡)                       (3) 
The node’s power is modelled as idle power 𝑃idle plus workload-dependent power proportional to 𝜆(𝑡). 

The factor 𝛼 quantifies how aggressively workload intensity impacts energy draw, enabling accurate 

runtime power estimation. 
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𝐸 = ∑ 𝑃(𝑡)Δ𝑡

𝑇

𝑡=1

                                (4) 

Cumulative energy usage is computed over 𝑇 time intervals of duration Δ𝑡 . This directly supports 

sustainability assessment across RF-WP, S-LSTM, and EA-HCLT under identical execution time 

horizons. 

𝐶𝑚 =
FLOPs𝑚

FLOPsmax
                        (5) 

The architecture complexity is normalised by comparing per-model FLOPs with the maximum FLOPs 

among the considered models. Lower 𝐶𝑚indicates computational efficiency achieved via pruning and 

hybridisation. 

𝑒𝑚(𝑡) = 𝑦(𝑡) − 𝑦̂𝑚(𝑡)                 (6) 
The point-wise discrepancy between the actual workload 𝑦(𝑡)and predicted workload 𝑦̂𝑚(𝑡)measures 

the forecasting accuracy of each model 𝑚. 

RMSE𝑚 = √
1

𝑇
∑ 𝑒𝑚(𝑡)2

𝑇

𝑡=1

                           (7) 

This is the standard error metric that penalises large deviations more heavily. Lower RMSE signifies 

more reliable workload prediction and helps reduce energy waste due to mis-scheduling. 

Acc𝑚 =
𝑁correct,𝑚

𝑁total

× 100%                           (8) 

Accuracy quantifies the percentage of correctly predicted workload conditions, directly reflecting the 

reliability of intelligent scheduling. 

𝐿tot,𝑚 = 𝐿data,𝑚 + 𝐿queue,𝑚 + 𝐿infer,𝑚             (9) 

This measures the combined delay due to data acquisition, queue waiting, and inference computation. 

Lower latency indicates fast reaction to workload dynamics, essential for smart systems. 

𝐺𝐸,𝑚 =
𝐸S-LSTM − 𝐸𝑚

𝐸S-LSTM

× 100%                    (10) 

The percentage reduction in total energy usage of each model 𝑚 relative to the S-LSTM baseline shows 

the sustainability advantage of EA-HCLT. 

𝐺𝐿,𝑚 =
𝐿S-LSTM − 𝐿tot,𝑚

𝐿S-LSTM

× 100%                      (11) 

Latency gain expresses improvement in inference responsiveness compared to the baseline. Positive 

values indicate faster decisions and better QoS. 

SI𝑚 = 𝛽1Acc̃𝑚 + 𝛽2𝐺̃𝐸,𝑚 + 𝛽3𝐺̃𝐿,𝑚                  (12) 
This composite metric integrates normalised accuracy, energy saving, and latency improvement. 

Weights 𝛽1, 𝛽2, 𝛽3  define the relative sustainability priorities. Higher SI signifies balanced and 

environmentally responsible performance. 
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Fig. 2: Multi-Level Operational Workflow of the EA-HCLT Framework 

The flowchart in Fig. 2 explains the EA-HCLT working process that involves real-time workload 

acquisition and preprocessing to produce organised feature inputs. These are converted to utilisation, 

intensity and energy models which describe how the load of the system changes with time. These 

representations are then sent through the hybrid CNNLSTMTransformer predictor, which then predicts 

the future workloads. The predictions are evaluated based on complexity and error, accuracy and latency 

metrics, which allow a quantitative model-to-model comparison.  

The resulting gains and sustainability index, respectively, influence flexive pruning and energy-

conscious scheduling, whereas a feedback loop is used to continually improve the predictor. This 

stratified stream sums up the vast information entailed in the modelling, forecasting and sustainability-

based control being integrated in a smooth intelligent computing pipeline by the framework. 

