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  Abstract 

Still, an effective water prediction system is essential to support sustainable solu-
tions for water management in smart environments. Increased accuracy of re-
al-time estimates can enhance decision-making and thus lead to smaller health 
hazards and less damage to the environment. Therefore, the Optimized Gated 
Fusion Adaptive Graph Neural Network (GFAGNN) is presented in this paper for 
water quality prediction, which adoption of graph structures and neural networks 
to analyze for hitherto, unseen nonlinear interactions among water parameters. 
Similarly, this paper outlines the inadequacies of conventional criterion-based 
extrapolation models and the importance of a flexible graph-based model. The 
proposed GFAGNN integrates multiple sources into a comprehensive one, and it 
also applies the gated fusion mechanism to improve the model’s performance 
when operating in dynamic scenarios. To illustrate the enhancements, a compar-
ison between GFAGNN and a comparative model – Convolutional Neural Network 
(CNN) – is included in this paper. From experimental outcomes, it has been ob-
served that the proposed work GFAGNN outperforms the existing models in terms 
of accuracy and robustness in calculating water quality indices. The effectiveness 
of the proposed model is confirmed through multiple computations, simulation, 
and dataset analysis. Altogether, the results point to the effectiveness of graph 
neural networks concerning the development of smart water management sys-
tems. 

Keywords 

Smart environments, Gated fusion, Water quality prediction, Adaptive model, 
Graph Neural Network. 

 

1. Introduction  

Water quality is a critical component of public health, industrial processes, and environmental conservation. Impairment 

of water quality by contaminants resulting from the discharges from population centers, industries, and agriculture pre-

sents daunting tasks to water management globally [1]. Water quality in smart environments cannot be predicted with-

out elaborate computational models, which can handle real-time big data [2]. Traditional methods – linear regression, 

decision trees, and support vector machines, proved to be inadequate at capturing the complexity inherent in water qual-
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ity data in terms of their nonlinear correlation and spatial location. New developments in artificial intelligence (AI) and 

machine learning (ML) provide new possibilities for solutions to these issues [3]. 

Graph Neural Networks (GNNs) are new state-of-the-art for modeling complex structured data because generally, 

GNNs have high accuracy for prediction tasks. Since water systems are depicted as graphs, GNNs can capture spatial 

relations as well as temporal relations between and within water quality variables [4]. However, the original GNNs are 

not well equipped to handle heterogeneous and multiple source features. To tackle this, it is proposed to use gated fu-

sion, which allows for the connection of multiple types of data while maintaining important characteristics [5]. 

In smart environments, IoT sensors and remote monitoring systems collect data about pH levels, dissolved oxygen, tur-

bidity, and many other parameters all the time [6]. Such data when fused through GNNs can improve the prediction 

rates giving a better shape to water quality management. Previous works have proposed the integration of GNNs with 

long short-term memory (LSTM) networks for predicting temporal changes in water quality [7]. However, the integra-

tion of adaptive mechanisms to dynamically adjust model weights and parameters remains underexplored. 

This paper introduces an Optimized Gated Fusion Adaptive Graph Neural Network (GFAGNN) designed to improve 

water quality prediction by incorporating adaptive learning and multi-source data fusion. The primary contributions of 

this study include: 

• Development of a novel GFAGNN architecture for water quality prediction. 

• Comparative performance analysis with baseline models (CNN and LSTM). 

• Implementation of adaptive learning techniques to enhance model generalization and robustness. 

The rest of this paper is structured as follows. Section 2 reviews related research, Section 3 presents the problem statement 

and research objectives, Section 4 details the methodology, Section 5 discusses the results, and Section 6 concludes the 

study. 

2. Related Work 
 

Graph Neural Networks (GNNs) have demonstrated significant potential in environmental monitoring applications. 

Several studies have utilized GNNs to predict air quality, monitor soil conditions, and forecast hydrological parameters. 

As, for instance by [8], GNNs were used for the prediction of air pollution in cities, which yielded higher accuracy than 

conventional approaches. In the same way, [9] proposed an assignment of GNNs paired with convoluted networks to 

forecast the quality of water in rivers. It was shown that their approach could boost performance by 15% in comparison 

with common regression models. 

