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ABSTRACT

Breast cancer is a life-threatening disease affecting women, and it needs effective and efficient diagnostic
procedures to detect it early enough to ensure effective management. Artificial Intelligence (Al) offers significant
promise for improving breast cancer detection and treatment; however, its application remains constrained by
methodological, ethical, and infrastructural limitations. This paper examines a hybrid anomaly-detection model
applied to the breast cancer dataset from Kaggle. The dataset is preprocessed and class-balanced using Mean
Absolute Error (MAE) thresholding and SMOTE techniques. Twelve ML and DL models were trained and
compared using the dataset in terms of typical evaluation metrics. The highest diagnostic performance was
obtained with the LightGBM classifier with 0.9912 Accuracy, 0.9880 F1 Score, and a Specificity (1.0000). The
Results indicate the usefulness of ensemble techniques in high-accuracy biomedical anomaly detection. Persistent
issues with insufficient dataset diversity, model interpretability, and clinical standards should be resolved to
facilitate the deployment of reliable Al systems in the fields of breast cancer detection, prevention, and therapy.
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1. Introduction

Breast cancer develops as a result of the failure of self-regulation in multicellular organisms. It arises
from abnormal communication within an otherwise self-organizing multicellular organism, driven by
genetic defects that lead to excessive proliferation of cells and tissues in specific body regions [38]. The
malignant characteristics of unchecked proliferation, anti-apoptotic response, angiogenesis, and
metastasis are caused by progressive genetic and epigenetic instability [25] [38] [41]. The tumour is a
severe and progressive multigenic disease characterized by cell miscommunication, which has
detrimental effects on the entire organism [38] [39] [40] [85]. It is not caused by the failure of a single
gene or even several genes. Single-nucleotide mutations, copy number variations, and aberrant splicing
that affect the isoforms—such as CD44, which is linked to invasion and metastatic dissemination—are
examples of the many genomic alterations. Investigations revealed that infection with pathogens,
including viruses, can activate transposable elements, which cause genomic rearrangements that can be
transmitted into subsequent generations [38]

The majority of Cancers (90-95%) are not inherited [31]. They are brought on by unplanned genetic
alterations in old age and environmental influences (e.g., tobacco, radiation). These malignancies are
referred to as "spontaneous" or "non-hereditary" cancers. Only 5—-10% of women develop breast cancer
due to deleterious mutations (hereditary or familial malignancies). The lack of a family history does not
always mean that there is no risk. Cancer will be found in about 38 percent of individuals during their
lifetime. Preventive measures of non-hereditary cancers are lifestyle habits (not smoking, healthy
weight, exercise). The vast majority (approximately 90-95%) are non-hereditary or sporadic cases,
arising from somatic mutations that accumulate over an individual’s lifetime due to aging and
environmental exposures [11] [24] [32] [79].
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Multi-omics integration is indispensable for achieving a truly comprehensive understanding of complex
biological processes and systems. Integration of Al with multi-omics (genomics, transcriptomics,
proteomics, metabolomics) facilitates precision oncology in the areas of Imaging and Digital Pathology
(CNNs detect subtle patterns; GANs generate synthetic images for rare cancers), Data Challenges
(Heterogeneity, missing values, and dataset bias impede reproducibility and generalizability) and
Clinical Workflow Barriers (Integration requires training, infrastructure adaptation, and alignment with
regulatory frameworks) [82]. This involves the studies of non-traditional liquid biopsy components,
including tumour-educated platelets [4] [7] [S1] [67]. Cancer risk factors range from non-modifiable
genetic determinants to highly modifiable lifestyle behaviours that increase susceptibility to the disease.
Oestrogen is required for the proliferation of epithelial cells. The cumulative exposure to Oestrogen
increases risks as observed by early menarche, late menopause, nulliparity, and hormone replacement
therapy [3] [38] [41]. Some of the key contributors to carcinogenesis include obesity, sedentary
behaviour, and large amounts of alcohol ingestion, smoking, and exposure to ionizing radiation. Certain
malignancies, like breast and colon cancer, are known to be predisposed by obesity, which is attributed
to diets rich in added sugars. High sugar intake can also promote systemic inflammation, which might
also augment the risk of cancer. Since the risk of cancer is not only associated with obesity but also
other chronic ailments such as diabetes and cardiovascular disease, it has been suggested to reduce the
consumption of added sugars and total intake of a balanced diet rich in fruits, vegetables, whole grains,
and lean proteins. The latter are included in the feature sets of Al-assisted risk stratification models and
are the primary focus of population-level preventative initiatives. [2] [10] [33] [38] [41] [45]. Al has
entered modern biomedicine and is being used in diagnostics, drug discovery, molecular biology, and
clinical decision-making.