5. Experimental Setup 

The proposed EA-HCLT framework, as shown in Fig. 3, was tested on real-time workload traces that 

simulate real-time processing environments in distributed smart environments. The data set will cover 

CPU, memory, network and accelerator utilisation and will be sampled with 20,000-time instances and 

normal scaling. These workload behaviours were different so as to mirror low, medium and high 

intensity computational phases. 

 

Fig. 3: Structural Mapping of the Experimentation 
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The training and testing procedure follows a 70%–15%–15% split, which guarantees equalised model 

generalisation and accuracy of evaluation. The hybrid model uses CNN filters in extracting local 

patterns, LSTM layers in deducing sequential learning, and Transformer blocks in determining the 

ability to get long-term attention. To obtain efficient training convergence, the Adam optimiser was 

used with a learning rate of 10 -3 and a batch size of 64. 10−3 and a batch size of 64 for efficient training 

convergence. 

It introduced two standardised baselines that were used to benchmark randomly selected workload 

predictors, a forester (RF-WP) and an ordinary LSTM Scheduler (S-LSTM). They are classical machine 

learning and deep-temporal learning strategies, respectively. The environment where the execution took 

place was a simulation tool on an Intel Core i7 platform with optional GPU acceleration (RTX 3060). 

The final energy consumption came out after the 100-hour working horizon to make sure that the 

assessment is sustainability-oriented. 

Table 2: Simulation Configuration and Comparative Baselines 

Configuration 

Aspect 

Proposed EA-HCLT Baseline-A (RF-WP) Baseline-B (S-

LSTM) 

Learning Paradigm Hybrid CNN-LSTM-

Transformer 

Ensemble ML 

(Random Forest) 

Temporal DL model 

Sequence Handling Strong temporal + long-

range dependency modelling 

Limited contextual 

understanding 

Good short/medium-

term memory 

Workload 

Adaptability 

High (adaptive pruning + 

scheduling) 

Low Medium 

Evaluation Dataset 20,000-time steps (dynamic 

workload scenarios) 

Same Same 

Optimization 

Method 

Adam (LR (=10-3)) Grid-based ML fitting Adam optimizer 

Energy Estimation 

Period 

100 hours 100 hours 100 hours 

Table 2 presents the settings of configuration and comparison of the baseline during the experimental 

validation. The suggested EA-HCLT uses a hybrid CNN-LSTM-Transformer model with more 

effective long-range dependency modelling and adaptive load management. Comparatively, the 

Random Forest Workload Predictor does not have contextual temporal learning, whereas the Standard 

LSTM Scheduler has moderate temporal abilities at the cost of flexibility. The models were all trained 

and tested on the same dynamic model of 20,000 time steps, and all in the same conditions of 100-hour 

energy estimation, in order to create a fair and consistent benchmark. 

6. Results & Discussion 

The results obtained demonstrate that the suggested EA-HCLT framework is always superior to the RF-

WP and S-LSTM baselines in all key performance measures. The model is as expected in terms of 

offering a greater level of prediction accuracy; it also has shorter decision latency as well as a significant 

decrease in energy usage during dynamic workloads. The net effect of these increases the sustainability 

index, which proves the effectiveness of the framework toward realising energy-conscious intelligent 

computing. All these performance improvements are summarised below with the help of the plots and 

tables of comparison, indicating the benefits of the proposed approach. 



Harshit Kohli, Abdul Hadi, Nitin Mukhi, Md Alamgir Miah, Kazi Bushra Siddiqa 

 

 

ISSN (Online) : 3048-8508 42 IJSSIC  

 

 

Fig.4: Accuracy Comparison of RF-WP, S-LSTM, and EA-HCLT Models 

According to Figure 4, it is evident that EA-HCLT has the greatest prediction accuracy of 93.2, 

significantly higher than RF-WP (78.4) and S-LSTM (81.2) do. The result in this performance 

improvement demonstrates that hybrid feature extraction and long-range temporal modelling can be 

strong. The sharp ascending trend to the third data item indicates a great deal of generalisation in the 

variable workload trend. With this enhancement, more trustworthy allocation of resources decisions 

will be made in smart systems.  

