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ABSTRACT 

Breast cancer is a life-threatening disease affecting women, and it needs effective and efficient diagnostic 

procedures to detect it early enough to ensure effective management. Artificial Intelligence (AI) offers significant 

promise for improving breast cancer detection and treatment; however, its application remains constrained by 

methodological, ethical, and infrastructural limitations. This paper examines a hybrid anomaly-detection model 

applied to the breast cancer dataset from Kaggle. The dataset is preprocessed and class-balanced using Mean 

Absolute Error (MAE) thresholding and SMOTE techniques. Twelve ML and DL models were trained and 

compared using the dataset in terms of typical evaluation metrics. The highest diagnostic performance was 

obtained with the LightGBM classifier with 0.9912 Accuracy, 0.9880 F1 Score, and a Specificity (1.0000). The 

Results indicate the usefulness of ensemble techniques in high-accuracy biomedical anomaly detection. Persistent 

issues with insufficient dataset diversity, model interpretability, and clinical standards should be resolved to 

facilitate the deployment of reliable AI systems in the fields of breast cancer detection, prevention, and therapy. 

Keywords: Breast cancer, Aetiology, Diagnosis, Treatment, Prevention, Deep learning, Explainable AI. 

1. Introduction 

Breast cancer develops as a result of the failure of self-regulation in multicellular organisms. It arises 

from abnormal communication within an otherwise self-organizing multicellular organism, driven by 

genetic defects that lead to excessive proliferation of cells and tissues in specific body regions [38]. The 

malignant characteristics of unchecked proliferation, anti-apoptotic response, angiogenesis, and 

metastasis are caused by progressive genetic and epigenetic instability [25] [38] [41]. The tumour is a 

severe and progressive multigenic disease characterized by cell miscommunication, which has 

detrimental effects on the entire organism [38] [39] [40] [85]. It is not caused by the failure of a single 

gene or even several genes. Single-nucleotide mutations, copy number variations, and aberrant splicing 

that affect the isoforms—such as CD44, which is linked to invasion and metastatic dissemination—are 

examples of the many genomic alterations. Investigations revealed that infection with pathogens, 

including viruses, can activate transposable elements, which cause genomic rearrangements that can be 

transmitted into subsequent generations [38] 

 The majority of Cancers (90-95%) are not inherited [31]. They are brought on by unplanned genetic 

alterations in old age and environmental influences (e.g., tobacco, radiation). These malignancies are 

referred to as "spontaneous" or "non-hereditary" cancers. Only 5–10% of women develop breast cancer 

due to deleterious mutations (hereditary or familial malignancies). The lack of a family history does not 

always mean that there is no risk. Cancer will be found in about 38 percent of individuals during their 

lifetime. Preventive measures of non-hereditary cancers are lifestyle habits (not smoking, healthy 

weight, exercise). The vast majority (approximately 90–95%) are non-hereditary or sporadic cases, 

arising from somatic mutations that accumulate over an individual’s lifetime due to aging and 

environmental exposures [11] [24] [32] [79]. 
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Multi-omics integration is indispensable for achieving a truly comprehensive understanding of complex 

biological processes and systems. Integration of AI with multi-omics (genomics, transcriptomics, 

proteomics, metabolomics) facilitates precision oncology in the areas of Imaging and Digital Pathology 

(CNNs detect subtle patterns; GANs generate synthetic images for rare cancers), Data Challenges 

(Heterogeneity, missing values, and dataset bias impede reproducibility and generalizability) and 

Clinical Workflow Barriers (Integration requires training, infrastructure adaptation, and alignment with 

regulatory frameworks) [82]. This involves the studies of non-traditional liquid biopsy components, 

including tumour-educated platelets [4] [7] [51] [67]. Cancer risk factors range from non-modifiable 

genetic determinants to highly modifiable lifestyle behaviours that increase susceptibility to the disease. 