The diagnostic process comprises physical examination, comprehensive history-taking and symptom
assessment, advanced imaging, laboratory tests, differential diagnosis, and tissue biopsy. This
structured approach enhances diagnostic accuracy [83]. Mammography is one of the widely used
screening procedures for breast cancer. It is still the basis of breast cancer screening at the population
level since it is shown to be effective in minimizing the mortality rate related to breast cancer, but a
significant number of overdiagnoses is also observed [23][29][38]. Ultrasound is the most widely
utilized imaging method for tumour staging and biopsy guidance in the clinical routine of breast cancer
screening. Compared to mammography, it is more affordable to buy and maintain, portable, and more
adaptable. Increasing the visibility of the thick breast tissue and accurately directing the biopsy are two
important functions of ultrasound. However, it is highly operator-dependent [3] [23] [29] [66].

Even though it is the most expensive technique, magnetic resonance imaging (MRI) possesses low
specificity and sensitivity in detecting breast cancer compared to mammography and ultrasound. [24]
[29] [30] [38] [56]. Conflicting evidence, small sample sizes, and the lack of standardized criteria limit
clarity regarding the definitive role and cost-effectiveness of hybrid imaging modalities (PET/CT and
PET/MRI) in the overall management of breast cancer [23]. The definitive histopathologic examination
of tissue samples remains the gold standard for confirming malignancy, tumour grading, and assessing
the status of key receptors (ER, PR, and HER2) [30, 52, 53].. The study focused on Artificial
Intelligence models—specifically, machine learning and deep learning approaches—for breast cancer
detection and stage classification. These models were compared to evaluate their effectiveness in
identifying breast cancer and accurately determining its stage.

2. Literature review (Related works)

Articles and books examining the technical, data, and infrastructural, as well as clinical, ethical, and
legal challenges that hinder the widespread adoption and reliability of Artificial Intelligence (Al) in
biomedical, biological sciences, and healthcare settings were analysed.

Technical and Methodological Loopholes.

e Limited Scope of Al Methodologies: Existing studies primarily emphasize Convolutional
Neural Networks (CNNs) and supervised learning models. On the other hand, emerging and
potentially transformative approaches—such as reinforcement learning, unsupervised
learning, generative artificial intelligence, and Large Language Models (LLMs)—remain
insufficiently explored in the academic literature. Expensive and more systematic investigation
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of these methodologies could substantially improve the predictive robustness, automation, and
interpretability of Al solutions when applied to objective, valid, and reliable biomedical data
[2][3][41[6][7I[10][12][13][14][15][16][17][20][25][26][29][30][31][32][33][36][38][39][42
1[46]1[471[48][49][70].

e Limited Comparative Model Evaluation: Few studies conduct standard, head-to-head
comparisons of Al architectures (e.g., Convolutional Neural Networks versus Vision
Transformers) using large, heterogencous datasets. This lack of rigorous benchmarking
impedes the identification of the most effective models for specific biomedical tasks and
undermines replicability, thereby impeding the selection of robust and generalizable solutions
[271031[71[25][29][49][50][51][61][64]

e Explainability Challenges: Deep learning models are often viewed as “black boxes,” which
limits clinical trust and regulatory acceptance. There is a compelling need for domain-specific
explainable Al (XAI) approaches that provide clinically meaningful interpretations while
maintaining high predictive performance [13][25][26][29][48][49][50]

e Multi-objective Optimization: The application of multi-objective evolutionary algorithms
(MOEAs) to chores such as biomarker selection remains largely unexplored. Existing
approaches rarely incorporate biologically grounded objective functions, uncertainty
estimates, or automated decision-support mechanisms, limiting their practical utility in
biomedical research [42].