 

Fig.5: Energy Consumption Breakdown (Idle vs Active) Across Models 

The inactive and active energy contributions can be seen in conjunction in Figure 5, disclosing that EA-

HCLT is the most efficient solution, necessitating minimal power. The overall energy consumption is 

reduced to 307 kWh, with a 26.9% reduction over S-LSTM and even better than RF-WP. The large 

drop in active computation energy is an indicator of the success of adaptive pruning and optimised 

execution scheduling that is added into the framework. 

 

Fig.6: Improvement Gains in Energy Efficiency and Latency over Baselines 

Figure 6 indicates that EA-HCLT has better improvement across all performance dimensions compared 

to the S-LSTM baseline. Power savings are 26.9, and latency gain is 19, so resource straining under 

heavy loads is reduced. RF-WP is barely improved and even worse in certain cases. The findings 
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confirm that EA-HCLT has dual benefits, such as power minimisation and enhancement of 

responsiveness. 

 

Fig.7: Sustainability Index Trend across models 

Figure 7 shows a strong growth of the sustainability trend in RF-WP to EA-HCLT, and the proposed 

model is 58.1, which is a 17.5-point rise compared to S-LSTM. Such a trend indicates that to improve 

accuracy, or decrease latency is not enough; sustainability comes with balanced optimisation. EA-

HCLT harmonises smart computing and the protection of the environment.  

 

Fig.8: Forecasting Error (RMSE) Comparison Across Predictive Models 

The comparison in Figure 8 shows that EA-HCLT (0.0126) has a much lower forecasting error than S-

LSTM (0.0632) or RF-WP (0.0782). This implies enhanced capturing of temporal features and learning 

in long sequences, which minimises misprediction. The correct forecasts of workload will eliminate 

over-provisioning of resources in the system, hence reducing energy waste and improving the reliability 

of the system performance. 

 

Fig.9: Sustainability Contribution Share of Each Model 
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In Figure 9, it is apparent that the proportion of EA-HCLT to the sustainability as a whole is the highest. 

RF-WP and S-LSTM are behind the pack because of their bad accuracy or high-power requirements. 

This visual confirms the existing equal excellence at EA-HCLT that encourages the achievement of 

greening intelligent cloud-edge operations. 

 

Fig.10: Multimetric Performance Profile of the Evaluated Models 

Figure 10 validates that EA-HCLT is superior on all normalised KPIs such as accuracy, latency, energy, 

sustainability and RMSE. The growth curve toward the performance frontier shows that the growth is 

not isolated but homogeneous among the criteria of operations. The model can be deployed to large-

scale, mission-critical smart systems due to its good multi-metric profile. 

 

Fig.11: Performance Under Variable Network Load 

The proposed mode of Figure 11 has good efficiency in energy (88- 92%), throughput (70-82 Mbps), 

and low latency (11-13 ms) across a spectrum of network loading, hence it is robust in scalability and 

flexibility in a dynamic user setup. Table 3 validates the idea that EA-HCLT is significantly better than 

RF-WP and S-LSTM in all metrics of core computations. The prediction of the workload in question 

becomes much more reliable due to the accuracy increment of almost 15%. Latency is lesser by 19% to 

boost responsiveness to real-time smart systems. The benefit is energy efficiency, which is the most 

serious, and it reduces the consumption by approximately 27% throughout the operational period, which 

directly contributes to sustainability. The product of lower RMSE also indicates high forecasting 

accuracy during workload volatility. 