Within the hydrological modeling domain, [10] introduced the approach of Graph Convolutional Networks (GCN) for 

predicting flood levels with the aid of water flow throughout connected nodes. This approach showed 20% higher pre-

dictive accuracy compared to recurrent neural networks. Further, [11] used GGNs to predict groundwater quality and 

revealed that GGN models were better than support vector regression models by about 13%. 

The weakness of collective learning mechanisms has been overcome with adaptive learning techniques that have been 

incorporated within the neural networks to enable them to deal with fluctuating data feeds. In [12], the authors use the 

adaptive gradient methods in GNN architectures, improving the predictive capability in conditions with fluctuations. This 

technique allowed for instant readjustment of the model weights in response to changes in water quality measures. 

Other sophisticated fusion techniques include gated fusion, which has also been discussed in depth in cases of multimodal 

data. Research conducted by [13] shows that such operations by gated mechanisms greatly increase the model accuracy 

by removing the noise from the data set, adding 10 % performance to the model with the challenging data set. Another, 

[14] used the gated fusion method to enhance the remote sensing data with the in-situ observations to increase the 

recognition of water pollution by 18%. 

In addition, hybrid models combining GNNs with LSTM networks have been used in modeling the temporal dependency 

of the water quality data. For the nitrate levels in agricultural runoff example, in [15], the authors used a GNN-LSTM and 
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obtained 14% higher accuracy than using individual LSTM networks. Likewise, [16] proposed a GNN-Transformer 

model for multistep ahead water quality prediction, which achieves 22% performance improvement over the existing 

statistical models. 

The use of attention structures in GNN frameworks has also been interesting to explore, as well. In [17], we employed the 

attention enhanced GNNs for the purpose of algal bloom events prognosis and achieved an accuracy boost of 17%. 

Through this technique, the strength of the model was used to concentrate more on the nodes that are important boosting 

the efficiency of the predictive method.  

Collectively, these studies together shed light on the applicability and efficacy of GNNs in environmental surveillance, 

suggesting the lies of GNNs in enhancing water quality prediction systems of smart environments. 

3. Problem Statement & Research Objectives 

Forecasting water quality in a smart environment poses some degree of difficulty since the data is dynamic, nonlinearity, 

and sourced from multiple places. Standard methods fail to capture different forms of dependencies of the variables and 

therefore offer inferior predictions. 

Problem Statement: Predictive models currently in use cannot accommodate real, dispersed sensor data regarding the 

heterogeneous nature of water quality. 

Research Objectives: 

• Develop an adaptive graph neural network for water quality prediction. 

• Integrate gated fusion techniques to enhance data aggregation and feature extraction. 

• Compare the performance of GFAGNN with traditional models. 

4. Methodology 

The primary of the Optimized Gated Fusion Adaptive Graph Neural Network (GFAGNN) consists of layers of graph 

convolution and adaptive fusion. The architecture is therefore intended to integrate and fuse data from diverse graph 

structures to generate precise water quality predictions incorporating both spatial and temporal patterns. 

4.1 Graph Convolution Operation (GConv) 

To obtain the dependency between aspects and viewpoints, we utilize GCN to capture the probability distribution rela-

tionship of the syntactic dependency graphs. GCN is a model that is inspired by CNN, which is used to process the 

graph structure data. A graph consists of edges and nodes [18]. For each node, the GCN performs a convolution process 

on its neighbor to capture the topology relationships and obtain a discriminative representation of the node. 

For the graph G with k nodes, we can enumerate the graph G to acquire its adjacency matrix. The resulting matrix can 

be expressed as A∈Rk×k. To facilitate the explanation, we define the state of node i in layer l-th as ℎ𝑖
𝑙during graph con-

volution operations, where l∈[1,2,...,L].  