Information and Information Systems Lapses

o Lack of Dataset Diversity: The availability of high-quality biomedical datasets remains
limited, heavily skewed toward oncology, which restricts model robustness and generalizability
across diverse populations and disease domains [3] [38].

e Poor Standardisation and Interoperability: conflicting terminology, ontologies, and data

formats present significant barriers to data sharing and integration across biomedical
institutions, particularly in clinical natural language processing (NLP) and the omics sciences.
In the chemical domain, NLP challenges arise from out-of-order punctuation and complex
chemical expressions. Existing tools, such as OSCAR4 and Chemical Tagger, rely essentially
on rule- and dictionary-based methods that perform well for chemical entity recognition but are
less effective for general text tokenisation. While machine learning approaches have shown
promise in chemical NLP—owing to the relatively distinct structure of chemical expressions—
general interoperability issues persist.
Furthermore, terminological imprecision in biomedical language further complicates
standardisation. For example, “tumour” or “neoplasm” mainly denotes abnormal tissue growth,
whereas “cancer” refers specifically to malignant neoplasms with invasive and metastatic
potential. While all cancers are tumours, not all tumours are cancers, and the commonly used
clinical descriptors “benign” and “malignant” are probabilistic rather than categorical. Such
ambivalences underscore the need for carefully standardised vocabularies and reproducible,
collaborative research frameworks to ensure consistency, reliability, and effective knowledge
exchange across studies [31] [38] [49].

e Inadequate Cost-Benefit Evidence: There are still few rigorous economic analyses evaluating
the viability, applicability, and practicality of using expensive Al systems in therapeutic
contexts. This limits informed decision-making regarding large-scale clinical adoption and
sustainability [3] [4][17][28][41][49][64].

e Knowledge Graphs and Translational Informatics: State-of-the-art translational
information processing systems require further enhancement through the integration of
knowledge graphs (e.g., Biolink). Such frameworks can enable finer-grained semantic
representations and evidence-weighted reasoning over multimodal biomedical data, thereby
improving inference and translational utility [11][47]

Clinical, Ethical, and Legal Gaps
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e Impact on Physician—Patient Relationships: The effects of Al-assisted clinical decision-
making on trust, communication, and informed consent remain unresolved. Empirical
studies are needed to better understand how Al integration affects patient outcomes and
clinician behaviour in real-world practice [3] [5] [13].

e Legal Liability and Accountability: The unified frameworks defining legal responsibility
in cases of Al-related medical errors are currently lacking, creating significant uncertainty
regarding liability among clinicians, institutions, and Al developers [38][48].

e Sensitive Data Governance: Strong, ethical, and GDPR-compliant biomedical data
governance systems are still lacking. Methods such as federated learning, synthetic data
generation, and privacy-preserving Al require further refinement and standardization to
enable secure and responsible data use [28].

o Disease-Area Imbalance: Al research remains markedly focused on oncology, with
critical areas such as cardiovascular, neurological, and rare diseases receiving relatively
limited attention. This imbalance risks biasing innovation and limiting equitable healthcare
outcomes [6] [9][14][16].

e Healthcare Access Inequities: Unequal access to Al-enabled services based on
geographic location or socioeconomic status may exacerbate healthcare delivery
disparities.

o Algorithmic Bias (“Coded Inequity”): Al systems can sustain or amplify existing biases
when trained on incomplete or unrepresentative datasets. Underrepresentation of specific
demographic groups may result in diminished diagnostic accuracy and suboptimal
treatment recommendations. Active bias detection, mitigation, and fairness-aware model
design must be extensively integrated into feature engineering and model development
pipelines [2][26][31][36][38][46][48][49][51][63][64][72][73].