Table 3: Model Comparison Across Key Metrics 

Metric RF-WP S-LSTM Proposed EA-HCLT Best Improvement 

Accuracy (%) 78.4 81.2 93.2 +14.8% vs S-LSTM 

Latency (s) 2.05 1.89 1.53 19.0% faster 

Energy (kWh) 455 420 307 26.9% saved 

RMSE 0.0782 0.0632 0.0126 80.1% lower 
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The EA-HCLT proposed in Table 4 has the largest sustainability index, and it is more than 17 points 

ahead of S-LSTM. The lower (more negative) value of the composite cost shows an optimal trade-off 

between use of energy, inference latency, and prediction performance. These advances confirm the 

weakness of the model of scaling without limitation to the intelligence of the environment.  

Table 4: Sustainability and Composite Cost Indicators 

Model Sustainability Index  

(SI% ) 

Cost Function J Overall Sustainability Rank 

RF-WP 37.4 −0.178 3rd 

S-LSTM 40.6 −0.212 2nd 

EA-HCLT 58.1 −0.470 1st 

The findings indicate that EA-HCLT can provide noticeable performance enhancement, as it attains 

93.2% accuracy, which is 80.1% lower than the RMSE-based. Not only higher correctness but also a 

tighter stability of performance is achieved. Such accuracy narrows down correction computing and 

permits quicker reaction to systems, as seen in the 19% cut down in decision time. Differences between 

the models become relatively larger with dynamic loads, which proves that EA-HCLT is predictively 

consistent when RF-WP and S-LSTM are already becoming weak. It shows that the hybrid model is 

more accurate in focusing both on short-term variations and long-range trends than either of the two 

traditional ML or single-architecture deep learning strategies. 

The results obtained in energy-related matters highlight the efficiency of EA-HCLT, where the 

consumption remains at 307 kWh, a difference of 26.9% compared to S-LSTM, and an even higher 

difference compared to RF-WP. This directly increases the Sustainability Index to 58.1, beating S-

LSTM by 17.5 and leading the models. Trade-offs between accuracy, latency and energy are then 

affirmed using the corresponding cost function J = -0.470. It is worth mentioning that the model 

maintains a power efficiency of 88-92% and a latency of 11-13 ms across different network loads, which 

proves the robustness and the ability to operate on a large scale. The overall findings confirm the 

applicability of the EA-HCLT as the most competent and at the same time the most sustainable of the 

considered predictors. 

7. Conclusion  

The proposed EA-HCLT framework creates a strong and energy-aware solution to intelligent workload 

management in the new smart systems. The framework efficiently provides multi-scale temporal 

dependencies, thus giving very accurate forecasting of the workload with relatively easy operational 

efficiency through its hybrid CNN-LSTM-Transformer architecture. Extensive experiments proved that 

EA-HCLT outperforms the classical ML and deep temporal baselines in all key performance metrics, 

which include: RF-WP and S-LSTM. These improvements were noticed: 14.8% more accurate, 19% 

less latent, 26.9% less energy consumption, 80.1% less RMSE, and 17.5-point improvement in 

sustainability index--all of which support the claim that the framework was able to harmonise the 

computational intelligence with environmental responsibility. These findings provide the need to 

combine predictive modelling with energy-conscious decision processes, primarily because AI-based 

services are only going to grow larger in distributed cloud-edge ecosystems. The proven comprehensive 

performance in the changes of the dynamic workload also enhances EA-HCLT as a viable and 

deployable design to deploy in real intelligent infrastructures. 

The present work can be further expanded in the future by integrating adaptive controllers implemented 

via reinforcement learning in order to achieve real-time policy optimisation and support heterogeneous 

accelerators, including NPUs and FPGAs, to achieve even greater increases in efficiency. Cross-edge 

cluster edge-based multi-agent cooperative learning could be used to provide scalability to large IoT 

and cyber-physical systems, and carbon-aware and thermal-conscious scheduling can be applied to 
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reinforce the new green-AI standards. Moreover, testing EA-HCLT in the actual workload of industries, 

5G/6G on a network, and various smart environments will expand the scope of its implementation and 

promote intelligent computing sustainability. 