Oestrogen is required for the proliferation of epithelial cells. The cumulative exposure to Oestrogen 

increases risks as observed by early menarche, late menopause, nulliparity, and hormone replacement 

therapy [3] [38] [41]. Some of the key contributors to carcinogenesis include obesity, sedentary 

behaviour, and large amounts of alcohol ingestion, smoking, and exposure to ionizing radiation. Certain 

malignancies, like breast and colon cancer, are known to be predisposed by obesity, which is attributed 

to diets rich in added sugars. High sugar intake can also promote systemic inflammation, which might 

also augment the risk of cancer. Since the risk of cancer is not only associated with obesity but also 

other chronic ailments such as diabetes and cardiovascular disease, it has been suggested to reduce the 

consumption of added sugars and total intake of a balanced diet rich in fruits, vegetables, whole grains, 

and lean proteins. The latter are included in the feature sets of AI-assisted risk stratification models and 

are the primary focus of population-level preventative initiatives. [2] [10] [33] [38] [41] [45]. AI has 

entered modern biomedicine and is being used in diagnostics, drug discovery, molecular biology, and 

clinical decision-making.  

The diagnostic process comprises physical examination, comprehensive history-taking and symptom 

assessment, advanced imaging, laboratory tests, differential diagnosis, and tissue biopsy. This 

structured approach enhances diagnostic accuracy [83]. Mammography is one of the widely used 

screening procedures for breast cancer. It is still the basis of breast cancer screening at the population 

level since it is shown to be effective in minimizing the mortality rate related to breast cancer, but a 

significant number of overdiagnoses is also observed [23][29][38]. Ultrasound is the most widely 

utilized imaging method for tumour staging and biopsy guidance in the clinical routine of breast cancer 

screening. Compared to mammography, it is more affordable to buy and maintain, portable, and more 

adaptable. Increasing the visibility of the thick breast tissue and accurately directing the biopsy are two 

important functions of ultrasound. However, it is highly operator-dependent [3] [23] [29] [66].  

Even though it is the most expensive technique, magnetic resonance imaging (MRI) possesses low 

specificity and sensitivity in detecting breast cancer compared to mammography and ultrasound. [24] 

[29] [30] [38] [56]. Conflicting evidence, small sample sizes, and the lack of standardized criteria limit 

clarity regarding the definitive role and cost-effectiveness of hybrid imaging modalities (PET/CT and 

PET/MRI) in the overall management of breast cancer [23]. The definitive histopathologic examination 

of tissue samples remains the gold standard for confirming malignancy, tumour grading, and assessing 

the status of key receptors (ER, PR, and HER2) [30, 52, 53].. The study focused on Artificial 

Intelligence models—specifically, machine learning and deep learning approaches—for breast cancer 

detection and stage classification. These models were compared to evaluate their effectiveness in 

identifying breast cancer and accurately determining its stage. 

2. Literature review (Related works) 

Articles and books examining the technical, data, and infrastructural, as well as clinical, ethical, and 

legal challenges that hinder the widespread adoption and reliability of Artificial Intelligence (AI) in 

biomedical, biological sciences, and healthcare settings were analysed. 

 Technical and Methodological Loopholes. 

• Limited Scope of AI Methodologies: Existing studies primarily emphasize Convolutional 

Neural Networks (CNNs) and supervised learning models. On the other hand, emerging and 

potentially transformative approaches—such as reinforcement learning, unsupervised 

learning, generative artificial intelligence, and Large Language Models (LLMs)—remain 

insufficiently explored in the academic literature. Expensive and more systematic investigation 



Blessing Oloko, Xiaochun Cheng 

 

 

ISSN (Online) : 3048-8508 50 IJSSIC  

 

of these methodologies could substantially improve the predictive robustness, automation, and 

interpretability of AI solutions when applied to objective, valid, and reliable biomedical data 

[2][3][4][6][7][10][12][13][14][15][16][17][20][25][26][29][30][31][32][33][36][38][39][42

][46][47][48][49][70]. 