Emergence of Trustworthy Al

Toward Authoritative and Trustworthy Al: There is a growing need for formal, measurable
frameworks that explicitly model trade-offs among core dimensions of trustworthiness—such as
accuracy, explainability, privacy, and fairness. This includes the development of:

e Measurable instruments to measure relationships among competing objectives;
e Standardized metrics for evaluating the comprehensibility and usefulness of explainable
Al (XAI) across diverse stakeholders [13][25][29][48][50][51].

Established Applications of Deep Learning in Diagnostics

Radiomics (Medical Imaging Analysis): Convolutional Neural Networks (CNNs) have
demonstrated strong performance in automated lesion detection, segmentation, micro-calcification
analysis, and objective breast density assessment. Additionally, Al-driven radiogenomic studies
progressively link imaging phenotypes with underlying molecular drivers [3] [13][16].

Digital Pathology (Whole-Slide Image Analysis): Al systems excel in high-precision counting
and classification tasks, including detection of localized micrometastases, automated tumour
grading, and analysis of spatial interactions within the tumour microenvironment [7][17].

Advanced Al Architectures in Diagnostic Systems include the following:

e Graph Neural Networks (GNNs): GNNs model interactions among neighbouring nuclei,
tissue regions, or multimedia imaging features, making them particularly valuable for
complex, multi-label diagnostic tasks where spatial and topological relationships are
critical [10][11][15][58].

e Neural Architecture Search (NAS): NAS automates the discovery of optimal CNN or
GNN architectures, accelerating model development and often achieving superior
performance in classification and segmentation tasks while lessen reliance on manual
design expertise [58].
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e The Interpretability Imperative (XAI): For successful clinical deployment, Al systems
must move beyond opaque ‘“black-box” models. Explainability methods that offer
measurable and visual insights into model decision-making include SHAP, LIME, and
saliency maps. Regulatory approval, clinical validation, and long-term clinician trust all
depend on the interpretability of the models.

3. Research Methodology

The study technique is based on artificial intelligence (machine learning and deep learning) models,
which have often been used in breast cancer research. These models were then trained on a breast cancer
dataset from Kaggle (https://www.kaggle.com/datasets/yasserh/breast-cancer-dataset?select=breast-
cancer.csv), and a comparison of their performance was conducted. The models' classification
performance was evaluated using common metrics such as accuracy, precision, recall, F1 score, etc., in
order to identify which model performed best.

e Biomedical dataset contains sensitive personal details which indicates possible
disease/diagnose, in the case of breast cancer , Malignant(M) and Benign(B) cancer making it
suitable for supervised learning
[B1[8I[10][17][18][26][27][28][30][31][38][41][42][44][45][46][50]. However, the study
adapts it for unsupervised learning.

Key data preparation steps include:

Checking for and handling missing values.

Dropping attributes with only one unique entry.

Transforming categorical variables into numerical values.

Addressing the data imbalance (a common issue in biomedical datasets) by oversampling with

SMOTE (Synthetic Minority Oversampling Technique) to prevent under-fitting and overfitting

before splitting the dataset.

e For unsupervised learning models, a 569-data-point dataset with 33 attributes, named ‘Breast-
cancer.csv’, was used to train models.

o The core of the system is a Hybrid learning (machine learning and deep learning models)
anomaly detection model trained on biomedical data ‘breast-cancer.csv’.

e Training Phase: The first half of a dataset is used as "normal" data for training a Hybrid
learning model.

e Prediction and Error Calculation: The trained hybrid model predicts values across the entire
dataset (both training and testing halves). The Mean Absolute Error (MAE) is calculated of the
expected and actual outputs.

e Anomaly Thresholding: A threshold for prediction error is set using the 95th percentile (top
5%) of the training prediction errors. Any error exceeding this boundary is flagged as an
anomaly.

e Anomaly Detection: The established threshold is then applied to the testing data. Anomalies
are defined as errors in the testing set that exceed this threshold.

e This hybrid approach works because training only on "normal” data teaches the model to

recognize typical patterns. When it encounters an anomaly in unseen data, its forecast will

significantly alter, resulting in a high error that exceeds the predefined threshold.