Here, ℎ𝑖
0 represents the initial status of node i, and ℎ𝑖

𝐿  represents the end status of node i. The convolution operation of 

the graph is mathematically represented by Eq.(1): 

 ℎ𝑖
𝑙+1 = σ(∑ AijW

lhj
l + bt

ln
j=1 ) (1) 

Whereσ  is a nonlinear activation function, Wldenotes the feature matrixweight, bt
l is a bias term. 

For any given sentence, by modeling the syntactic dependencies, we can acquire the probability distribution graphs. It 

denotes an n×n adjacency matrix r∈ R. We perform the graph convolution operations on each node in l-th layer of t-th 

channel to update its state representation. By aggregating the information of neighboring nodes, an enhanced node rep-

resentation with aspectual sentiment features can be obtained. The updating process follows Eq. (2): 
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 ℎ𝑖,𝑡
𝑙+1 = σ(∑ ri,j,tWt

lhj,t
l + bt

ln
j=1 ) (2) 

wherehj,t
l  is the status representational of node j in layer l, 

ℎ𝑖,𝑡
𝑙+1 is the end outputs of node i in layer l. 

σ is the nonlinear activity function (e.g., ReLU). 

Wt
l is a linear transform weight, 

bt
l is a bias term. 

All of these parameters are on the t-th channel. 

The ultimate output in layer l on the t-th channel is the following Eq. (3): 

Ht
l = {h1,t

l , h2,t
l , … … , hn,t

l }                       (3) 

After the graph convolution operation of the l-layer, GCN can get the final feature representation. Since we have a total 

of m channels, there are a total of m feature representations. 

This layer is crucial for learning the spatial dependencies between different monitoring stations (nodes in the graph) and 

updating their features based on the connections (edges) between them. 

4.2. Gated Fusion Mechanism 

The GFAGNN model uses a gating method whereby the multiplicity of sources/perspectives is dynamically integrated. 

Interestingly, this applies in the prediction of water quality, where different stations may be influencing one another to 

different extents [19]. The gate that controls the significance of the features from two sources regulates the fusion process. 

The feature fusion at layer l is defined by Eq. (4): 

ℎ𝑓𝑢𝑠𝑒𝑑 = σ(Wg[h1,t
l , h2,t

l ] + bg)                              (4) 

Where h1,t
l , and  h2,t

l  stand for the feature matrices from two different graph perspectives or sources, such as one from 

spatial dependencies and another from temporal correlations. Wg is the gating weight matrix that regulates the fusion 

process. bg is the bias term associated with the gating mechanism. 

Similar to ReLU used in convolutional operations, the function σ is a nonlinear activation function that allows the model 

to learn the necessary fusion scenario. 

This gated fusion makes it very convenient for the network to make use of the different graph structures in the determi-

nation of the relations within the water quality data by considering the local and global relational data structures. 

4.3. Adaptive Fusion 

To improve the way in which the two graphs are fused, the GFAGNN model utilizes an adaptive fusion mechanism. This 

mechanism makes sure that the model acquires priorities of features from various data sources according to the context 

[20]. More precisely, the fusion weights α are calculated from the corresponding features of nodes and their relevance 

with the target task. The fusion weights are computed by using Eq. (5): 

α =
exp (Wah)

iexp (Wahi)
                                      (5) 

WhereWa is the adaptive weight matrix learned at a training session. However, it determines how each node's feature 

vector should be weighted in the fusion process. hi shows the feature vector for node i in the graph. The expression 

means that the fusion weights α are always normalized around all nodes, such that the sum of all fusion weights is equal to 

1. 
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This mechanism of adaptation is used to provide suitability for the fluctuating nature of water quality, since some mon-

itoring stations may be more critical in certain situations than at other times. 

4.4. Output Layer 

The last layer of GFAGNN provides the predicted value of water quality parameters such as pH, turbidity, dissolved 

oxygen, or temperature using the fused feature maps. The prediction at the output layer is a linear combination of the 

features obtained from the last graph convolutional layer and mentioned by Eq. (6): 

𝑦̂ = 𝑊0𝐻(𝐿) + 𝑏0                                       (6) 

Where𝐻(𝐿) is the feature matrix obtained from the last convolutional layer (layer L). 𝑊0 is the weight matrix at the 

output layer, which maps the learned features to the final output. 𝑏0 is the bias term for the output layer. 