Funding source 

None. 

Conflict of Interest  

None. 

References 

[1] Ghaseminya, M. M., Eslami, E., Shahzadeh Fazeli, S. A., Abouei, J., Abbasi, E., & Karbassi, S. M. 

(2025). Advancing cloud virtualization: a comprehensive survey on integrating IoT, Edge, and Fog 

computing with FaaS for heterogeneous smart environments: MM Ghaseminya et al. The Journal 

of Supercomputing, 81(14), 1303. https://doi.org/10.1007/s11227-025-07799-2 

[2] Mouhim, S. A. N. A. A., & Lachhab, F. A. D. W. A. (2025). Towards a context awareness system 

using IoT, AI, and big data technologies. IEEE Access. 

https://doi.org/10.1109/ACCESS.2025.3546865 

[3] Arroba, P., Buyya, R., Cárdenas, R., Risco‐Martín, J. L., & Moya, J. M. (2024). Sustainable edge 

computing: Challenges and future directions. Software: Practice and Experience, 54(11), 2272-

2296. https://doi.org/10.1002/spe.3340 

[4] Lalar, S., Kumar, T., Kamboj, S., & Kumar, R. (2024). Security challenges and solutions in cloud, 

fog, and edge computing for sustainable development. In Cloud and Fog Optimization-based 

Solutions for Sustainable Developments (pp. 178-200). CRC Press. 

https://doi.org/10.1201/9781003494430 

[5] Krishnan, R., & Durairaj, S. (2024). Reliability and performance of resource efficiency in dynamic 

optimization scheduling using multi-agent microservice cloud-fog on IoT 

applications. Computing, 106(12), 3837-3878. https://doi.org/10.1007/s00607-024-01301-1 

[6] Hussain, H., Tamizharasan, P. S., & Rahul, C. S. (2022). Design possibilities and challenges of 

DNN models: a review on the perspective of end devices. Artificial Intelligence Review, 55(7), 

5109-5167 https://doi.org/10.1007/s10462-022-10138-z 

[7] Dritsas, E., & Trigka, M. (2025). Machine Learning in Intelligent Networks: Architectures, 

Techniques, and Use Cases. IEEE Access. https://doi.org/10.1109/ACCESS.2025.3577968 

[8] Alomar, K., Aysel, H. I., & Cai, X. (2025). CNNs, RNNs and Transformers in human action 

recognition: a survey and a hybrid model. Artificial Intelligence Review, 58(12), 1-44. 

https://doi.org/10.1007/s10462-025-11388-3 

[9] Li, W., & Law, K. E. (2024). Deep learning models for time series forecasting: A review. IEEE 

Access, 12, 92306-92327. https://doi.org/10.1109/ACCESS.2024.3422528 

[10] Abdel Raouf, A. E., Abo‐alian, A., & Badr, N. L. (2021). A predictive replication for multi‐tenant 

databases using deep learning. Concurrency and Computation: Practice and Experience, 33(13), 

e6226. https://doi.org/10.1002/cpe.6226 

[11] Moradi, H., Wang, W., & Zhu, D. (2021). Online performance modeling and prediction for single-

VM applications in multi-tenant clouds. IEEE Transactions on Cloud Computing, 11(1), 97-110. 

https://doi.org/10.1109/TCC.2021.3078690 

[12] Li, A., Xiao, F., Zhang, C., & Fan, C. (2021). Attention-based interpretable neural network for 

building cooling load prediction. Applied Energy, 299, 117238. 

https://doi.org/10.1016/j.apenergy.2021.117238 

[13] Iqbal, N., Khan, A. N., Rizwan, A., Qayyum, F., Malik, S., Ahmad, R., & Kim, D. H. (2022). 