Software Environment and Libraries:
The project utilizes Python 3.12.4 (Anaconda distribution) and several key libraries:

Pandas for data manipulation.

Scikit-learn for machine learning and pre-processing.
NumPy for numerical computations.

TensorFlow 2.19.0 for deep learning.
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o Additional libraries like Statsmodels, Seaborn, Plotly, SciPy, Keras, Lime, shap and Matplotlib
for data analysis.

o The studies also emphasize rigorous processing of real-world, imperfect data, including
handling missing values, outliers, and incorrect entries[S][3][8][15][25][26][29][32][36][6].

Dataset Splitting and Model Evaluation:
The data set is methodically separated into:

e Training Set (60-80%): Used for model learning.

o Testing Set (10-20%): For evaluating performance on unseen data (generalization ability).

e Validation Set (10-20%): An optional subset from the training split, used for experimentation,
prototyping, and detecting overfitting during iterative model training. The model must never
train on validation or test sets to ensure unbiased evaluation.

Machine Learning Paradigms
The machine learning paradigms are:

e Supervised Learning: Models (such as classification and regression) learn from labelled data
[4] [68] [73].

e Unsupervised Learning: Models (such as Dimensionality Reduction and Clustering) identify
patterns in unlabelled data.

o Semi-supervised Learning: Combining elements of supervised and unsupervised learning is
known as semi-supervised learning. [62].

Model Evaluation Metrics

The importance of detailed model evaluation beyond simple accuracy is emphasized, especially for
imbalanced datasets [5] [44] [65].

Loss Functions: Common loss functions include:

e For classification, use log loss or cross-entropy loss.
e For regression, the mean-squared error (MSE) is used [31].

Confusion Matrix: Provides a detailed view of performance by categorizing predictions into:

True Positive (TP)[65]

False Positive (FP) (Type I error/false alarm)[65]

True Negative (TN)[65]

False Negative (FN) (Type II error/missed detection)[66]

Key Classification Metrics:

Precision: The percentage of expected positives that turn out to be actual positives [18] [67].
Recall (Sensitivity): The percentage of true positives that were accurately identified [17] [68].
F1-measure (F1-Score): The precision and recall harmonic means [69] [70].

True Negative Rate (Specificity): The percentage of real negatives that are accurately detected

[53] [64].

e Precision-Recall Trade-off and ROC AUC: Talks about how to balance precision and recall, as
well as how the Receiver Operating Characteristic (ROC) curve uses Area Under the Curve
(AUC) to distinguish across classes overall [18].

e Regression Metrics: Unlike classification, regression models predict continuous, real-valued
outputs. The primary metrics measure the deviation between predicted and true values:

e The Mean Squared Error (MSE) is susceptible to breast cancer anomalies.

o The Mean Absolute Error (MAE) is more resilient to breast cancer anomalies.

e Mean Absolute Percentage Error (MAPE) is beneficial for data that is quite variable [80].

Overfitting and Bias-Variance Trade-off
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e A modelis said to be overfit when it performs poorly on unknown data (low bias, high variance)
because it has learned the training data, including noise, too well. [ 3][71] [ 72].

¢ A model that performs poorly on both training and test data (high bias) is said to be underfitting
if it is either too simplistic or not sufficiently trained. Generalization is achieved when both
datasets exhibit identical performance [31].