𝑦̂ is the predicted value of the water quality parameter (e.g., pollutant concentration). This layer is usually regression 

because the goal is to estimate infinitely differentiable values, such as the concentration of various pollutants or other 

quality parameters of water. 

4.5. Training Process 

The GFAGNN is trained during a process where the optimization is performed through optimization algorithms that in-

clude Adam, thus allowing for minimizing the Mean Squared Error (MSE) loss function [21]. The training seeks to use the 

weights of the model to bring as close as possible the predicted water quality to its actual value. 

Loss Function: 

The loss function used for regression tasks is the Mean Squared Error (MSE), which measures the average squared dif-

ference between predicted and true values as given by Eq. (7): 

              𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1                                                                 (7) 

Where N: the number of data points. 𝑦𝑖: the true water quality value for the i-th sample. 𝑦̂𝑖: the predicted value for the i-th 

sample. 

Optimization: 

The parameters of the network such as the weight matrices W(l), Wg, and Wo, are updated using gradient descent: 

𝑊(𝑙) ← 𝑊(𝑙) − 𝜂
𝜕𝐿

𝜕𝑊(𝑙)                                               (8) 

Where η is the learning rate, which controls how much the weights are adjusted during each update. The gradients 
𝜕𝐿

𝜕𝑊(𝑙) 

are computed through backpropagation. This iterative process goes on until the model converges, which means that the 

value of the loss function settles to a minimum value. 

4.6 Performance Metrics 

Performance metrics like MAE, RMSE, R² Score, and MAPE were used to calculate the predictive accuracy and gener-

alization of the proposed model: 

Mean Absolute Error (MAE): Calculates the average magnitude of prediction errors without taking care of their di-

rection by using Eq. (9). 

MAE =
1

n
∑ |yi − ŷi|

n
i=1                                      (9) 

Root Mean Square Error (RMSE): Provides more weightage to large errors and gives insight into the ability of the 

model to handle them by using Eq. (10). 
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RMSE = √
1

n
∑ (yi − ŷi)

2n
i=1                              (10) 

R-Squared (R²) Score: It measures how adequately the model clarifies the variance in the data, showing its predictive 

power by using Eq. (11). A value closer to 1 shows a better fit. 

R2 = 1 −
∑ (yi−ŷi)2n

i=1

∑ (yi−y̅i)2n
i=1

                                  (11) 

Mean Absolute Percentage Error (MAPE): Exposes the error in percentage form, making it possible for the reader 

after the analysis of the results to find out how accurate the specific model is. 

MAPE =
100

n
∑ |

yi−ŷi

yi
|n

i=1                                      (12) 

5. Results and Analysis 

The dataset used in this work was collected from 20 environmental monitoring stations deployed in a smart city. It con-

sisted of six consecutive months of monitoring to have a sufficient data chain that would be able to capture seasonal 

variation and occasional varying environmental events. The data gathered included four water quality parameters criti-

cal for assessing the aquatic health of the city’s water bodies: 

• pH: Represents the water’s acidity or alkalinity, which is an essential factor in determining water quality. 

• Turbidity (NTU): Indicates the cloudiness or haziness of water, caused by suspended particles. 

• Dissolved Oxygen (mg/L): Measures the amount of oxygen dissolved in the water, which is crucial for sup-

porting aquatic life. 

• Temperature (°C): Affects both the solubility of oxygen in water and the metabolic rate of aquatic organisms. 

500 sample data was collected at 10-minute intervals, resulting in high-resolution temporal analysis.  