• Limited Comparative Model Evaluation: Few studies conduct standard, head-to-head 

comparisons of AI architectures (e.g., Convolutional Neural Networks versus Vision 

Transformers) using large, heterogeneous datasets. This lack of rigorous benchmarking 

impedes the identification of the most effective models for specific biomedical tasks and 

undermines replicability, thereby impeding the selection of robust and generalizable solutions 

[27][3][7][25][29][49][50][51][61][64] 

• Explainability Challenges: Deep learning models are often viewed as “black boxes,” which 

limits clinical trust and regulatory acceptance. There is a compelling  need for domain-specific 

explainable AI (XAI) approaches that provide clinically meaningful interpretations while 

maintaining high predictive performance [13][25][26][29][48][49][50] 

• Multi-objective Optimization: The application of multi-objective evolutionary algorithms 

(MOEAs) to chores such as biomarker selection remains largely unexplored. Existing 

approaches rarely incorporate biologically grounded objective functions, uncertainty 

estimates, or automated decision-support mechanisms, limiting their practical utility in 

biomedical research [42]. 

Information and Information Systems Lapses 

• Lack of Dataset Diversity: The availability of high-quality biomedical datasets remains 

limited, heavily skewed toward oncology, which restricts model robustness and generalizability 

across diverse populations and disease domains [3] [38]. 

• Poor Standardisation and Interoperability: conflicting terminology, ontologies, and data 

formats present significant barriers to data sharing and integration across biomedical 

institutions, particularly in clinical natural language processing (NLP) and the omics sciences. 

In the chemical domain, NLP challenges arise from out-of-order punctuation and complex 

chemical expressions. Existing tools, such as OSCAR4 and Chemical Tagger, rely essentially 

on rule- and dictionary-based methods that perform well for chemical entity recognition but are 

less effective for general text tokenisation. While machine learning approaches have shown 

promise in chemical NLP—owing to the relatively distinct structure of chemical expressions—

general interoperability issues persist. 

Furthermore, terminological imprecision in biomedical language further complicates 

standardisation. For example, “tumour” or “neoplasm” mainly denotes abnormal tissue growth, 

whereas “cancer” refers specifically to malignant neoplasms with invasive and metastatic 

potential. While all cancers are tumours, not all tumours are cancers, and the commonly used 

clinical descriptors “benign” and “malignant” are probabilistic rather than categorical. Such 

ambivalences underscore the need for carefully standardised vocabularies and reproducible, 

collaborative research frameworks to ensure consistency, reliability, and effective knowledge 

exchange across studies [31] [38] [49]. 

• Inadequate Cost-Benefit Evidence: There are still few rigorous economic analyses evaluating 

the viability, applicability, and practicality of using expensive AI systems in therapeutic 

contexts. This limits informed decision-making regarding large-scale clinical adoption and 

sustainability [3] [4][17][28][41][49][64]. 

• Knowledge Graphs and Translational Informatics: State-of-the-art translational 

information processing systems require further enhancement through the integration of 

knowledge graphs (e.g., Biolink). Such frameworks can enable finer-grained semantic 

representations and evidence-weighted reasoning over multimodal biomedical data, thereby 

improving inference and translational utility [11][47] 

 

 Clinical, Ethical, and Legal Gaps 
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• Impact on Physician–Patient Relationships: The effects of AI-assisted clinical decision-

making on trust, communication, and informed consent remain unresolved. Empirical 

studies are needed to better understand how AI integration affects patient outcomes and 

clinician behaviour in real-world practice [3] [5] [13]. 

• Legal Liability and Accountability: The unified frameworks defining legal responsibility 

in cases of AI-related medical errors are currently lacking, creating significant uncertainty 

regarding liability among clinicians, institutions, and AI developers [38][48]. 

• Sensitive Data Governance: Strong, ethical, and GDPR-compliant biomedical data 

governance systems are still lacking. Methods such as federated learning, synthetic data 

generation, and privacy-preserving AI require further refinement and standardization to 

enable secure and responsible data use [28]. 

• Disease-Area Imbalance: AI research remains markedly focused on oncology, with 

critical areas such as cardiovascular, neurological, and rare diseases receiving relatively 

limited attention. This imbalance risks biasing innovation and limiting equitable healthcare 

outcomes [6] [9][14][16]. 

• Healthcare Access Inequities: Unequal access to AI-enabled services based on 

geographic location or socioeconomic status may exacerbate healthcare delivery 

disparities. 