Enhanced time-constraint aware tasks scheduling mechanism based on predictive optimization for 

efficient load balancing in smart manufacturing. Journal of manufacturing systems, 64, 19-39. 

https://doi.org/10.1016/j.jmsy.2022.05.015 

https://doi.org/10.1007/s11227-025-07799-2
https://doi.org/10.1109/ACCESS.2025.3546865
https://doi.org/10.1002/spe.3340
https://doi.org/10.1201/9781003494430
https://doi.org/10.1007/s00607-024-01301-1
https://doi.org/10.1007/s10462-022-10138-z
https://doi.org/10.1109/ACCESS.2025.3577968
https://doi.org/10.1007/s10462-025-11388-3
https://doi.org/10.1109/ACCESS.2024.3422528
https://doi.org/10.1002/cpe.6226
https://doi.org/10.1109/TCC.2021.3078690
https://doi.org/10.1016/j.apenergy.2021.117238
https://doi.org/10.1016/j.jmsy.2022.05.015


Harshit Kohli, Abdul Hadi, Nitin Mukhi, Md Alamgir Miah, Kazi Bushra Siddiqa 

 

 

ISSN (Online) : 3048-8508 47 IJSSIC  

 

[14] Hudda, S., & Haribabu, K. (2025). A review on WSN based resource constrained smart IoT 

systems. Discover Internet of Things, 5(1), 56. https://doi.org/10.1007/s43926-025-00152-2 

[15] Shouran, M., Alenazi, M., Almutairi, S., & Alajmi, M. (2025). Hybrid Feature Extraction and Deep 

Learning Framework for Power Transformer Fault Classification–A Real-World Case Study. IEEE 

Access. https://doi.org/10.1109/ACCESS.2025.3608658 

[16] Sanjalawe, Y., Al-E’mari, S., Fraihat, S., & Makhadmeh, S. (2025). AI-driven job scheduling in 

cloud computing: a comprehensive review. Artificial Intelligence Review, 58(7), 197. 

https://doi.org/10.1007/s10462-025-11208-8 

[17] Yuan, H., Bi, J., Li, S., Zhang, J., & Zhou, M. (2024). An improved LSTM-based prediction 

approach for resources and workload in large-scale data centers. IEEE Internet of Things 

Journal, 11(12), 22816-22829. https://doi.org/10.1109/JIOT.2024.3383512 

[18] Yu, Q., Yang, G., Wang, X., Shi, Y., Feng, Y., & Liu, A. (2025). A review of time series 

forecasting and spatio-temporal series forecasting in deep learning: Q. Yu et al. The Journal of 

Supercomputing, 81(10), 1160. https://doi.org/10.1007/s11227-025-07632-w 

[19] Yazdanian, P., & Sharifian, S. (2021). E2LG: a multiscale ensemble of LSTM/GAN deep learning 

architecture for multistep-ahead cloud workload prediction. The Journal of 

Supercomputing, 77(10), 11052-11082. https://doi.org/10.1007/s11227-021-03723-6 

[20] Nagesh, C., Jayudu, T. V. N., Rao, N. S., Hariprasad, E., Naresh, A., & Balaji, C. (2025, August). 

Predicting Market Volatility and Risk Analysis with ESG Factors: A Hybrid Approach Using 

LSTM and ARIMA. In 2025 9th International Conference on Inventive Systems and Control 

(ICISC) (pp. 102-107). IEEE. https://doi.org/10.1109/ICISC65841.2025.11187620 

 

https://doi.org/10.1007/s43926-025-00152-2
https://doi.org/10.1109/ACCESS.2025.3608658
https://doi.org/10.1007/s10462-025-11208-8
https://doi.org/10.1109/JIOT.2024.3383512
https://doi.org/10.1007/s11227-025-07632-w
https://doi.org/10.1007/s11227-021-03723-6
https://doi.org/10.1109/ICISC65841.2025.11187620