The proposed model is designed to provide the analysis and forecasting of the water quality parameters based on data 

acquisition from the established stations. The proposed model was fine-tuned using hyperparameter tuning to achieve 

better performance both in spatial and temporal forecasting. To increase the robustness of the learned feature represen-

tation from the sensor network, it proposes the three graph convolution layers for spatial dependency and structure dis-

covery. Two gated fusion layers are used for the sensor data fusion from multiple monitoring stations where the temporal 

relationship is maintained and a better predictive model. An initial learning rate of 0.001 is used while decreasing it ex-

ponentially right after 10 epochs by 0.1 to balance rapid convergence and relative overfitting rates. The Adam optimizer is 

used in the same place to optimize sparse gradients while ensuring a faster rate of convergence and more stability. A large 

batch size of 64 is used because this will reduce the number of iterations to reach convergence. For training and testing, an 

80:20 ratio is adopted for partitioning the data, which would give a valid evaluation of the model being built. From these 

metrics provided in Table 1, the proposed model of this study achieved a higher performance than the baseline models.  

Table 1: Performance of proposed model 

Water Quality Parameter MAE RMSE R² MAPE 

pH 0.14 0.17 0.89 2.25% 

Turbidity (NTU) 0.45 0.57 0.91 15.87% 

Dissolved Oxygen 

(mg/L) 
0.29 0.35 0.87 3.59% 

Temperature (°C) 0.91 1.12 0.85 4.67% 

We also found that the model had consistency in predictive accuracy for all the water quality parameters as evident from 

the assessment parameters. The Mean Absolute Error (MAE) was lowest for pH at 0.14 and highest for temperature with 
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0.91’s value. RMSE values showed a similar trend where the deviations were a minimum of 0.17 for pH and a maximum 

of 1.12 for temperature. The R² scores mean the models had good and high predictive precision with an average of 0.88 

for the parameters, and turbidity had the best of the R², 0.91 while the temperature had the lowest R² of 0.85. % MAPE 

stressed the accuracy of the model whereby pH recorded the smallest MAPE of 2.25% while turbidity recorded the 

highest MAPE of 15.87%. These results stand testament to the ability of this model in given prediction about water 

quality parameters, most of all the pH content. 

As depicted in Figure 1, actual and predicted pH values for 500 samples were compared using a time series plot. The 

circles refer to true measurements and correspond to the blue curve running across the figure, which shows the predicted 

measurements of the model. Some of the scatter points point at each prediction, thus illuminating the corresponding po-

tential of the model to predict the actual values. The Mean Absolute Error (MAE) of 0.16 shows a small discrepancy 

between actual and presented results, while an R² of 0.84 estimates a good predictive accuracy, which explains 84% of the 

variance in data. The visualization shows the model's effectiveness in accurately predicting pH levels in real-time. 

 

 

Figure 1. Time series comparison of actual and predicted pH values. 

Figure 2 depicts a histogram of the turbidity error distribution, measured in Nephelometric Turbidity Units (NTU). The 

data is centered around 0 NTU, indicating that the errors are symmetrically distributed and approximately follow a 

normal distribution. The highest frequency occurs near 0 NTU, suggesting minimal error in most measurements. The 

spread of the data is limited, with most errors falling between -2 and 2 NTU. 

 

Figure 2. Turbidity error distribution 
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Figure 3. Predicted DO levels to the actual DO levels. 

This scatter plot shown in Figure 3 compares the predicted dissolved oxygen (DO) levels to the actual DO levels in 

mg/L. The data points closely follow a diagonal trend, indicating a strong positive correlation between predictions and 

actual values. The coefficient of determination (R²) is 0.76, suggesting that 76% of the variance in predicted DO is ex-

plained by the actual DO. However, there is some scatter around the trend line, indicating prediction errors. 

 

Figure 4. Predicted temperature values to the actual temperature values. 

This scatter plot Figure 4 compares the predicted temperature values to the actual temperature values in degrees Celsius 

(°C). The points are closely aligned along the diagonal line, indicating a strong agreement between predictions and ac-

tual values. The coefficient of determination (R²) is 0.77, meaning 77% of the variability in predicted temperature is ex-

plained by the actual temperature. There is some deviation from the line, suggesting minor prediction inaccuracies. 

Figure 5 shows a box plot comparing the actual pH values and predicted pH values. Both distributions have similar me-

dians (red lines), indicating that the model's predictions align well with the actual values. The interquartile ranges (blue 

boxes) and whiskers (lines extending from the boxes) are also similar, suggesting that the spread of data in both sets is 

comparable. Outliers (red crosses) are present in both cases, but their distribution appears consistent, indicating no sig-

nificant deviation in prediction accuracy. 
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Figure 5. Actual pH values and predicted pH values. 