• Algorithmic Bias (“Coded Inequity”): AI systems can sustain or amplify existing biases 

when trained on incomplete or unrepresentative datasets. Underrepresentation of specific 

demographic groups may result in diminished diagnostic accuracy and suboptimal 

treatment recommendations. Active bias detection, mitigation, and fairness-aware model 

design must be extensively integrated into feature engineering and model development 

pipelines [2][26][31][36][38][46][48][49][51][63][64][72][73]. 

 

Emergence of Trustworthy AI 

Toward Authoritative and Trustworthy AI: There is a growing need for formal, measurable 

frameworks that explicitly model trade-offs among core dimensions of trustworthiness—such as 

accuracy, explainability, privacy, and fairness. This includes the development of: 

• Measurable instruments to measure relationships among competing objectives; 

• Standardized metrics for evaluating the comprehensibility and usefulness of explainable 

AI (XAI) across diverse stakeholders [13][25][29][48][50][51]. 

Established Applications of Deep Learning in Diagnostics 

Radiomics (Medical Imaging Analysis): Convolutional Neural Networks (CNNs) have 

demonstrated strong performance in automated lesion detection, segmentation, micro-calcification 

analysis, and objective breast density assessment. Additionally, AI-driven radiogenomic studies 

progressively link imaging phenotypes with underlying molecular drivers [3] [13][16]. 

Digital Pathology (Whole-Slide Image Analysis): AI systems excel in high-precision counting 

and classification tasks, including detection of localized micrometastases, automated tumour 

grading, and analysis of spatial interactions within the tumour microenvironment [7][17]. 

Advanced AI Architectures in Diagnostic Systems include the following: 

• Graph Neural Networks (GNNs): GNNs model interactions among neighbouring nuclei, 

tissue regions, or multimedia imaging features, making them particularly valuable for 

complex, multi-label diagnostic tasks where spatial and topological relationships are 

critical [10][11][15][58]. 

• Neural Architecture Search (NAS): NAS automates the discovery of optimal CNN or 

GNN architectures, accelerating model development and often achieving superior 

performance in classification and segmentation tasks while lessen reliance on manual 

design expertise [58]. 
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• The Interpretability Imperative (XAI): For successful clinical deployment, AI systems 

must move beyond opaque “black-box” models. Explainability methods that offer 

measurable and visual insights into model decision-making include SHAP, LIME, and 

saliency maps. Regulatory approval, clinical validation, and long-term clinician trust all 

depend on the interpretability of the models. 

 

3. Research Methodology 

The study technique is based on artificial intelligence (machine learning and deep learning) models, 

which have often been used in breast cancer research. These models were then trained on a breast cancer 

dataset from Kaggle (https://www.kaggle.com/datasets/yasserh/breast-cancer-dataset?select=breast-

cancer.csv), and a comparison of their performance was conducted. The models' classification 

performance was evaluated using common metrics such as accuracy, precision, recall, F1 score, etc., in 

order to identify which model performed best. 

• Biomedical dataset contains sensitive personal details which indicates possible 

disease/diagnose, in the case of breast cancer , Malignant(M) and Benign(B) cancer making  it 

suitable for supervised learning 

[3][8][10][17][18][26][27][28][30][31][38][41][42][44][45][46][50]. However, the study 

adapts it for unsupervised learning. 

Key data preparation steps include: 

• Checking for and handling missing values. 

• Dropping attributes with only one unique entry. 

• Transforming categorical variables into numerical values. 

• Addressing the data imbalance (a common issue in biomedical datasets) by oversampling with 

SMOTE (Synthetic Minority Oversampling Technique) to prevent under-fitting and overfitting 

before splitting the dataset. 

• For unsupervised learning models, a 569-data-point dataset with 33 attributes, named ‘Breast-

cancer.csv’, was used to train models. 

• The core of the system is a Hybrid learning (machine learning and deep learning models) 

anomaly detection model trained on biomedical data ‘breast-cancer.csv’. 

• Training Phase: The first half of a dataset is used as "normal" data for training a Hybrid 

learning model.  

• Prediction and Error Calculation: The trained hybrid model predicts values across the entire 

dataset (both training and testing halves). The Mean Absolute Error (MAE) is calculated of the 

expected and actual outputs. 