Preventing Overfitting and Enhancing Generalization
Strategies include:

Loss Penalty (Regularization)[66]

Reducing Complexity

Data Processing

Hyperparameter Tuning (e.g., using Grid Search)[74]

Adding Training Data

Validation Strategies: It is emphasized that models must never train on validation or test sets
and that hold-out validation and K-Fold Cross-Validation are essential for avoiding overfitting,
model selection, and hyperparameter tweaking [44][73].

Machine Learning Concepts and LightGBM Implementation

LightGBM (Light Gradient Boosting Machine) is a machine learning model categorised as an ensemble
method [64]. It is a gradient-boosting framework that uses decision trees as its base learners. LightGBM
builds a strong predictive model by combining multiple decision tree models iteratively, correcting the
errors of the previous trees [17].

Key characteristics that distinguish LightGBM as a machine learning model:

Tree-based learning: It builds a decision tree, a key element of conventional machine learning.
e Gradient Boosting: lightGBM uses the gradient boosting technique iteratively to improve
predictions.

e No neural networks: Unlike deep learning models, LightGBM does not use neural networks
or their layered architectures [17] [18][64][74].

LightGBM is designed for efficiency, scalability and high accuracy particularly with large datasets [18].
It uses decision trees that grow efficiently by minimizing memory usage and optimizing training time.
Table 1 shows the result of implementing several models, including the LightGBM model using the
breast-cancer.csv dataset [68].

Table 1: Performance comparison of the different Anomaly Detection Algorithms on the
Breast cancer dataset

Classifier Accuracy | F1 Score | ROC-AUC | Sensitivity | Specificity
CatBoost 0.9737 0.9630 0.9997 0.9286 1.0000
LightGBM 0.9912 0.9880 0.9990 0.9762 1.0000
Stacking Ensemble | 0.9649 0.9500 0.9977 0.9048 1.0000
Logistic Regression | 0.9649 0.9512 0.9960 0.9286 0.9861
XGBoost 0.9737 0.9630 0.9950 0.9286 1.0000
SVM 0.9649 0.9512 0.9947 0.9286 0.9861
DNN 0.9737 0.9630 0.9947 0.9286 1.0000
Random Forest 0.9737 0.9630 0.9931 0.9286 1.0000
CNN-LSTM 0.9474 0.9286 0.9901 0.9286 0.9583
Naive Bayes 0.9211 0.8889 0.9894 0.8571 0.9583
KNN 0.9561 0.9383 0.9828 0.9048 0.9861
Decision Tree 0.9211 0.8916 0.9127 0.8810 0.9444

Model valuations:
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Future research in tumour detection and classification should prioritise more sensitive and precise
diagnostic tools and the standardisation of diagnostic criteria to improve accuracy and consistency.

A major direction is the development of advanced imaging techniques —such as contrast-enhanced
ultrasound and PET/MRI—that can significantly enhance both sensitivity (early and accurate detection
of true cancers) and specificity (correctly identifying benign lesions)[73]. At the same time, machine
learning and Al will play an increasingly central role by enabling algorithms that more reliably localise
tumours and differentiate malignant from benign cases, directly improving diagnostic performance.

Sensitivity and specificity remain essential metrics in this context.

o Sensitivity: (TP /(TP + FN)) reflects a model’s ability to detect true cancer cases and minimise
missed diagnoses—critical in early cancer screening.

e Specificity: (TN /(TN + FP)) indicates how well a system avoids false alarms and unnecessary
interventions [76].

Optimising the sensitivity—specificity trade-off is essential since accuracy alone can be deceptive,
particularly with imbalanced datasets. This enables researchers to create diagnostic instruments that are
suitable for therapeutic requirements.

The proposed system, utilising the LightGM model, was rigorously evaluated:

The LightGBM model was compared against eleven state-of-the-art methods (CatBoost, LightGBM,
Stacking Ensemble, Logistic Regression, XGBoost, SVM, DNN, Random Forest, Naive Bayes, KNN
and Decision Tree ) . It achieved the highest accuracy, F1-Score, perfect specificity, very high
sensitivity and nearly perfect ROC-AUC compared to other models. LightGBM is the most balanced
and robust [76].