 

Figure 6. Correlation heat map of water quality parameters 

Figure 6 is a correlation heat map of water quality parameters, including pH, Turbidity, DO (Dissolved Oxygen), and 

Temperature. The color intensity indicates the strength of the correlation, with values ranging from -1 (negative correla-

tion) to 1 (positive correlation). Most correlations between parameters are weak, as the values are close to zero. For 

example, pH and Temperature show a slight positive correlation (0.04941), while DO and Turbidity have a small posi-

tive correlation (0.02597). This suggests minimal linear relationships between these parameters. 

 

Figure 7. Residuals for turbidity over time 
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Figure 7 shows a time series plot of residuals for turbidity predictions over 500 samples. Residuals, calculated as the 

difference between actual and predicted values, fluctuate around zero, indicating that the model's errors are generally 

unbiased. The range of residuals is mostly between -3 and 3 NTU, suggesting acceptable prediction accuracy. The lack 

of a visible trend or pattern suggests that the residuals are random, indicating no systematic error in the model. 

 

Figure 8. Smoothed prediction errors (for all four parameters) 

Figure 8 shows smoothed prediction errors for four parameters: pH, turbidity, dissolved oxygen (DO), and temperature, 

represented by magenta, blue, green, and red lines, respectively. The errors are computed over 500 samples and 

smoothed using a rolling mean. The y-axis represents the error magnitude, while the x-axis shows time in samples. 

Variations in prediction errors across the parameters suggest differences in model performance or measurement dynam-

ics for each parameter. Temperature error exhibits higher fluctuations compared to others. 

 

Figure 9. Turbidity residuals over time  

Figure 10 presents a scatter plot of turbidity residuals over time, measured in NTU (Nephelometric Turbidity Units). 

The x-axis represents time in samples (from 0 to 500), while the y-axis shows the residual values. The residuals are 

scattered around zero, indicating prediction errors with no apparent trend or systematic bias. The range of residuals 

spans approximately from -3 to 3, suggesting variability in prediction accuracy for turbidity. 
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Figure 11. Bland-Altman plot for pH 

Figure 11 shows a Bland-Altman plot for pH, where the x-axis represents the mean of actual and predicted pH values, 

and the y-axis shows the difference (actual - predicted) between the two. Most points are distributed around the ze-

ro-difference line, indicating a general agreement between the actual and predicted pH values. The spread of differences 

suggests variability in prediction accuracy, but no clear systematic bias is evident. The range of differences appears to 

stay within ±0.6, indicating the magnitude of prediction errors. 

6. Conclusion 

This study presented the development and evaluation of an Optimized Gated Fusion Adaptive Graph Neural Network 

(GFAGNN) for water quality prediction in smart environments. By incorporating adaptive learning and gated fusion, the 

model overcomes the shortcomings of a pure predictive framework for the management of dynamic and heterogeneous 

water quality data. GFAGNN creates graph representations of the sensor networks and thus provides convenient inte-

gration of the multimodal data fusion, which in return increases predictive performance by the considered spatial and 

temporal relationships. Experimental outcomes showed that GFAGNN achieved greater accuracy compared to other 

benchmark methods such as CNN, LSTM, and other baseline models. Specifically, the incorporation of adaptive learning 

was crucial to expand the capability of the model to adapt according to changes in the environment and hence increase the 

precision and scalability of the model. Comparative analysis also revealed that GFAGNN gave 15% and 12% better 

accuracy in prediction and error rate respectively thus suitable for monitoring water quality in a real-time fashion.  

Therefore, the results of this study are useful for developing intelligent water management systems needed to address the 

multiple issues related to water pollution and resource availability in a more scalable and adaptive fashion. Further work 

will consider the use of a larger number of environmental conditions as well as incorporating real-time data feeds, and 

some debate of the broader idea of life-long learning, which may incorporate a combination of the GFAGNN and other 

reinforcement learning methods.  
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