• Anomaly Thresholding: A threshold for prediction error is set using the 95th percentile (top 

5%) of the training prediction errors. Any error exceeding this boundary is flagged as an 

anomaly. 

• Anomaly Detection: The established threshold is then applied to the testing data. Anomalies 

are defined as errors in the testing set that exceed this threshold. 

• This hybrid approach works because training only on "normal" data teaches the model to 

recognize typical patterns. When it encounters an anomaly in unseen data, its forecast will 

significantly alter, resulting in a high error that exceeds the predefined threshold. 

Software Environment and Libraries: 

The project utilizes Python 3.12.4 (Anaconda distribution) and several key libraries: 

• Pandas for data manipulation. 

• Scikit-learn for machine learning and pre-processing. 

• NumPy for numerical computations. 

• TensorFlow 2.19.0 for deep learning. 
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• Additional libraries like Statsmodels, Seaborn, Plotly, SciPy, Keras, Lime, shap and Matplotlib 

for data analysis. 

• The studies also emphasize rigorous processing of real-world, imperfect data, including 

handling missing values, outliers, and incorrect entries[5][3][8][15][25][26][29][32][36][6].  

Dataset Splitting and Model Evaluation: 

The data set is methodically separated into:    

• Training Set (60-80%): Used for model learning. 

• Testing Set (10-20%): For evaluating performance on unseen data (generalization ability). 

• Validation Set (10-20%): An optional subset from the training split, used for experimentation, 

prototyping, and detecting overfitting during iterative model training. The model must never 

train on validation or test sets to ensure unbiased evaluation.  

Machine Learning Paradigms 

The machine learning paradigms are: 

• Supervised Learning: Models (such as classification and regression) learn from labelled data 

[4] [68] [73]. 

• Unsupervised Learning: Models (such as Dimensionality Reduction and Clustering) identify 

patterns in unlabelled data. 

• Semi-supervised Learning: Combining elements of supervised and unsupervised learning is 

known as semi-supervised learning. [62]. 

Model Evaluation Metrics 

The importance of detailed model evaluation beyond simple accuracy is emphasized, especially for 

imbalanced datasets [5] [44] [65].  

Loss Functions: Common loss functions include: 

• For classification, use log loss or cross-entropy loss. 

• •For regression, the mean-squared error (MSE) is used [31]. 

Confusion Matrix: Provides a detailed view of performance by categorizing predictions into: 

• True Positive (TP)[65] 

• False Positive (FP) (Type I error/false alarm)[65] 

• True Negative (TN)[65] 

• False Negative (FN) (Type II error/missed detection)[66] 

Key Classification Metrics: 

• Precision: The percentage of expected positives that turn out to be actual positives [18] [67]. 

• Recall (Sensitivity): The percentage of true positives that were accurately identified [17] [68]. 

• F1-measure (F1-Score): The precision and recall harmonic means [69] [70]. 

• True Negative Rate (Specificity): The percentage of real negatives that are accurately detected 

[53] [64]. 

• Precision-Recall Trade-off and ROC AUC: Talks about how to balance precision and recall, as 

well as how the Receiver Operating Characteristic (ROC) curve uses Area Under the Curve 

(AUC) to distinguish across classes overall [18].  

• Regression Metrics: Unlike classification, regression models predict continuous, real-valued 

outputs. The primary metrics measure the deviation between predicted and true values: 

• The Mean Squared Error (MSE) is susceptible to breast cancer anomalies. 

• The Mean Absolute Error (MAE) is more resilient to breast cancer anomalies. 

• Mean Absolute Percentage Error (MAPE) is beneficial for data that is quite variable [80].  

Overfitting and Bias-Variance Trade-off 
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• A model is said to be overfit when it performs poorly on unknown data (low bias, high variance) 

because it has learned the training data, including noise, too well. [ 3][71] [ 72]. 

• A model that performs poorly on both training and test data (high bias) is said to be underfitting 

if it is either too simplistic or not sufficiently trained. Generalization is achieved when both 

datasets exhibit identical performance [31]. 