LightGBM Performance: The LightGBM model consistently showed one of the models with the lowest
error values across all metrics when compared to other models. LightGBM model slightly
outperformance or is at par with some machine learning models, as depicted in the comparison below
(Figure 1).

ML Model Comparison Across Metrics
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Figure 1: Bar chart comparing the accuracy of CatBoost, LigtGBM, Stacking Ensemble,Logistic
Regression, XGBoost,SVM,DNN,Random Forest, CNN-LSTM, Naive Bayes, KNN and Decision
Tree.
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LightGBM Model Performance: The study introduces LightGBM model and compares it to CatBoost,
CNN-LSTM, Stacking Ensemble, Logistic Regression, XGBoost, SVM, DNN, Random Forest, Naive
Bayes, KNN and Decision Tree models. The LightGBM model showed superior prediction performance
with lower error metrics on the same dataset. This is attributed to the model's responsiveness to the data,
which gives it better adaptability to varied data distributions [76].

4. Results and Discussion

The evaluation of the anomaly detection system using three metrics: True Negative Rate (Specificity),
Recall (Sensitivity), and the F1-Score. Precision measures the system's ability to correctly identify
anomalies without mistaking normal points for anomalies, while Recall measures its ability to detect
anomalies without missing any. The Fl-score combines both Precision and Recall to provide a
comprehensive measure of overall performance.

The research paper presents several key findings across three main experiments:

e Comparison with Other Methods: The LightGBM model was compared against eleven other
state-of-the-art methods, including CatBoost, CNN-LSTM, Stacking Ensemble, Logistic
Regression, XGBoost, SVM, DNN, Random Forest, Naive Bayes, KNN and Decision Tree
models. The LightGBM method outperformed all others in recall and F1-score, demonstrating
a stronger ability to detect anomalies in given biomedical data.

e LightGBM Model Performance: The study introduces a LightGBM model and compares it
to CatBoost, Stacking Ensemble,Logistic Regression,XGBoost, SVM,DNN, Random Forest,
CNN-LSTM, Naive Bayes, KNN,and Decision Tree. The LightGBM model showed superior
prediction performance with lower error metrics on the same dataset. This is attributed to the
model responsive to the data, giving it better adaptability for varied data distributions.

5. Conclusion

Breast cancer remains a major global health burden, driven by substantial biological heterogeneity and
rising incidence worldwide. This study bridged clinical challenges with the capabilities of Artificial
Intelligence (AI) and Deep Learning (DL), evaluating their effectiveness for breast cancer anomaly
detection [81]. Using a hybrid anomaly detection framework, we compared twelve ML and DL models
on the breast-cancer.csv dataset. LightGBM achieved the strongest overall performance, with an
accuracy of 0.9912, F1- Score of 0.9880, Specificity of 1.0000, Sensitivity of 0.9762, ROC-AUC of
0.9990. LightGBM outperformed both traditional Machine learning algorithms and deep neural
architectures, demonstrating exceptional balance between sensitivity and specificity, qualities essential
for reliable clinical diagnosis.

These findings highlight the promise of advanced ensemble methods in developing high-precision
diagnostic tools. Nevertheless, translating such models into real-world practice requires addressing key
challenges of explainability, interpretability, unbiased data, ethical consideration and the patient’s
privacy to enhancing interpretation of patients’ results and to support clinician trust and regulatory
acceptance. Improvement dataset representation and standardization to reduce bias and bolster
generalizability should be rigorous pursued. Expanding research beyond conventional DL (e.g., CNNs)
to include GNNs, reinforcement learning, and generative models should be pursued in future research
efforts [60]. Future progress will depend on continuous benchmarking across diverse clinical datasets,
stronger ethical frameworks, and rigorous validation to ensure Al-driven systems support equitable,
personalized breast cancer care.
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