    Preventing Overfitting and Enhancing Generalization 

     Strategies include: 

• Loss Penalty (Regularization)[66] 

• Reducing Complexity 

• Data Processing 

• Hyperparameter Tuning (e.g., using Grid Search)[74] 

• Adding Training Data 

• Validation Strategies: It is emphasized that models must never train on validation or test sets 

and that hold-out validation and K-Fold Cross-Validation are essential for avoiding overfitting, 

model selection, and hyperparameter tweaking [44][73]. 

Machine Learning Concepts and LightGBM Implementation 

LightGBM (Light Gradient Boosting Machine) is a machine learning model categorised as an ensemble 

method [64]. It is a gradient-boosting framework that uses decision trees as its base learners. LightGBM 

builds a strong predictive model by combining multiple decision tree models iteratively, correcting the 

errors of the previous trees [17]. 

Key characteristics that distinguish LightGBM as a machine learning model: 

• Tree-based learning: It builds a decision tree, a key element of conventional machine learning. 

• Gradient Boosting: lightGBM uses the gradient boosting technique iteratively to improve 

predictions. 

• No neural networks: Unlike deep learning models, LightGBM does not use neural networks 

or their layered architectures [17] [18][64][74]. 

LightGBM is designed for efficiency, scalability and high accuracy particularly with large datasets [18]. 

It uses decision trees that grow efficiently by minimizing memory usage and optimizing training time. 

Table 1 shows the result of implementing several models, including the LightGBM model using the 

breast-cancer.csv dataset [68]. 

Table 1: Performance comparison of the different Anomaly Detection Algorithms on the 

Breast cancer dataset  

Classifier Accuracy  F1 Score ROC-AUC    Sensitivity  Specificity 

CatBoost 0.9737 0.9630 0.9997 0.9286 1.0000 

LightGBM 0.9912 0.9880 0.9990 0.9762 1.0000 

Stacking Ensemble 0.9649 0.9500 0.9977 0.9048 1.0000 

Logistic Regression 0.9649 0.9512 0.9960 0.9286 0.9861 

XGBoost   0.9737 0.9630 0.9950 0.9286 1.0000 

 SVM  0.9649 0.9512 0.9947 0.9286 0.9861 

DNN 0.9737 0.9630 0.9947 0.9286 1.0000 

Random Forest 0.9737 0.9630 0.9931 0.9286 1.0000 

CNN-LSTM 0.9474 0.9286 0.9901 0.9286 0.9583 

Naive Bayes 0.9211 0.8889 0.9894 0.8571 0.9583 

KNN 0.9561 0.9383 0.9828 0.9048 0.9861 

Decision Tree  0.9211 0.8916 0.9127 0.8810 0.9444 

 

Model valuations: 
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Future research in tumour detection and classification should prioritise more sensitive and precise 

diagnostic tools and the standardisation of diagnostic criteria to improve accuracy and consistency. 

A major direction is the development of advanced imaging techniques —such as contrast-enhanced 

ultrasound and PET/MRI—that can significantly enhance both sensitivity (early and accurate detection 

of true cancers) and specificity (correctly identifying benign lesions)[73]. At the same time, machine 

learning and AI will play an increasingly central role by enabling algorithms that more reliably localise 

tumours and differentiate malignant from benign cases, directly improving diagnostic performance. 

Sensitivity and specificity remain essential metrics in this context. 

• Sensitivity: (TP / (TP + FN)) reflects a model’s ability to detect true cancer cases and minimise 

missed diagnoses—critical in early cancer screening. 

• Specificity: (TN / (TN + FP)) indicates how well a system avoids false alarms and unnecessary 

interventions [76]. 

Optimising the sensitivity–specificity trade-off is essential since accuracy alone can be deceptive, 

particularly with imbalanced datasets. This enables researchers to create diagnostic instruments that are 

suitable for therapeutic requirements. 

The proposed system, utilising the LightGM model, was rigorously evaluated: 

The LightGBM model was compared against eleven state-of-the-art methods (CatBoost, LightGBM, 

Stacking Ensemble, Logistic Regression, XGBoost, SVM, DNN, Random Forest, Naive Bayes,KNN 

and Decision Tree ) . It achieved the highest accuracy, F1-Score, perfect specificity, very high 

sensitivity and nearly perfect ROC-AUC compared to other models. LightGBM is the most balanced 

and robust [76]. 

LightGBM Performance: The LightGBM model consistently showed one of the models with the lowest 

error values across all metrics when compared to other models. LightGBM model slightly 

outperformance or is at par with some machine learning models, as depicted in the comparison below 

(Figure 1). 

 

Figure 1: Bar chart comparing the accuracy of CatBoost, LigtGBM, Stacking Ensemble,Logistic 

Regression, XGBoost,SVM,DNN,Random Forest, CNN-LSTM, Naive Bayes, KNN and Decision 

Tree. 
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LightGBM Model Performance: The study introduces LightGBM model and compares it to CatBoost, 

CNN-LSTM, Stacking Ensemble, Logistic Regression, XGBoost, SVM, DNN, Random Forest, Naive 

Bayes, KNN and Decision Tree models. The LightGBM model showed superior prediction performance 

with lower error metrics on the same dataset. This is attributed to the model's responsiveness to the data, 

which gives it better adaptability to varied data distributions [76]. 

 

4. Results and Discussion 

The evaluation of the anomaly detection system using three metrics: True Negative Rate (Specificity), 

Recall (Sensitivity), and the F1-Score. Precision measures the system's ability to correctly identify 

anomalies without mistaking normal points for anomalies, while Recall measures its ability to detect 

anomalies without missing any. The F1-score combines both Precision and Recall to provide a 

comprehensive measure of overall performance. 

The research paper presents several key findings across three main experiments: 

• Comparison with Other Methods: The LightGBM model was compared against eleven other 

state-of-the-art methods, including CatBoost, CNN-LSTM, Stacking Ensemble, Logistic 

Regression,  XGBoost, SVM, DNN, Random Forest, Naive  Bayes, KNN and Decision Tree  

models. The LightGBM method outperformed all others in recall and F1-score, demonstrating 

a stronger ability to detect anomalies in given biomedical data.  

• LightGBM Model Performance: The study introduces a LightGBM model and compares it 

to CatBoost, Stacking Ensemble,Logistic Regression,XGBoost, SVM,DNN, Random Forest, 

CNN-LSTM, Naive Bayes, KNN,and Decision Tree. The LightGBM model showed superior 

prediction performance with lower error metrics on the same dataset. This is attributed to the 

model responsive to the data, giving it better adaptability for varied data distributions. 

 

5. Conclusion  

 
Breast cancer remains a major global health burden, driven by substantial biological heterogeneity and 

rising incidence worldwide. This study bridged clinical challenges with the capabilities of Artificial 

Intelligence (AI) and Deep Learning (DL), evaluating their effectiveness for breast cancer anomaly 

detection [81]. Using a hybrid anomaly detection framework, we compared twelve ML and DL models 

on the breast-cancer.csv dataset. LightGBM achieved the strongest overall performance, with an 

accuracy of 0.9912, F1- Score of 0.9880, Specificity of 1.0000, Sensitivity of 0.9762, ROC-AUC of 

0.9990. LightGBM outperformed both traditional Machine learning algorithms and deep neural 

architectures, demonstrating exceptional balance between sensitivity and specificity, qualities essential 

for reliable clinical diagnosis. 

 

These findings highlight the promise of advanced ensemble methods in developing high-precision 

diagnostic tools. Nevertheless, translating such models into real-world practice requires addressing key 

challenges of explainability, interpretability, unbiased data, ethical consideration and the patient’s 

privacy to enhancing interpretation of patients’ results and to support clinician trust and regulatory 

acceptance. Improvement dataset representation and standardization to reduce bias and bolster 

generalizability should be rigorous pursued. Expanding research beyond conventional DL (e.g., CNNs) 

to include GNNs, reinforcement learning, and generative models should be pursued in future research 

efforts [60]. Future progress will depend on continuous benchmarking across diverse clinical datasets, 

stronger ethical frameworks, and rigorous validation to ensure AI-driven systems support equitable, 

personalized breast cancer care. 
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